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1. INTRODUCTION

(i) Background

Quadrat analysis embraces a variety of mathematical and statistical tech-
niques which are designed to measure properties of point patterns. These tech-
niques are of inherent interest to geographers because they provide answers
to fundamental questions about the relationships between points in space.
However, the first applications of the quadrat method appear in the litera-
ture of plant ecology, beginning with a paper by Gleason (1920). In plant
ecology quadrat methods are used to analyse spatial properties of plant com-
munities, but it is only recently that geographers have taken a serious in-
terest in these techniques. Geographical point patterns which have been sub-
jected to quadrat analysis include the distribution of shops in urban areas
(Rogers, 1965, 1969 c), the distribution of karst depressions in a limestone
region (McConnell and Horn, 1972), and the adoption of agricultural innova-
tions by rural populations (Harvey, 1966).

Fig.l(i) shows the distribution of vehicle factories in the Merseyside
conurbation (1966), which is a representative example of a geographical point
pattern suitable for quadrat analysis. The geographer looking at this map
might ask himself the following questions. 'Does the pattern of points sug-
gest that the location of one factory influences the location of other fac-
tories?' In-other words, 'are factory locations in some way dependent on one
another?' Alternatively, he may ask the simpler, and even more fundamental,
question, is there evidence in the pattern which indicates that the points
are totally unrelated?' In other words, 'is the pattern just a random distri-
bution of points?' Subsequently, we shall see that the idea of a random point
pattern requires careful definition, but Fig.1(ii) gives a visual impression
of a random pattern.

Quadrat methods attempt to answer such questions by adapting some o 4 the
basic mathematical ideas in probability theory to analyse the frequency  dis-
tribution of a point pattern. By frequency we mean the manner in w
density 6 -1 points varies over the study area. fig.2(i) illustrates a hypo-
thetical pattern of 21 points which we shall use as a simple numerical exam-
ple. We can measure the frequency distribution of this pattern by laying a
square grid over the pattern (Fig.2(ii)) and counting the number of points
falling within each cell. We will define the individual observation as IN,
which is the number of points located in the ith cell. For any pattern
there will be n cells and r points. In this example n = 36 and r = 21.
We obtain the frequency distribution of the point pattern by counting the num-
ber of cells containing exactly m points for all values of m between 0

It will prove helpful if we note two obvious characteristics of the fre-
quency array describing a particular point pattern. To be a valid representa-
tion of the pattern the frequency array must obey the following two constraints:

that is, the sum over the number of cells containing m points must equal the
total number of cells, and



Fig. 1 : Some example patterns

(2)

that is, multiplying the number of cells containing m points by m, and sum-
ming over m, must give the total number of points comprising the pattern.
The calculation of both these formulas is shown in Fig.2(ii).

(ii) Data collection methods 

The design of a quadrat experiment begins with defining the limits of the
study region. Any definition chosen depends on the individual nature of the
objects that form the points, although the following guidelines provide a gen-
eral background to this problem. First, every part of the study area should
be a possible location for a point. Thus, if we are studying the frequency
distribution of karst depressions, the study area should be exclusively a
limestone region. The inclusion of other rock types would lead to an erron-
eous frequency array because the number of empty cells would be overestimated.
Second, it should be remembered that the size of the study area determines the
level of resolution of the problem. For instance, any discussion of our fac-
tory pattern is immediately restricted to the intra-urban scale by our study
area definition. The remaining problems of study area definition are specific
to certain types of quadrat experiments and are treated at the relevant points
in the text.

Having defined the study area we then construct the frequency array. This
is achieved by adopting the procedure of either quadrat censusing, or  quadrat 
samolinq. We have already described quadrat censusing which involved deciding
on a cell size and then laying a contiguous grid of these cells over the study
area. Fig.2(ii) illustrates the results of censusing the hypothetical pattern
with two different cell sizes. The problem of selecting an appropriate cell
size is quite complex and is treated separately in sections V (ii) and VI (iii).
Quadrat sampling depends on selecting a single cell of a predetermined size
and then randomly placing the cell over the study area n times. With quad-
rat sampling the frequency distribution is obtained by counting the number of
points lying within the quadrat on each of the n random placings and then

points located within the study area, while quadrat sampling yields an esti-
mate of the frequency distribution obtained from a random spatial sample. In
the case of quadrat censusing the average density of points depends on n and

4 5



Usually the choice between adopting censusing or sampling depends on the
phenomenon being studied. For instance, the study of a community of plants in
a local habitat would most easily be achieved by sampling, whereas for the dis-
tribution of shop types in an urban area censusing is more appropriate because
here the total population of shops could easily be identified. However, the
majority of the statistical theory of quadrat analysis is based on the premise
that the data has been collected by sampling. Consequently, the nature of the
mathematical model to be tested may well determine the data collection pro-
cedure.

(iii) The methodology of quadrat analysis 

We begin by observing that dividing the individual elements of the ob-

x points in a single quadrat selected at random from the census. Therefore,
if we require the probability that a randomly selected quadrat contains ex-
actly x points, then the probability that x=m is given by

(6)

where m can take on values between 0 and r. For the frequency array given
in Fig.2(ii)a the probability that a randomly selected quadrat contains 0
points is given by

The distribution of P(x=m) possesses the property common to all probability
distributions which is that the sum of the individual probabilities forming
the distribution must be 1(unity), such that

(7)

The central idea in the quadrat method is that we construct theories, in
the form of probability distributions, to give predicted probabilities which
may be compared with each of the individual probabilities in the observed fre-
quency distribution. The theoretical probability distribution is obtained by
making sensible assumptions about the process governing the evolution of the
point pattern. From those assumptions we deduce the probability distribution
that will give the appropriate prediction of the frequency distribution of the
pattern. Finally, we compare the predicted probabilities with the observed
probabilities obtained by sampling or censusing the pattern. If there exists
a close correspondence between the predicted and the observed probabilities
then we accept the assumptions incorporated in the theoretical distribution
as being the most likely explanation for the process governing the evolution
of the pattern. Conversely, if the theory bears little relation to the observed
distribution then we reject the assumptions as being an untenable process ex-
planation.

An example will help clarify this reasoning. The simplest assumption we
can make about any point pattern is that its distribution is controlled by a
random process. That is, the location of any point within the pattern oc-
curred independently of all other points. Giventhisassumption it is quite
easy to deduce a random probability distribution capable of predicting a

Fig. 2 : Approaches to the analysis of a hypothetical point pattern
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random frequency array. We can then compare the predicted random probabili-
ties with the observed probabilities in order to test the validity of our as-
sumption of randomness. Alternatively, we can construct probability models
which make assumptions about the location of a point being dependent on the
location of the other points forming the pattern, and clearly the precise na-
ture of these assumptions will depend on the particular phenomena we are
studying.

Any probability distribution designed to give a prediction for the ob-
served frequency array must satisfy, or at least closely approximate, the
following condition

(8)

plied through by successive values of m, the sum of these values must equal
the observed mean number of points per cell. This condition is equivalent to
equation (2) divided through by n and makes good sense because the theory
should predict the same number of points in the observed distribution.

(iv) Other properties of point patterns 

Quadrat analysis is one of a number of different approaches that geo-
graphers have taken to the analysis of point patterns. Consequently, in order
to appreciate the role of quadrat analysis in geography it is necessary to
have some knowledge of the alternative procedures. Here we present a brief
sketch of the two major alternatives; nearest neighbour analysis and contig-
uity analysis.

Nearest neighbour analysis focuses on the distance between each point in
the pattern and its nearest neighbour (see (Fig.2(iii)), and of particular
interest is the value of the observed mean nearest neighbour distance

(9)

The impetus for geographical interest in nearest neighbour analysis was pro-
vided by Clark and Evans (1954) who derived a sampling theory for the observed

It must be remembered that quadrat methods ignore the spatial arrange-
ment of the pattern. For example, the highly ordered point pattern depicted
in Fig.2(iv)a produces the same frequency array as the pattern in Fig.2(ii)a.
Therefore a considerable body of statistical and geographical research has
been devoted to developing techniques which measure the arrangement of a pat-
tern. Such techniques are generally referred to as contiguity analysis. For
example, we can transform the hypothetical census in Fig.2(ii)a into a bin-
ary map (Fig.2(iv)b) by defining empty cells as white, and cells containing at
least one point as black. The simplest form of contiguity analysis is con-
cerned with tests based on the sampling theory of the distribution of con-
tacts between cells. These contacts are defined as white-white, black-white
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and black-black. The tests are made between the observed distribution of con-
tacts and the expected distribution in a random pattern. Contiguity tests
have been developed for regular grids (Cliff, 1968) and irregular spatial
units (Geary, 1954), and more recently many of the central assumptions of con-
tiguity analysis have been incorporated in the general treatment of the prob-
lems of spatial autocorrelation (Cliff and Ord, 1973). Indeed, all the ap-
proaches to point patterns described here may be subsumed under the general
heading of stochastic process theory in geography, and Hepple (1974) has pro-
vided a comprehensive survey of this field.

In writing this monograph it has been assumed that the reader is familiar
with basic descriptive statistics and the more elementary notions of signifi-
cance testing. The additional probability theory required to understand quad-
rat methods is presented in sections II, IV and VI. The more complicated
theoretical sections have been starred and may be omitted on first reading.
Section II of the monograph begins by describing the reasoning that leads to
the establishment of random probability distributions. Section III describes
the statistical procedures we may adopt to test for the goodness-of-fit be-
tween a theoretical and the observed distribution, while Section IV considers
the more difficult problem of constructing probability distributions which
model situations where the locations of points are dependent on one another.
The remaining sections examine some of the problems arising from the appli-
cation of quadrat methods in geography and also offer some alternative ap-
proaches to these problems.

II. INDEPENDENCE IN SPACE

(i) The multiplication axiom for independent events 

Before we can begin to construct probability models for the random fre-
quency distribution we need to define exactly what is meant by an independent
event in probability theory.

Many problems in probability theory may be envisaged as an experiment
with a finite number of mutually exclusive outcomes (n). If we term each of
these outcomes an event, then the probability of the occurrence of one of
these events in a single trial on the experiment is given by the symbol p(E).
For instance, if our experiment was the tossing of an unbiased coin, then the
experiment has two outcomes, heads and tails. The probability for each of
these equally likely outcomes in a single trial is given by

given in equation (7).

Two events are said to be independent if the occurrence of one event in
an experiment does not influence the occurrence of the other. The idea of in-
dependence is defined in the multiplication axiom which states that, if E 1

9



For example, in our unbiased coin tossing experiment the multiplication axiom
gives the probability of Heads being followed by tails in two tosses of the
coin as

(16)

product of their individual probabilities'. Symbolically we write this defin-
ition as

(12)

More generally, for experiments with n outcomes, the multiplication axiom may
be written as

(ii) Binomial Coefficients 

Binomial coefficients are combinational numbers which define the total
number of different sequences in which an event can occur exactly m times
in r trials on an experiment. For example, it is easy to see that there
are 6 sequences in which 2 heads can occur in 4 tosses of a coin, these are

HHTT
HTTH
HTHT
TTHH
THHT
THTH

In this case the answer was obtained by experimentation, however, the general
solution for the number of sequences in which an event occurs m times in
r trials is given by the binomial coefficient. Formally this is expressed as

(14)

Enumeration of the binomial coefficient for this problem gives the result we
obtained by experimentation

(15)

Conversely, the probability that the point does not land in the specified cell,
such that the complementary event occurs, is given by

we take a single one of these sequences we can use the multiplication axiom
to obtain the probability of its occurrence. The event E occurs m times in
the sequence, each time with a probability p. Because the points are placed

placed in the specified cell. However, because in total r points are placed
in the grid, for a specified cell to contain m points the complementary ev-
ent (points not landing in the desired cell) must have occurred r-m times,
each time with a probability q. Therefore, the probability of a single se-
quence occurring with m points being placed in the specified cell is given
by

(18)

If we evaluate this expression for the hypothetical pattern in Fig.2(ii)a we
obtain the following results:

Further evaluation of the binomial distribution for values of m between 2
and r leads to a discrete probability distribution which describes the prob-
ability of finding m points in the specified cell when the pattern of points
evolved under a random, or independent, process. Table 1 lists these values

(13)

(17)

the predicted number of cells containing m points for the whole pattern.
This final calculation provides a random frequency array which can be com-

(iii) The binomial distribution 

We can now combine the ideas incorporated in the multiplication axiom
and binomial coefficients to obtain the distribution that predicts the random
frequency array. We require an answer to this question, if r points are
placed independently, and one at a time into a grid composed of n equal sized
cells, what is the probability that a single specified cell contains exactly
m points at the conclusion of the experiment?' Because the cells are equal
sized the probability that one point falls in the specified cell in a single
trial is given by

10

listed in Table 1.

Subsequently we shall find that two useful summary measures of the pre-

of placing a single point in a specified cell, and r, the total number of
points, such that expected, or mean value of m is given by

(19)
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the square of the first moment (the mean), and for the binomial distribution
the variance is given by

(20)

(21)

(22)

 (from 14)

The right hand side of this expression can be rearranged to form

Table 1. Probabilities and frequencies for the hypothetical data set

The variance of the binomial distribution measures the spread of the values

(iv) The Poisson distribution as a limit of the binomial 

In most cases where we wish to apply the binomial in point pattern ana-
l ysis n and r usually have large values, consequently p tends to be
small. When n and r are large it can be shown that the Poisson distribu-
tion gives very close approximations to the results obtained from the binomial.
In fact, the Poisson is a limiting case of the binomial distribution, and the
proof is as follows: (this proof may be omitted on the first reading)

Let r and n tend to infinity such that the ration r/n tends to a

Because we are letting r tend to infinity all the terms in this expression,
with the exception of the first two, tend to values of 1. This gives

(24)

12

which is the formula for the Poisson distribution. The mean, or expected

Table 1. Usually, for any probability distribution, it is not necessary to

small differences between the respective results listed in Table 1. However,
as a general rule, the Poisson will only give an acceptable approximation if
all the following conditions are fulfilled:

(26)
(27)
(28)

The deductions leading to the establishment of the random probability
model presented here are based on results in Feller (1957) and Gray (1967,
p.52). However, in the literature of quadrat analysis alternative derivations
of the Poisson and the binomial models may be found in Rogers (1974, p.3) and
Greig-Smith (1964, p.12). They begin by assuming that the study area is capable
of being sub-divided into an infinite number of quadrats, that is space is
continuous, their deductions then lead to the establishment of the Poisson
as the pure random model, with the binomial being a limiting case of the
Poisson capable of predicting minor departures from randomness. Essentially,
our derivation is appropriate for quadrat censuring where the study area is
divided into a discrete number of cells, while the alternative 'continuous
space' derivation is suitable for quadrat sampling. However, in practical
applications of these models the differences between the two predictions are
usually too small to influence the interpretation of results.

13



III. GOODNESS-OF-FIT TESTS

As the name suggests, goodness-of-fit tests are statistical procedures
for deciding whether a model prediction gives a close enough representation
of an observed problem for the assumptions of the model to be accepted as
giving an adequate explanation for the processes controlling the problem. We
have already mentioned the existence of statistical procedures for testing
observed nearest neighbour distances for randomness, and in this section we
will be concerned with the more commonly used goodness-of-fit procedures in
quadrat analysis. The example used is the appropriateness of the Poisson model.
However, with the exception of the variance/mean ratio, the tests may be
applied to all the probability distributions that occur in quadrat analysis.

(ii) The Chi-square test

This is the most commonly used goodness-of-fit statistic which tests the
degree of correspondence between two frequency distributions grouped into
identical classes. The formula for the test statistic is,

observed and expected frequencies becomes perfect, and tends to be large as
the fit becomes poorer. In quadrat analysis the expected frequency distribution

place a lower limit on the number of observations in a frequency class. Statis-
ticians disagree on the precise form of this convention, although the current
opinion is that in quadrat analysis it is possible to reduce the lower limit
to 1 without serious loss of accuracy (see Rogers (1974, p.68)). In order to
test the null hypothesis that there is no significant difference between the
frequency array shown in Fig.2(ii)a and the predicted Poisson probabilities,
the data in Table 1 was arranged for the x 2 test. Following the grouping cri-
terion it is necessary to merge the frequencies for m  2,3,4 into a single
class of m '2. The results of the subsequent x 2 test are shown in Table 2.
The test is made at the o = .05 significance level which means that the prob-

A second problem that arises with x 2 also concerns the probability of
Type II errors. For most statistical tests the null hypothesis is the converse
of the actual idea that is being tested such that the research worker is hop-
ing to reject the null hypothesis and so confirm his original idea. Tests are
designed in this way because statisticians are conservative and will only ac-
cept an idea when there is a low probability (a) of the difference being due
to sampling error. However, this is not the usual case in quadrat analysis.
Normally the research worker wishes to demonstrate a close correspondence be-
tween the observed and expected distributions by accepting the null hypothesis.
It follows that if the research worker is to maintain a conservative statisti-
cal approach he must select a significance level which minimises the prob-
ability of Typc II errors. Therefore the severity of the test described by
Table 2 would be increased if the significance level were also increased, say
to p = .20, because raising the significance level to higher probabilities
reduces the value of 6. For a full discussion of the Chi-square test in quad-
rat analysis the reader is referred to Rogers (1974, Ch.5).

(ii) The Kolmogorov-Smirnov D statistic 

Kolmogorov-Smirnov D statistic. The statistic measures goodness-of-fit by
testing the maximum deviation between the predicted cumulative frequency dis-
tribution and the observed cumulative frequency distribution for a signifi-
cant difference. Assuming that each observation (mi) is part of a random
quadrat sample of size n, then the magnitude of the deviation is dependent
solely on n, such that the statistic D may be defined as

15



at a predefined significance level. Tables for critical values of D at a
variety of significance levels may be found in Siegel (1956) and Lindgren
(1975). The test has been applied to the observed and Poisson data listed in
Table 1 and the results at the p .20 significance level are listed in Table
3. The test produces the same conclusion as Chi-square, that is the observed
distribution is adequately described by the Poisson model.

values of m are considered in the evaluation of the test statistic, although
a corresponding disadvantage is the loss of detail associated with the D
statistic because only the maximum deviation contributes to the final value
of D. Again the problem arises with the D statistic that the research work-
er is usually hoping to accept the null hypotheses, which makes the minimiz-
ation of Type II errors of paramount importance in the selection of a signi-
ficance level. Fig.3 summarises the results of some experimental work by
Lindgren (1975) on the relationship between Type I and Type II errors for the
D statistic when the sample size (n) is 10. It can be seen that the prob-

Fig.3: The relationship between Type I and Type II errors for the D statistic

(iii) The Variance/mean ratio 

For an observed frequency array the variance/mean ratio is given by

(34)

The ratio defined by (34) is used in the construction of a test statistic for
assessing whether the observed frequency array was generated by a random pro-
cess. The test is founded on the property of the Poisson distribution that
its mean equals its variance. Consequently, if the observed frequency array
is random the observed variance/mean ratio should tend to a value of 1, which
gives the null hypothesis

(35)

When the variance/mean ratio is derived from a random quadrat sample the dif-
ference between the observed ratio and unity may be tested for significance

Applying this test to our example  data produces the results listed in Table 4.
Again we conclude that the observed frequency array was generated by a random
process. If, in another application of the test, the null hypothesis were
rejected H 1 would be accepted and we would conclude that the point pattern
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is tending to be either, a clustered distribution, or, uniformly distributed
in space. These secondary characteristics of the variance/mean ratio are
discussed fully in the following section.

None of the tests described here are sufficient measures of goodness-of-
fit in their own right, and it is common practice to apply a number of tests
before deciding if a model gives a sufficiently good prediction of the ob-
served frequency distribution. Furthermore, the statistical theory for all
these tests is based on the premise that the frequency data were collected by
random quadrat sampling. If the data are derived by censusing then the tests
are not really appropriate, although in practice they are often applied to
census data as a guide to interpretation. The three tests we have described
were selected because they are the most widely applied. However, numerous
other goodness-of-fit tests for quadrat analysis have been constructed and
the reader is referred to Greig-Smith (1964) and Mead (1974) for interesting
discussions of their performance.

IV. DEPENDENCE IN SPACE

(i) Uniform and clustered patterns 

So far we have limited our discussion to the way in which randomness, or
independence manifests itself in space. However, of far greater intrinsic in-
terest to the geographer is discovering how non-randomness arises in point
patterns by attempting to model the processes that give rise to these patterns.

Figure 4 illustrates some extreme examples of non-random patterns. Pat-
terns (a) and (b) are examples of uniform patterns; (a) depicts a triangular
distribution of points, while in (b) the points are located on the corners of
a square lattice. Uniform patterns are usually regarded as being diagnostic
of a competitive process such that points compete for space in the plane. Thus
if we imagine a uniform pattern evolving through time then the presence of a
mint in plane will have the effect of lowering the probability of subsequent
points being located in its immediate vicinity. A typical example of a uni-
form point pattern is the distribution of settlements in fairly evenly popu-
lated regions. Here there is competition between towns for market areas and
consequently the settlements repel each other to create a fairly uniform dis-
tribution.

1 8

Fig. 4: Some ordered point patterns

If we take a quadrat census of a completely uniform pattern such that
there are equal numbers of points in each cell, then the mean of this census
will be identical to each observation (mi), and because all mi are equal
the variance will be zero. Consequently, the value of the variance/mean ratio
will also be zero. Accordingly, values of the variance/mean ratio between one
and zero are indicative of uniformity, which becomes more pronounced as the
ratio tends to zero.

Clustered point patterns (Fig. 4c) are thought to be the result of con-
tagious processes where, as the pattern evolves, the location of a point in
a cell increases the probability of subsequent points being located in that
cell. Phenomena that diffuse through time and space are usually governed by
contagious processes. For example, Hagerstrand's (1967) renowned work on the
adoption of agricultural innovations by Swedish farmers demonstrated that the
decision by a farmer to adopt an innovation was the result of verbal contact
with a farmer already making use of the innovation. Given that social con-
tacts in rural areas tend to be made over short distances then, if we study
the distribution of adopters among a rural population of farmers, the initial
patterns of adoption are likely to be highly clustered (see Harvey, 1966). If
we envisage an infinite plane where an infinite number of points tend to clus-
ter in the same location then the variance of the resulting frequency array
will tend to infinity together with the value of the variance/mean ratio.

19



(41)

(42)

(43)

The distribution described by equation (37) may be deduced from a num-
ber of different premises concerning the processes giving rise to the cluster-
ing (see Dacey, 1968). For quadrat analysis the two most important processes
which give rise to the negative binomial are termed generalized and compound
processes. The formal mathematical description of these two processes is quite
complex, however, the basic distinction between the two is quite easily

20

(44)

(45)

(ii) The negative binomial distribution 

In geographical applications of quadrat analysis clustered distributions
have been found to be far more prevalent than uniform distributions. For this
reason, the majority of this section will be concerned with probability dis-
tributions which model the clustering of points. In particular we shall be
most concerned with the properties of the negative binomial because it is with
this distribution that geographers have had the greatest success in fitting ob-
served frequency arrays.

The negative binomial is derived in the following manner. Assume that
points are assigned to an infinite grid independently of time. However, as
distinct from the assumptions of the binomial, we now assume that the prob-
ability of a point being placed in a specified cell increases linearly with
the number of points already placed in that cell. Consequently, at any one
point in time, the probabilities of cells receiving a point are not equal, but
are directly related to the existing distribution. Naturally this process will
generate a clustered distribution, and it can be proved (see Rogers, 1974,
p.16) that probability distribution embodying these assumptions, such that the
proability of a specified cell containing exactly x points is, given by

(37)

(38)
(39)
(40)

It can be seen that the probabilities predicted by equation (37) are dependent

clustering associated with the contagious process, and its exact value is
specified within the limits zero to infinity. As k tends to infinity the
clustering disappears and the negative binomial tends to the Poisson distribu-
tion, and as k approaches zero the distribution converges on an exceptionally
clustered logarithmic distribution (see Bliss and Fisher, 1953). Inspection
of the variance/mean ratio for this distribution ((39)/38)) shows that its

When k is not a positive integer, which is usually the case, the probabili-
ties for the negative binomial are obtained by solving the following density
function which is an approximation for (37).

understood. The preceding derivation of the negative binomial is based on
the assumption that the distribution is a result of a generalized process.
Here the clustering is the result of some basic affinity between the points
being studied. Compound processes are the result of some basic imhomogeneity
in the population of points. For instance, if in our innovation adoption ex-
ample the density of the farm population varied significantly over the study
area, we could observe clustering in the distribution of adopters not because
of short distance social contacts between farmers, but because there were high
densities of farmers in lowland areas and low densities in upland areas. The

not the result of a 'genuine' contagious process. Because these two sets of
assumptions lead to the same predicted frequency distribution the design of
a quadrat sampling experiment must make clear whether the generalised or com-
pound model is appropriate. The generalised distribution is the more pre-
cisely defined model in geographical terms, but for its assumptions to hold
the research worker must be confident that both the points and the study area
are fairly homogeneous in nature.

(iii) Moments and maximum likelihood estimation of k 

Ideally, when we test the validity of the assumptions of a probability
model as an explanation for the processes controlling a point pattern, we
should possess sufficient knowledge of these processes to specify the values
of the model parameters from a priori reasoning. For example, if we wished
to fit the negative binomial to the agricultural innovation problem we should

However, this is rarely the case, and usually research workers are forced to
adopt statistical estimation procedures as a substitute for theoretical reas-
oning. The replacement of deductive reasoning with inductive statistical pro-
cedures at a crucial stage in the analysis is the major weakness in the logic
of the quadrat method. The situation is made more complicated by the avail-
ability of a number of different estimation procedures, and we need to dis-
tinguish carefully between their respective properties. The two most common-
ly used methods are moments and maximum likelihood estimation.

Statistical estimation procedures are designed such that some prede-
fined property of the data is preserved in the model prediction. When we
fitted the Poisson distribution to the hypothetical data set (Table 1) we used

procedures, which ensure that one or more of the model's moments is equal to
its observed value, are known as moments estimation. For the negative binom-
ial these procedures are complicated by the fact that two parameters have to
be estimated. Briefly, the moments estimation is designed to find values of

prediction are equal  to the mean and variance of the data set. The following

These equations demonstrate that the logical outcome of the moments procedure

Table 5(i) shows the results of fitting the moments estimate of the negative
binomial to the frequency distribution of farmers who adopted T.B. control be-
tween 1900-24. It may be noted that mean and variance of the predicted negative
binomial are equal to the observed mean and variance.
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Table 5: Fitting the negative binomial to data for the adoption of T.B. con-
trol in S. Sweden (1900-24). Source: Harvey (1966) after Hägerstrand (1967)

In practice probability models are usually unable to give a perfect pre-
diction for the observed frequencies irrespective of the parameter values. In
such cases the maximum likelihood estimate of the parameter value will give a
less than perfect prediction. However, it is always true that maximum likeli-
hood estimation will give the best prediction possible, and for this reason
the method is preferred to moments estimation.

The main problem in using maximum likelihood estimation is that finding
the parameter value which maximises (46) is usually a complex procedure both
algebraitally and arithmetically. The solution is simple only for the Poisson
And binomial distributions because in these cases the only parameter to be

The fundamental principle in maximum likelihood estimation is that we
obtain estimates of the model parameters such that the observed frequency dis-
tribution is predicted as closely as is possible by the corresponding model
probabilities. Mathematically this procedure may be defined as finding that
particular value of the model parameter y which maximises the value of the
following likelihood function:
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mate of the mean is identical to the moments estimate. However, if other model
parameters need to be estimated from the data the maximum likelihood proced-
ures are awkward. For instance, in order to obtain the maximum likelihood es-
timate of the negative binomial k parameter it is necessary to carry out a
complex iterative procedure which is too involved to incorporate in this mono-
graph. The reader who wishes to follow up this topic is referred to a paper
by Bliss and Fisher (1953) which gives a clear account of maximum likelihood
estimation for the negative binomial k parameter.

Table 5 (ii) shows the results of fitting the negative binomial to the
innovation adoption data by maximum likelihood methods, and the results illus-
trate well the different principles involved in the two estimation procedures.

in fit has been obtained for the two largest frequency classes and this
occurs because the likelihood function is especially sensitive to large values
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with a mean and variance defined by

(52)

(53)

(54)

(47)

(48)
(49)

(50)

(51)

Neyman derived this distribution specifically to model the distribution of
insect larvae crawling away from recently hatched egg clusters. He assumed
that the egg clusters were distributed randomly in space and also that mean
number of eggs per cluster also followed a random distribution. Here the para-
meter 'a' measures the mean number of clusters per unit area, and v the mean
number of eggs per cluster. Clearly this distribution has a highly special-
ised derivation and, to date, although geographical applications of the dis-
tribution have been suggested (see Harvey, 1966), the model has not provided
adequate enough predictions for its assumptions to be considered as a suit-
able process explanation for these problems.

One of the few examples of a probability distribution capable of de-
scribing uniformity in point patterns,with variance/mean ratios less than one
has been developed by Dacey (1964). This model was derived to model the dis-
tribution of large towns (population greater than 2,500) in Iowa. In this ex-
ample the cells of the census are Iowa's counties which were originally delim-
ited, fortuitously it seems, as a square grid. Dacey assumed that two dif-
ferent processes should account for the frequency distribution of Iowa towns.
County seats, with populations greater than 2,500, will tend to be distributed
uniformly one to a cell, while all other urban places will be randomly dis-
tributed and follow the Poisson model. Consequently, large county seata are
distributed with a density p which is, by definition, restricted to values
between 0 and 1, while all other urban places are distributed with a density

with a mean and variance defined respectively by

The moments estimates for a and v are given by

'modal' estimation. It may also be noted that the maximum likelihood estimate
does not preserve the value of the observed variance in the model prediction.

clude that the frequency distribution of innovation adopters is the result
of a contagious process. However, in many applications of the negative binom-
ial the two estimation procedures yield widely differing results, and in such
instances it is wise to select the maximum likelihood estimate of k.

*(iv) Other distributions 

Many other probability distributions exist for describing certain types
of dependency between points, and most of these distributions can be derived
as mixtures of the three basic models we have already discussed: the binomial,
the Poisson, and the negative binomial. One interesting example is the Neyman
A distribution (Neyman, 1939) which may be derived as a compound model result-
ing from the mixture of two Poisson processes (see Rogers,1974). This model
assumes that if clusters of points are laid down randomly in space such that
the average number of points per cluster also follows a Poisson distribution,
thentheprobabilityoffinding exactly x points in a  specified cell is given by

Dacey has shown that the distribution which satisfies these assumptions,
such that the probability that a specified county contains x towns

24

from both populations. is aiven by

If y and p are unknown their values may be given by the following

moments estimates

(55)

(56)

Notice that as p approaches 0, indicating that all county seats have popu-
lations less than 2,500, the first term in (52) tends to the Poisson distri-
bution with a mean equal to y, while the second term tends to 0 and van-
ishes. Alternatively, as p tends to 1 the model's variance/mean ratio,
(54)/(53), becomes increasingly smaller to indicate that the predicted fre-
quency array is representing an increasingly more uniform pattern. This model
has been found to fit the frequency distribution of Iowa towns for all U.S.
census periods between 1840-1950. However, Dacey's distribution is similar
to the Newman A in that its assumptions restrict geographical applications to
its original derivation. This is also true of some other contagious probabil-
ity models which have made brief appearances in the geographical literature on
quadrat analysis such as the Thomas double Poisson and Polya-Aeppli distri-
butions (see Olsson, 1967). *

V. GEOGRAPHICAL APPLICATIONS AND THEIR PROBLEMS

The existing geographical applications of quadrat analysis have tended
to deal with two types of point pattern. The first involves the modelling of
contagious processes in human populations, while the second type may be classi-
fied as attempts to explain and describe structural features of the landscape
in homogeneous regions. An example of the first problem is Harvey's (1966) at-
tempt to fit the negative binomial and other contagious probability models to
the distribution of agricultural innovations adopters in S. Sweden, work which
we described in the previous section. Similarly, Reynolds (1974) has fitted
the negative binomial to the distribution of voters for winning mayorial can-
didates in Indianapolis. Reynolds suggests that social contacts within a vot-
er's immediate urban environment will tend to influence his voting decision
in favour of the dominant political party in that area, which results in a
clustered distribution of party voters. However, structural applications are
the more prevalent in geography, and these include the analysis of karst de-
pressions in limestone regions (LaValle 1967; McConnell and Horn, 1972), fac-
tory and shop distributions in urban areas (Thomas and Reeve, 1976; Rogers,
1965 and 1969c; Sibley, 1972) and the distribution of houses in Puerto Rico
(Dacey, 1968). Here we will review some of these diverse applications while
paying particular attention to the two methodological problems which influence
any application of quadrat analysis: model specification, and the influence
of quadrat size on the results - known as the scale problem.
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(i) Karst depressions and the problem of model specification 

Conflicting evidence relating to the processes that control the fre-
quency distribution of karst depressions in limestone regions reported in the
works of LaValle and McConnell and Horn provides an interesting example of how
the failure to specify the parameters of a probability model on a priori grounds
may lead to quite different interpretations of the same results.

Karst depressions are of two major types: dolines and collapse sinks.
Dolines tend to be small features, usually ranging in depth between 3 and 10
metres, and are formed above the water table both by solution along zones of
weakness in the rock and by the ponding of surface run-off. Collapse sinks
are the result of cavern roof collapse and their distribution is dependent on
the subterranean drainage system. McConnell and Horn proposed that the dis-
tributions of both types of depression would be controlled by a random pro-
cess such that a double Poisson model would account for the frequency distri-
bution of all depressions. We have already seen that the operation of two ran-
dom processes at different densities leads to a clustered distribution, and
in this instance a double Poisson model developed by Schilling (1947) was sel-
ected as being the most appropriate. Alternatively, LaValle suggested that the
following process was the more likely. Independently of time, the random oc-
currence of a karst depression leads to an increased probability of subsequent
depressions being formed in that cell because, around the original depression,
local erosional processes would be accelerated by increased diversion of run-
off into the subterranean drainage system. This second description leads to
the selection of the negative binomial as the appropriate probability model
for the frequency distribution of karst depressions.

Table 7 illustrates the results of fitting the negative binomial, by
maximum likelihood estimation, and Schilling's double Poisson, by moments esti-
mation, to McConnell and Horn's data for the distribution of karst depressions
in the Mitchell Plain, Indiana. The Kolmogorov-Smirnov D statistic shows that
the negative binomial gives an adequate description at the p = .15 significance
level, while the double Poisson gives a slightly better fit at the p = .20
significance level. This situation, where two theories derived from different
assumptions are found to fit the same data set, is termed complementarity. The
problem arises because in both instances the model parameters are estimated
from the data. Both models make assumptions about the location of points in
time and naturally the model parameters are deduced from these assumptions;
indeed, Feller (1943) has concluded that it is impossible to distinguish be-
tween two contagious distributions on the single criterion of the observed
frequency array. Clearly, further information on the evolution of the observed
pattern is required before any confident conclusions can be drawn from this
analysis.

However, given these reservations, it is possible to marshall both stat-
istical and geomorphological evidence in support of the double Poisson as the
more plausible explanation of karst depression formation. McConnell and Horn
argue that the presence of a depression in a cell is unlikely to increase the
probability of further depressions being found in that cell. They suggest that
the diversion of run-off in the cell increases the efficiency of the surface
drainage system and serves to enlarge the original depression rather than cause
the formation of new depressions. Moreover, the acceptance of the double Pois-
son is made with a lower probability of Type II errors than the negative bi-
nomial. Finally, it may be noted that the products of the estimated parameters
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Table 7: The distribution of karst depressions in S. Indiana

Geometric

m
Observed
Frequency

Negative
Binomial

Double
Poisson

0 112 102.3 107 105.9

1 53 70.4 64 69.0

2 35 46.5 37 45.0

3 43 30.3 29 29.3

4 22 19.6 26 19.1

5 23 12.6 19 12.5

6 6 8.1 11 8.1

7 5 5.2 6 5.3

8 3 3.3 2 3.4

9 1 2.1 1 2.2

10 1 1.3 - 1.4

(ii) The scale problem 

Any application of quadrat methods is affected by the scale problem be-
cause the selection of quadrat size is always an arbitrary procedure, and it
is often true that the particular scale of analysis selected may influence the
subsequent interpretation of results. In particular, if the hypothesis of ran-
domness in the observed pattern is to be accepted,it must be shown that either
the Poisson or the binomial fits the observed frequency array at a variety of
different scales. If either of these models do not fit at any one scale, then
the hypothesis of randomness must be rejected for all scales and an alternative
model of dependence sought. Similarly, when fitting models of dependence the
research worker must show that the model's parameter values do not vary sig-
nificantly with changes in quadrat size, otherwise scale is influencing the
interpretation of results in some unknown manner. Dacey (1968) after
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successfully fitting the negative binomial to house distributions in Puerto
Rico was able to demonstrate that the model's parameters were fairly stable
over three different scales.

It has been argued that the scale problem is intrinsically useful to
geographers because it encourages them to study the influence of space on the
processes controlling a pattern. However, to date, the results of such re-
search have not been very illuminating. Rogers (1974), in a study of shop
distributions in Ljubljana, Yugoslavia, was able to demonstrate that differ-
ent quadrat sizes were appropriate for different shop type distributions. For
any distribution the optimal quadrat size was defined as that which maxi-

However, although Rogers identified optimal scales he was unable to
interpret their geographical significance.

One of the most well-known,and ingenious treatments of scale effects is
the approach taken by Greig-Smith (1952). His scheme is to test for random-
ness at a variety of scales within a square quadrat census where the number
of cells on each axis is some power of 2. The test is again based on the
property of the Poisson distribution that its mean equals its variance, and
is designed as a hierarchical analysis of variance. Figure 5 illustrates an
example of a 4 x 4 census that could be used for the test. The data are the
number of points in each cell (mi). The census is partitioned into a set of
nested blocks by dividing the whole census in half, each half is divided in
half, etc., keeping the halves as near square as possible, until the individual
cells form the final blocks. In the 4 x 4 case 4 divisions are required (see

(57)

(58)

and the degrees of freedom for sums of squares between blocks of size j
nested within blocks of size 2j is given by,

(59)

(60)

The analysis of variance for the hypothetical data set illustrated in
Figure 5 indicates that at the p = .05 significance level the pattern is ac-
cepted as being random for all scales, with the variation between quarters
within halves displaying the greatest tendency towards non-randomness. If,
for any particular scale, the null hypothesis is rejected, then this is
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Fig. 5: Hierarchical analysis of variance for scale effects
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evidence for clustering at that scale, and Greig-Smith has suggested that the
size of quadrat at that scale will be related to the 'mean area of clumping'
in the pattern. The form of the test described here does not measure tend-
encies towards uniformity in the pattern. However, alternative significance
tests for this property do exist (see Mead, 1974).

The main statistical problem with the F test is that once the hypo-
thesis of randomness has been rejected for a single scale the frequency dis-
tribution can no longer be assumed to follow the Poisson distribution. Con-
sequently the tests at all other scales become invalid. When this is the case
a useful qualitative interpretation of scale effects can be gained from the
graph of variance estimates plotted against scales (see fig. 5 (iv)). Never-
theless, the sustained interest of statisticians in the Greig-Smith proced-
ure is an indication of its importance, and recently both Mead (1974) and
Zahl (1974) have suggested improvements to the basic method.

VI ALTERNATIVE APPROACHES

Multinomial coefficients and state descriptions 

We have seen that the major problem in quadrat analysis is that an ob-
served point pattern contains insufficient information to test all the assump-
tions of the probability models. This difficulty prompted the author to de-
velop an alternative approach to quadrat analysis based solely on the inform-
ation contained in the quadrat census (Thomas and Reeve, 1976). The method
is based on the assumptions of a probability distribution known as Bose-Ein-
stein statistics, which provides an alternative definition of equal likelihood,
or randomness to those embodied in the binomial and Poisson distributions.

It will help our exposition if we first redefine some of the terminology
of quadrat analysis. Remembering that a point pattern consists of an arrange-
ment of r points among n cells, we define n and r as macro-state de-
scriptions of the point pattern. A meso-state description of the pattern is
any frequency array whose individual elements (n m ) satisfy the macro-state
description such that

(1)

(2)

Clearly there will be a number of meso-states which satisfy these conditions,
and two of the meso-states associated with n = 9 and r = 5 are shown in
Figure 6. Lastly we can define a micro-state description as any arrangement
of the r points among the n cells. Obviously there will be a large num-
ber of micro-states associated with any macro-state description, and a smaller
number associated with any one meso-state description. Indeed, it can easily
be proved (see Gray, 1967, p.97) that the total number of micro-states asso- Fig. 6: State descriptions and their properties
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subject to the conditions

and

Further, the total number of micro-states associated with a meso-state de-
scription is given by the multinomial coefficient

(62)

Examples of all these definitions and properties are given in Figure 6.

(ii) The entropy maximising distribution 

We can now derive a probability distribution for predicting the most
likely frequency distribution (meso-state). We wish to find that particular
meso-state description that can create the greatest number of micro-state de-
scriptions, because this description will be the most likely in the absence
of controls on the pattern. Mathematically, this requires us to obtain the
meso-state description which maximises the value of equation (62) subject to
the conditions (1) and (2). Such a meso-state will be the most likely be-
cause it can arise in the greatest number of ways. Moreover, the solution to
this problem will be an entropy-maximising solution because ln(W) is one of
the definitions of entropy or uncertainty. It is useful to re-state this
problem in terms of the probability distribution which, when multiplied
through by n, will predict the most likely meso-state. Here we wish to find
that probability distribution whose individual probabilities (P

m ) maximise
the value of Shannon's measure of the entropy of a probability distribution
(Shannon and Weaver, 1949) given by

(6 3)

(7)

(8)

Because H is linearly related to ln(W) the aims of these two problems are
identical.

Consequently, if we wish to find the probability that a specified cell contains
exactly x points when all micro-states associated with n and r are as-
sumed to be equally likely, then the probability x = m is given by

(65)

This is probability distribution known as  Bose-Einstein statistics. It follows
by conjecture that, because this distribution assumes all micro-states associ-
ated with the macro-state description to be equally likely, then, if we multi-
ply the successive probabilities in (65) through by n, we will obtain the
meso-state description of the pattern that maximises the value of (62) sub-
ject to (1) and (2 ). Similarly, the probabilities themselves will maximise the
value of (63) subject to (7) and 8). Simulated verification of these conject-
ures is given in Thomas and Reeve (1976).

gives a close approximation to the probabilities obtained from equation (65).
Indeed, the approximation holds for quite small values of n and r. It is
interesting to note that the geometric distribution is the discrete form of
the negative exponential distribution (where m is a continuous variable)
which is the entropy function in Wilson's (1970) family of spatial interaction
models.

By abandoning the assumption that points are placed in cells independ-
ently of one another through time, we have deduced a probability distribution
that gives a quite different prediction for the most likely frequency array
than the binomial or Poisson. The difference between the binomial and the
Bose-Einstein distribution arises because the binomial model assumes the points
are distinguishable from one another at the micro-state level. For example,
although an interchange of a pair of points in one of the micro-states in
Figure 6 leaves the form of the micro-state unaltered, under the binomial de-
finition of equal likelihood each possible interchange of a pair of points

The choice of a random probability model for a particular problem de-
pends on the amount of information that is available to the research worker.
If the observed point pattern is the only information then the Bose-Einstein
model is appropriate, but if the evolution of the pattern can be traced over
time the Poisson or binomial will be appropriate.

For the karst depression data listed in Table 7 the Bose-Einstein as-
sumptions are appropriate and the geometric distribution has been found to fit
the observed frequency array at the p = .20 level of the Kolmogorov-Smirnov
D statistic. This result implies the observed frequency distribution is the
most likely we could expect given the information we have available. Moreover,
because their assumptions involve time, neither the negative binomial nor dou-
ble Poisson can be substantiated as plausible explanations for the processes
controlling the pattern on the present evidence.
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(iii) Redundancy 

The entropy-maximising property of the Bose-Einstein model enables us to
calculate Shannon's indices of relative entropy and redundancy for any observed
frequency distribution. Relative entropy is the ratio between the observed en-
tropy of the frequency array and its maximum possible entropy. Using equation
(63) we can define this quantity as.

Redundancy = 1 - (67) (68)

Redundancy measures the extent to which the pattern is controlled by some un-
known processes which we will term rather clumsily as 'unhypothesised inform-
ation'. Again the index takes on values between zero and one. A redundancy
of zero indicates a perfect correspondence between the observed frequency ar-
ray and the Bose-Einstein prediction. A redundancy of one occurs when the
pattern is totally controlled, and this upper limit is achieved by totally uni-
form and, under certain conditions, totally clustered patterns. Such patterns
are totally controlled by unhypothesised information and may easily be repro-
duced by simple mechanical rules.

Unlike other indices of point pattern dispersion, redundancy does not
discriminate between clustered and uniform patterns, because in their extreme
cases both tend to a redundancy of one. However, a theoretical property of
the entropy-maximising geometric distribution helps remedy this deficiency.
When the negative binomial k parameter takes on a value of one the negative
binomial is identical to the geometric distribution. Therefore, in cases
where the Bose-Einstein definition of equal likelihood is appropriate, we can
define all observed patterns with estimated k parameters (from equation
(45)) of less than one as tending to be clustered, and all other patterns as
tending to be uniform. Incidentally, the fact that the negative binomial is
equivalent to the geometric distribution when k equals one, vividly illus-
trates the degree of difference in the prediction of the most likely frequency
array between the geometric and the Poisson models, remembering that the Pois-
son is equivalent to a negative binomial with k equal to infinity.
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Table 8 is designed to illustrate the merits of the redundancy index in
a comparative situation. The results are based on Factory Inspectorate Re-
cords of industrial plant location in Greater Merseyside, 1966 (see fig.l(i)).
Point patterns of factories for three industrial classes have been analysed
on a 412 kilometre square census covering the built-up area of the conurba-
tion. Here the assumptions of the Bose-Einstein model are appropriate because
no additional information is available on the evolution of the patterns. The

subsequent redundancy values are easy to sustain from geographical reasoning.
Vehicle factories are large independent concerns which have few factors influ-
encing their location at the intra-urban scale. Consequently, the low redun-
dancy and the close fit of the frequency array with the geometric distribution
(not illustrated) are hardly surprising. The one obvious constraint on ship-
building firms is a coastal location. However, at the one square kilometre
scale a large number of cells in Greater Merseyside have coastal locations,
suggesting that the coastal locations appear to exert a minor degree of con-
trol at this scale. Again the redundancy of .137, indicating a slight de-
gree of clustering, sustains this interpretation. Conversely, clothing firms
are small scale and highly inter-dependent with historically contralised ur-
ban locations, and these locational characteristics are well illustrated by
the high degree of control indicated by the .497 redundancy. The interpreta-
tion of the variance/mean ratios and the negative binomial k parameters for
these patterns do not appear to be so intuitively reasonable. Here all three
patterns are interpreted as having clustered distributions, with conflicting
estimates for the degree of clustering exhibited by vehicles and shipbuilding
occurring between the k parameter and the variance/mean ratio. These last
results illustrate well the difficulties of using density dependent indices

in a comparative analysis.
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Table 9: Redundancy as a measure of scale effects

Table 9 illustrates the application of the G index to the Merseyside
factory location data at four different block sizes. We see that only ship-
building seems to be influenced by cell size, with a G index equal to .238.
Here the redundancy of the frequency array becomes progressively larger as
the block size is increased and we can interpret this result using Greig-
Smith's idea of the 'mean area of clumping'. Because relatively fewer cells
are coastal as the block size increases, the frequency array becomes more
clustered as proportionately more points appear in single cells. Consequent-
ly, the scale with the highest redundancy will be the optimum block size for
the identification of major clusters of ship-building firms.

VII. CONCLUSIONS

Point patterns are one of the most elementary ways of representing a
geographical variable. Yet we have seen that by making quite simple assump-
tions about relationships between the points we can deduce quite sophisticated
probability models for predicting observed frequency distributions. Perhaps
one of the most intriguing aspects of quadrat analysis is the interplay be-
tween mathematical, statistical and geographical reasoning associated with the
interpretation of results.

The mathematics of quadrat analysis is concerned with the deduction of
logically consistent probability models from a given set of assumptions. Two
diametrically opposite problems are embodied in the process of deduction. First
it is possible to arrive at the same model from different assumptions. This
is the case with compound and generalised versions of contagious probability
models. Conversely, we may obtain quite different models for essentially the
same idea, by making apparently minor modifications to the original assumptions.
We found this to be the case with the binomial and Bose-Einstein descriptions
of equal likelihood. These theoretical problems require considerable geograph-
ical understanding of a particular pattern before sensible choices can be made
between different assumptions and models. The most vital judgements are quali-
tative and not quantitative.

The statistical problems associated with the quadrat method involve
more subjective judgements. The selection of powerful goodness-of-fit tests
and efficient estimating procedures may still lead to erroneous conclusions
if insufficient information is available to test all the assumptions of the mod-
el. One of the more recent innovations in the geographical applications of
quadrat analysis has been the testing of bivariate probability models. Here
two different patterns are modelled simultaneously and Rogers and Martin (1971)
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have tried to fit a number of these models to point patterns of shops and urban
populations. However, here again the problem of model specification becomes
even more intractable because the number of parameters to be estimated in-
creases with the number of variables. When designing quadrat analysis experi-
ments one is usually faced with a choice between complex theories which are
difficult to test, and simple indices which are useful for comparative stud-
ies but which have limited explanatory power. Nevertheless, the reciprocal
relationship between theory and data which characterises the quadrat method
often Provides useful insights into many geographical problems.
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