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CLASSIFICATION IN GEOGRAPHY 

I INTRODUCTION 

The aim of any scientific activity is to understand; once we can explain
why certain events occur (and when, and where) then we might be in a position
to control them, so as to produce a better world. Thus science involves the
development of predictive methodologies, which produce generalisations, theor-
ies, and laws. These apply not to particular instances or events but to
classes of phenomena; we develop theories and laws not for one individual pro-
glacial stream, but for all such streams. In other words, we define a category
whose members we call pro-glacial streams; we accept that each of these streams
has characteristics peculiar to itself - its location, for example - but argue
that it has sufficient characteristics in common with all other pro-glacial
streams that we can study them as a group.

Adoption of this scientific philosophy immediately raises the question
of category definition: what are the individuals that we can group together
to form a particular phenomenon class? A logical, or deductive, model of our
subject matter may define our classes for us, as is the case with the set of
rules that geomorphologists have developed for stream ordering: Grigg (1965)
gives a general introduction to this mode of investigation. But what if we
have no predetermined set of rules, and have to work in an inductive fashion,
delimiting categories among the phenomena and/or objects that we have observed?
With streams, for example, we may wish to study them not only according to
their order in the Strahler-ordering system, but also by their discharge fea-
tures, their thalweg profiles, and so on. For these last variables we probably
have no predetermined categories - and if we have, they are probably based on
arbitrary boundary lines. And so we must find a means of grouping the streams
together according to the variables we decide to use. This is the classific-
ation process, by which individual objects are allocated, as objectively as
possible, to discrete categories.

The philosophy of science is based on an acceptance of the classification
axiom, that there are groups of like phenomena/objects which can be treated
as a single unit for the purpose of making valid generalisations about aspects
of their behaviour. Clearly, many different classifications are possible, de-
pending on the purpose of the study being undertaken: streams, for example,
form a single class, but they can be subdivided on a variety of criteria, such
as order, depth, gradient, and so on. The purpose of classification procedures
is to provide a grouping which is valid for the scientific activity being under-
taken: criteria for classification must first be determined, and then the ob-
jects measured on these must be allocated to classes. The first part of this
procedure lies in the substantive field; the second part - the choice and oper-
ation of a classification process - is the focus of this monograph.

There is a long history of classification work in geography, of which the
best examples probably come from climatology. The definition of climatic
regions has been undertaken by many scholars. Some of their efforts have been
preliminaries to predictive work on, for example, the relationships between
climate and crop yields. Many others have been undertaken for didactic purposes
only, as means of generalising about the complex map of climates on the ground,
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for which vast volumes of material are available. None of us is able to
assimilate the mass of material available in daily climatic records, the ple-
thora of census volumes, or the myriad aerial and space photographs which are
filling our libraries at increasing rates. We may just sample from the rele-
vant information sets, or we may try and reduce the 'information overload',
just as we reduce, say, the figures on the percentage of the workforce in each
English county into a few percentage classes, enabling the construction of a
simple choropleth map which indicates the salient features of the national
pattern.

There are two reasons for classification, therefore. The first involves
a scaling factor, reducing a large number of individuals to a small number of
groups, to facilitate description and illustration. Within geography, the
large literature on the functional classification of towns (Smith, 1966) is
an example of such work. The second comprises the definition of phenomena-
classes about which general statements are to be derived, as is the case in
the work on central places, in which classes of towns are defined as a pre-
lude to studies of such topics as town spacing and consumer behaviour. Which-
ever of these two purposes is relevant, the methods are the same, since the
principles are identical: the combination of discrete individuals with similar
individuals to produce groups. Many alternative sets of rules are available
in the application of these methods. Choice between them depends on several
factors, such as the nature of the measurement for the objects being studied
and the goals of the classification. Two main types ('a classification of
classification procedures') exist, however, and these - termed agglomerative
and divisive methods - are introduced in the following sections.

II AGGLOMERATIVE METHODS 

These methods start with a lot of individuals and proceed, using a set
of predetermined rules, to allocate them to groups according to levels of
similarity on the chosen criteria. Perhaps the ideal procedure would be for
the classifier to produce every grouping possible, and then to decide which
is the best for his particular purpose. But this is almost always an impossib-
ility, because of the large number of individuals involved. For example, if
four individuals are to be allocated to one of two groups, there are seven
possible combinations, as follows:

Combination Group 1 Group 2

A 1,2 3,4

B 1,3 2,4

C 1,4 2,3

D 1 2,3,4

E 2 1,3,4

F 3 1,2,4

G 4 1,2,3

If there are five individuals, there are 15 possibles (work out what they
are), and so on. And since classification is almost certainly involved with
large numbers of individuals, searching the total set of possibilities for
the optimum is clearly an impossibility (even with a high speed computer).
Thus researchers interested in classification, in a wide range of disciplines,
have been forced to develop methods (often termed methods in numerical taxon-
omy), which will produce the 'best' classification for their particular data
set. It is with some of these methods - in general, the simpler - that we are
concerned here.

(i) Elementary Linkage Analysis 

We have data on two variables for sixteen villages lying to the northwest

Fig. 1 A hypothetical set of sixteen villages.
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In turn, i and j represent each of sixteen villages, so that we finish
up with the 16 x 16 matrix of inter-village 'distances' that is given as Table
1. The values on the principal diagonal of this matrix (from top left to bot-
tom right) are zero, indicating that village i is completely similar to vil-
lage j, when i = j; the values to the right of the principal diagonal are the
mirror image of those to the left, which means that we have a square symmetric
matrix.

of a large town (Fig. 1), the two variables being the percentage of the vill-
age workforce who commute to the town for employment (variable X) and the per-
centage of the village population who were born within the local are a (vari-
able Y). A two-dimensional scattergram (Fig. 2) shows the values for each
village on these two variables; our task is to classify the villages into
groups which contain members that are similar in their position on the two
axes.

The first task is to produce a measure of the degree of similarity be-
tween each pair of villages. This is done by using the well known Pythagoras'
Theorem from Euclidean geometry, which states that the square of the distance

on the hypotenuse of a right-angled triangle equals the sum of the squares of
the distances on the other two sides (Fig. 3). Thus in general terms:

Fig. 2 The villages of Figure 1 according to their values on two variables.

6

Fig. 3 Pythagoras' Theorem.
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We can now proceed to the classification, using the criterion that each
place is grouped along with that to which it is most similar. (This will be
its nearest neighbour on our scattergram in Fig. 2). The nearest neighbour is
identified from the distance matrix by finding, for each column, the row with
the smallest value in it - excluding the zero values, along the principal dia-
gonal, which indicate distance to self. Thus for column 1 in Table 1, the
smallest value is 7.1 in row 2; l's nearest neighbour is 2. The total set of
nearest neighbours is:

Column 1 2 3 4 5 6 7 8

Smallest row
value is in
row 2 3 2 3 6 5 8 7

Column 9 10 11 12 13 14 15 16

Smallest row
value is in
row 10 9 12 11 14

13
14 1

15

(Note that place 14 has two equidistant nearest neighbours)

The groups can be shown by a diagram, in which an arrow links each place
to its nearest neighbour, as follows:

The sixteen villages have been classified into six groups; the similarity
between the pairs of villages is their distance on the Cartesian coordinates
of the graph (Fig. 2), and the classification criterion allocates them to
groups with their nearest neighbours, those they are most similar to.

(ii) Grouping the Groups 

But we needn't stop here; we can proceed to 'group the groups'. To do
this, we first produce a matrix of the distances between the groups (Table 2).
Each of the off-diagonal distances is the average distance between members of
the two pairs: thus the distance between groups B and C is calculated as:

8
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Pairs of Places Distance

5 - 7 25.5

5 - 8 21.2

6 - 7 15.8

6 - 8 15.8

E78.3 average = 78.3/4 = 19.6

These off-diagonal distances are, in fact, the distances between the group
centroids, which are the central foci of the groups (shown by Xs in Fig. 2).
In a two-place group, the centroid is midway between the members; in groups
with more than two members, the centroid is at the point from which distances
to all members sum to the smallest possible value. (For the moment, we will
ignore the values on the principal diagonal of Table 2).

Table 2 Inter-group distances  from Table l a 

(members)
A

(1-2-3-4-16)

B

(5-6)

Group

D
(9-10)

E
(11-12)

F
(13-14-15)

C
(7-8)

A
18.6

46.7 64.2 36.4 54.0 72.6

B 46.7 10.0 19.6 40.9 32.2 65.3

C 64.2 19.6 14.1 51.7 33.7 66.1

D 36.4 40.9 51.7 14.1 25.8 38.2

E 54.3 32.2 33.7 25.8 7.1 33.9

F 72.0 65.3 66.1 38.2 33.9 	8.1

a
values along the principal diagonal (in boxes) show the average intra-group
distances

Grouping from Table 2 proceeds in exactly the same way as the initial
grouping from Table 1. First we find the smallest row value in each column,
as follows:

Column A B C D E F

Smallest row value
D C B E D D

in row

10

And so we can go on,.producing the distance matrix in Table 3, and grouping
the groups so that all sixteen villages are now part of one large group.

Table 3 Inter-group  distances from Table 2 a

a

values along the principal diagonal (in boxes) show the average intra-
group distances

We have proceeded then, from sixteen villages through six groups and
then two groups, until every village is in the same group. This process can
be represented by a linkage tree (Fig. 4), in which -

the linkages at each step
are indicated. (Note that the  villages are arranged in a specific order along
the horizontal axis to avoid lines crossing).

Two problems arise from this set of procedures. The first is: when do
we stop it?'. Clearly to proceed until all of the villages are in one group
is worthless, so when should the procedure be halted? We may have decided
beforehand that we want six groups, so we would stop after the first step,

Fig. 4 Linkage tree for Elementary Linkage Analysis of Villages in Figure 2.
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but if we had no such prior decision, we might need a guideline. One such is
the average intra-group distance, shown in the principal diagonals of the
matrices of Tables 2 and 3. These are the average distances among members of
the particular group, so that in Table 3 the value of 17.1 for group Q is
calculated as:

Pairs of Places 5-6 5-7 5-8 6-7 6-8 7-8

Distance 10.0 25.5 21.2 15.8 15.8 14.1

average distance = 102.4/6 = 17.1

We may decide that the groups used in Table 3 are too large, in the
sense that the average distance within them is very great, so that the members
are really not very similar. In general, the intra-group distances in Table 2
are smaller, so we may decide to stick with the six-group solution.

The second problem is that the procedure does not allow us much choice.
We can have sixteen unique villages, six groups of villages, two groups of
villages, or all sixteen in one group. What if we want four groups? Further,
some of the groups in Table 2 have low intra-group average distances, suggest-
ing very cohesive groups of similar villages, whereas others have much larger
distances. It would be preferable to be able to select the first type, and do
without the others.

(iii) Hierarchical Procedures 

Because of the problems just discussed, the method outlined above is
usually adopted in a modified sense, with the grouping procedure moving more
slowly. It operates under the same rules, except that at each step, only the
pair with the shortest distance between them are grouped, rather than all
pairs being grouped at once. This gives greater flexibility in deciding where
to stop the process - or which grouping to select after the whole process has
been completed and the linkage tree drawn.

This hierarchical procedure starts with Table 1. For each column of the
matrix, the row with the smallest entry is noted (excluding the principal dia-
gonal, as usual), as follows:

Column 1 2 3 4 5 6 7 8

Row with
2 3 2 3 6 5 8 7

smallest entry

value 7.1 3.0 3.0 5.4 10.0 10.0 14.1 14.1

Column 9 10 11 12 13 14 15 16

row with
10 9 12 11 14 13/15 14 1

smallest entry

value 14.1 14.1 7.1 7.1 7.1 7.1 7.1 30.0

12

The smallest of these values is then isolated, and is used to determine which
pair will be grouped. The distance is 3.0 units, between villages 2 and 3,
and these form group A at the first step in the hierarchical procedure.

We must now produce a new distance matrix, in which the separate villages
2 and 3 are replaced by group A (Table 4). This is a 15 x 15 matrix, in which
the distances in column A and row A are the averages for all members of group
A to the relevant village (i.e. the distance from the latter to the centroid
for group A); these are computed in exactly the same way as before, so that
the distance from village 1 to group A is the mean of the distances between
1 and 2 and 1 and 3 (7.1 and 9.4, making 8.3). Note that we now have an intra-
group mean distance in the principal diagonal at the row A/column A inter-
section of Table 4.

Having computed the distance matrix, we now search it for the shortest
distance, which will indicate the pair of villages to be grouped at the next
step. The distance is 6.2, and groups village 4 with group A. Again, a new
distance matrix is computed, this time 14 x 14 (it is not given here, because
of space considerations), and we proceed to the next step. The process con-
tinues, one grouping at a time, until all villages are in the one group. Its
parameters are summarised as follows:

Step
Places
Grouped Distance

Forming
Group

Average
Intra-Group
Distance

1 2-3 3.0 A 3.0

2 A-4 6.2 B 5.2

3 11-12 7.1 C 7.1

13-14-15 7.1 D 8.1

4 B-1 8.8 E 7.0

5 5-6 10.0 F 10.0

6 7-8 14.1 G 14.1

9-10 14.1 H 14.1

7 F-G 19.6 J 17.1

8 C-H 25.8 K 20.7

9 D-K 36.1 L 27.7

10 E-16 37.9 M 18.6

11 L-J 50.8 N 38.3

12 N-M 68.7 0 30.1

The linkage tree for this grouping is Figure 5, with the distance involved
in the grouping forming the vertical axis. From this, we get a clear impres-
sion of the short distances involved in the first few groups (up to J, say),
and the larger ones thereafter. If we have no a priori reason for accepting
a certain number of groups, this diagram should help us decide where the group-
ing should be stopped. One important difference to note between this grouping
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and that produced by Elementary Linkage Analysis for the same set of villages
is that village 16 is not grouped with villages 1, 2, 3 and 4 until step 10;
in the earlier classification, the five villages were grouped at the first
step, despite the considerable distance separating 16 from the rest of the
group. Our present method (Hierarchical Clustering with Centroid Replacement)
leaves outliers such as village 16 as separate groups; Elementary Linkage
Analysis immediately allocates an individual to the group containing its near-
est neighbour, irrespective of the distance involved.

Fig. 5 Linkage tree for Hierarchical Clustering with Centroid Replacement
of Villages in Figure 2.
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Where should we stop the grouping process? Which step of the procedure
provides the 'best' set of groups? Unfortunately, there is no simple defini-
tion of 'best', so we might have to make an arbitrary decision based on in-
spection of the linkage tree. Alternatively, we may say that no group will be
accepted if the distance involved in its production is more than a pre-
determined one. In our case, this may be 20.0 distance units, in which case
we would stop at step 7, with six resulting groups (E-16-H-C-D-J). Or we may
say that no group will be accepted if the average intra-group distance exceeds
a certain figure. (Note that the intra-group distances do not, like the group-
ing distances, get larger at every succeeding step of our process; the reason
for this is that adding one individual to a group will probably have less in-
fluence on the size of the average intra-group distance than will adding one
group to another. So if we adopted a maximum distance of 20.0 in our example,
we would accept all those groups produced up to step 7, plus that from step
10). But how are such arbitrary distances to be determined, unless we have
good a priori reasons for a selection? If we graph all of the distances in
Table 1 (Fig. 6), there is some suggestion of a break around the distance
20.0, but the cumulative frequency distribution suggests no such break. In
this, as in several other aspects of the classification procedure, arbitrary
choice is necessary, and complete 'objectivity' impossible (Johnston, 1968).

A variety of other methods has been suggested. One could, for example,
graph the average intra-group distance - for all groups - against the average
inter-group distance at all steps of the procedure. But in the end, an arbi-
trary decision must be made.

Fig. 6 Frequency Histogram and Cumulative Frequency Distribution of
Distances in Table 1.
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(iv) Alternative Group Definitions 

The rule adopted in our hierarchical procedure was that at each step the
places grouped together were replaced by their centroid, and the new distance
matrix showed the distances between group centroids. (One-member groups, of
course, have the centroid as the individual). But, as several writers have
shown (e.g. Lance and Williams, 1967), other rules can be suggested, and logi-
cally defended on the basis of certain definitions of groups. These include:

(1) The furthest distance method, in which the distance between two groups
is expressed as the maximum distance between a member of one group and
a member of the other. This would emphasize group differences and, given
an arbitrary stopping rule of a certain distance, undoubtedly mean more
groups than would application of centroid replacement to the same data.

(2) The nearest distance method, which takes a 'liberal' definition of inter-
group distance as the shortest distance between any pair of members.

(3) The group average method, in which, when multi-member groups are involved,
the amalgamation of two groups results in their replacement by the cen-
troid of their centroids, rather than by the centroid for all group mem-
bers. Thus if the distance from group X (comprising places i and j) to
group Y was 10.0 and from group Z (comprising places k, 1, m, n) to group
Y was 15.0, the distance from new group X-Z to Y would be 12.5 (the mean
of 10.0 and 15.0); the larger membership of Z is irrelevant here, since
the group is considered as one individual.

(4) The total distance method (sometimes known as Rank Order Typal Analysis,
see Johnston, 1968), in which an individual is only allocated to a group
if it is closer to all group members than it is to any other individual.
Clearly, this is a very stringent criterion, a 'conservative' definition.

(v) Ward's Method 

Choosing between these variants of the hierarchical procedure - and only
a small sample of the possibilities has been listed here - is very difficult
unless you have a clear definition of a group. And so far, we have looked only
at those methods which are based on inter- and intra-group distances. One
other method, increasingly popular with geographers, has been developed by
Ward (1963).

Ward's method is based on an argument that the aim of classification
should be to produce groups in which the distances of individual members to
group centroids are kept to a minimum. In other words, the variance of the dis-
tance is to be minimised. This variance (Ward terms it the Error Sum of
Squares - ESS) is:

where D is the distance between place i and the group centroid x,
assuming that i is a member of the group (X), and n
in the number of members of group X
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This formula can be written as:

Figure 7 provides an example for this method. We have ten constituencies
arrayed according to the percentage of their electors who voted Labour, and
we want to group constituencies. Which pair will provide the smallest value
of ESS? Clearly we need consider adjacent pairs only since, for example, 1
will not group with 3 before being grouped with 2. For constituencies 1 and
2, the ESS is computed as follows:

(Note that this value - 50 - is the sum of the squared distances
from places 1 and 2 to a centroid for a grouping of them, which
would have a value of 10 on the percentage voting Labour variable).

For all possible pairs, we would get:

Pair 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

ESS 50 112.5 8 12.5 128 12.5 60.5 288 388

The minimum ESS is 8, and we group constituencies 3 and 4. At the next step,
we replace 3 and 4 by group A and must work out the ESS for new possible
groups:

Percentage of voters in Constituency voting
Labour

Fig. 7 Percentage voting Labour in ten Constituencies.
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The minimum ESS is now 12.5, which leads to the grouping of constituencies
6 and 7 (the value of 12.5 for 4 and 5 is now redundant, because 4 has been
grouped with 3). The full procedure for grouping our 10 constituencies is as
follows:

Step Group ESS
Forming
Group New ESS for possible groups

1 3-4 8 A A-2 200.7 A-5 40.7

2 6-7 12.5 B B-5 240.7 8-8 134.0

3 A-5 40.7 C C-2 321.0 B-C 696.2

4 1-2 50.0 D C-D 801.2

5 B-8 134.0 E E-C 1322.8 E-9 464.8

6 9-10 338.0 F E-F 1126.0

7 C-D 801.2 G G-E 3457.9

8 E-F 1126.0 H G-H 7783.6

9 G-H 7783.6 J

Figure 8 is the linkage tree for this process. Since the grouping is
based on mean squared distances, the great intra-group variation at the later
steps is magnified (this is an advantage over the methods based on the dis-
tances themselves), and, in this case at least, the decision where to stop the
grouping is fairly obvious.

(vi) Once a Group ... 

Whichever of the hierarchical procedures we adopt, one problem always
emerges. The procedures always group groups, without enquiring whether,at
certain steps, the criteria for the classification would be better met if one
of the existing groups were dismantled. For example, we might have divided
Europe, for the organisation of super-soccer leagues, into three groups -
Western, Central, and Eastern. At a later date, we may decide we need only two
leagues. The best allocation procedure to adopt would probably be to allocate
the western part of the Central League to the Western League, and the re-
mainder to the Eastern. But if we were constrained to dealing with the Central
League as a whole, the balance of the two new leagues would be uneven.

An example of this problem in grouping procedures is given by Figure 9.
We have six stations located along a railway line, which we want to group into
'maintenance districts' which will minimise inter-station movements of equip-
ment. Using hierarchical grouping with centroid replacement, the grouping
would proceed as follows:
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Step
Places
Grouped Distance

Forming
Group

Average Intra-
Group Distance

1 1-2 10.0 A 10.0

2 3-4 20.0 B 20.0

3 5-6 26.0 C 26.0

4 A-C 40.5 D 33.0

5 B-D 65.8 E

CONSTITUENCY
Fig. 8 Linkage tree for application of Ward's Method to Constituencies in

Figure 7 20

If we decided on three groups each (A, B, and C) would contain two stations.
But what if we decided on only two groups - perhaps in a later rationalisation
programme? One would be group B, with two stations, and the other group D,
with four stations, of which the most distant were 81 kilometres apart.
Intuitively, we would feel that a better two-group solution would allocate
station 5 to group B and station 6 to group A, which would give average intra-
station distances of 28.3 and 21.7 kilometres, instead of the 20.0 and 33.0
produced by the grouping procedure.

This problem comes about because after step 3, we are grouping groups,
not individual stations. We can get round it by checking whether the grouping
is optimal either at every step of the grouping or, more realistically, when
we feel we have the required number of groups. This involves locating the
group centroids and seeing whether each individual is closest to its own group
centroid. For our six stations, this produces the following distances:

Distance to Three-Group Solution Two-Group Solution
Centroid
of Group A B C B D

Station
1 5 91 45.5 91 25.25

2 5 81 35.5 81 15.25

3 75 10 35.5 10 55.75

4 95 10 55.5 10 75.75

5 52.5 32.5 13 32.5 33.25

6 27.5 57.5 13 58.5 7.25

The underlined distances indicate which group a station is allocated to.

Fig. 9 The Optimal Grouping Problem: A Hypothetical Railway System
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In the three-group solution, every station is closer to the centroid of
the group to which it has been allocated than it is to the centroid of any
other group. (We discover this by seeing whether the underlined distance is
the shortest in the relevant row). But in the two-group solution, Station 5
is closer to the centroid of group B than it is to the centroid of its own
group, D. It would appear to be mis-classified,so we reallocate it to group B
(now termed group BI), and rework the distances:

Distance to
Centroid
of Group

1
B D

Station 1 80.2 14.2

2 70.2 4.2

3 0.8 66.8

4 20.8 86.8

5 21.7 44.3

6 47.7 18.3

There are no mis-classifications now, so the solution is deemed optimal
and we finish with two groups, one containing stations 1, 2 and 6, and the
other stations 3, 4 and 5. (It is of interest to note that if we had used the
nearest distance, rather than the centroid replacement method, we would have
achieved an optimal two-group solution, but not an optimal three-group solu-
tion: I leave you to demonstrate this).

(vii) Into n Dimensions 

All of the examples used thus far have been concerned with classification
of either one-dimensional (stations along a railway line; constituencies
according to the Labour vote) or two-dimensional (villages characterised by
two variables) 'spaces'. This has been because 'maps' of where the places and
group centroids are can be accurately reproduced in our diagrams, which makes
it possible to see how the grouping procedures operate. But all of the methods
we have discussed apply equally as well to n-dimensional classifications,
where n 3 and our individuals are categorised on a large number of different
variables.

In the one-dimensional case, distances are additive, so that where dis-
tance AB > distance AC then AC AB + BC. In the two-dimensional case we apply
the Pythagorean formula of equation (1), and this can be extended into n
dimensions, as follows:

Each term within parentheses represents the distance between the two places
(i and j) on the particular variable; in equation (4) we obtain the sum of the
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squared distance on all variables and then take the square root of this value
to give the length of the hypotenuse in the n-dimensional space.

Problems can arise in the application of equation (4) because of scale
variations between variables. In our villages example, virtually the full
range of values from 0-100 per cent was observed for each variable. If, how-
ever, the range for one had been 0-100 and for the other only 40-60, then
clearly the former variable would contribute much more to the distance between
pairs of places than would the latter, because its range of values was five
times greater. If several variables are chosen for a classification, pre-
sumably each should have equal weight in determining the groups (though see
Johnston, 1965, 1970 for discussions of this). To ensure this, values on the
original variables are usually expressed in Z-deviate form, where:

After this transformation, each variable has a mean of 0 and a standard de-
viation of 1.0, and will have the same weight as all others in the classific-
ation.

One other probable problem with multi-dimensional classification concerns
the inter-relationships among the variables. Computation of distances using
the Pythagorean formula assumes that the variables are all orthogonal, or un-
correlated: if they are not the distances are biased. To circumvent  this prob-
lem, it is possible to standardise the distances, but a more usual procedure
is to replace the original set of variables by a new set, through the use of
principal components analysis. (Principal components analysis is outlined in
another of the monographs in this series - by S. Daultrey. Basically what it
does is to take a matrix of observations on a set of variables and replace the
latter by a new set of variables - usually, though not necessarily, a smaller
number - which are orthogonal. In addition, the scores for the observations
on these new variables - the components - have a mean of 0 and standard de-
viation of 1.0, so that Pythagorean distances can be computed immediately.
A further advantage of principal components analysis is that it removes re-
dundancies in the original data matrix. Two variables may be repetitions of
each other - average income and average years of schooling as indices of socio-
economic status, for example - and would give their joint concept undue weight
if grouping used both. Principal components analysis replaces them by a single

variable).

Once the distance matrix has been computed, grouping proceeds as before,
using whichever of the procedures is deemed apt for the particular purpose.
A linkage tree can be produced to display the grouping procedure, but unfortun-
ately the positions of the observations in more than three-dimensional space
can not be graphically portrayed. The test for optimality of grouping can be
made; when dealing in more than one dimension this uses the technique of mul-
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tiple linear discriminant analysis; the details of this method can not be out-
lined here (see King, 1969), but its aims and results are the same as those
discussed above in the railway station problem.

Not all classifications are based on distance matrices; a wide range of
measures of similarity and dissimilarity between observations is available
(Everitt, 1974; Spence and Taylor, 1970). One frequently used is the correla-
tion coefficient (Pearson's, Spearman's or Kendall's) which shows the degree
of agreement between two variables over a set of observations, or of two ob-
servations over a set of variables. Hierarchical grouping procedures can oper-
ate on correlation matrices, except of course that grouping would be of the
two places with the largest value in the matrix (i.e. the most similar) rather
than the smallest. There are some problems, however, of computing average
correlations between and among groups.

(viii) An Example: Social Areas in Melbourne 

Urban geographers and sociologists have produced a voluminous literature
on social areas within cities (Johnston, 1971). A frequent aim of such work
has been the provision of a map of social areas (types of residential dis-
tricts), defined according to population, household, and housing characteris-
tics. The initial theoretical statement presented a deductive model which in-
volved a classification scheme, but most recent work has relied on inductive
procedures, using methods such as those outlined here to suggest social area
types (Berry and Rees, 1969).

One example of such work is a study of Melbourne, Australia by Jones
(1969). He reduced 24 original variables to three orthogonal components, and
then proceeded to classify the 611 census districts of the metropolitan area,
using the hierarchical grouping procedure - based on a Pythagorean distance
matrix - with centroid replacement. Twenty groups were isolated, ranging in
size from three containing only one district each to one with 183 constituent
districts. Further in the grouping procedure, nineteen of these groups were
replaced by three large groups - as indicated in Fig. 10. (Note that squared
distances were used in the grouping). A table was then constructed showing
the mean rank position for each of the twenty groups (ranks are from 1-low to
611-high). From this (Table 5) the three main groups can be separately identi-
fied as:

I High on socio-economic status and low on ethnic status - 'middle-class
suburbia'.

II High on family status; low on socio-economic status; and high on ethnic
status - low income suburbs with considerable proportions of non-British
immigrants.

III Low on family status; high on ethnic status; low on socio-economic status
- 'inner city immigrant ghettos'.

Not every sub-group is truly representative of the larger group in which
it is amalgamated; in several cases, a sub-group deviates from the group mean
on one of the three variables, and these can usually be identified clearly
in the linkage tree.

Fig. 10 Linkage tree for the Final Stages of a Classification of
Melbourne's Social Areas (after Jones, 1969, p. 98).

24 25



Table 5 Mean ranks for Melbourne social areas 

(N = 611)

Mean Rank for 
No. of 	Socio-Economic Family Ethnic

Group Members 	Status Status Status

I 287 421 383 155

1 183 375 450 158
2 14 567 534 61
3 1 598 435 1
4 81 519 225 176
5 4 244 209 119
6 3 301 330 15

II 83 104 502 390

7 8 37 602 320
8 41 152 494 407
9 3 226 601 342

10 14 30 463 545
11 5 8 483 607
12 1 36 606 563
13 6 128 518 18
14 5 37 437 149

III 240 236 145 456

15 7 493 7 370
16 47 477 77 402
17 27 265 32 503
18 94 101 144 537
19 66 215 254 362

20 1 57 2 606.

Source: Jones (1969, p.99)

III GROUPS AND REGIONS 

Our discussion so far has been of the general problems and processes of
classification, covering but a small part of the field of numerical taxonomy
(Sokal and Sneath, 1963). In some areas of study, geographers are faced with
a problem which, although not peculiar to geography is typical of our discip-
line; this is the question of the analogy between groups and regions (Grigg,
1965, 1967).
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The region lies at the heart of much geographical work. Two types of
region are usually recognised: (1) formal, comprising places with similar
characteristics; and (2) functional, or nodal, comprising places with similar
linkage patterns to other places. Each of these can be further subdivided, •

into (1) regional types, and (2) regions. The difference between the latter
two is that whereas the regional type comprises places which are similar on
certain predetermined characteristics (landscapes, population structures,
etc.), the region also involves a contiguity constraint - a region must com-
prise spatially conterminous units. Thus we have a 2 x 2 classification scheme,
as shown below with an example for each cell:

Regional Type Contiguous Region

Formal Urban Ghettos Political constituencies
(e.g. Morrill, 1965) (e.g. Taylor, 1973)

Functional World trade groups School catchment zones
(e.g. Russett, 1967) (e.g. Shepherd and Jenkins, 1972)

The production of regional types involves no special procedures; any
classification method applicable to the particular data set will be relevant.
For contiguous regions, however, special methods may be needed. Among a number
that have been suggested (see, for example, Taylor, 1969), two basic approaches
can be identified. The first (Czyz, 1968; Johnston, 1970) suggests that the
usual classification procedures should be adopted, and that when regional types
have been identified, tests should then be made to see if they also form con-
tiguous regions. The alternative, and most frequently used, introduces a con-
tiguity constraint to the grouping procedure.

(i) Contiguity Constraints 

The use of contiguity constraints can be illustrated by returning to our
sixteen villages. The original map (Fig. 1) shows the location of these, and
from it we can derive a contiguity matrix (Table 6), in which a 1 in a cell
indicates that the relevant villages (the row and column numbers) have a bound-
ary in common, and an 0 indicates that the two villages are not contiguous.
(Note that we may have problems where four boundaries meet; we have decided,
for example, that villages 3 and 9, and also 6 and 10, do not have common
boundaries).

We now proceed through our hierarchical clustering with centroid replace-
ment procedure as before, but with one difference; before grouping two villages,
we check in the matrix to see if they are contiguous and if they are not, then
we don't group them and proceed to the next shortest distance. Thus the shortest
distance in Table 1 is 3.0, between villages 2 and 3, but Table 6 and Figure 1
show us that these have no common boundary and so would not form a region.
The next shortest is 5.4, for villages 3 and 4, but again these are not con-
tiguous. In fact, the shortest distance at which we proceed to a grouping is
7.1, at which villages 2 and 4 are classed together, as are 13, 14 and 15

(but not 11 and 12).

After each grouping we must recompute both the distance and the contiguity
matrices, although as an alternative we may compute a matrix in which distances
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to contiguous units only are entered, and all other distances are replaced
by a 'nonsense' value (say 1000.0). The latter, of course, can not be used in
computing the new distance matrix; reference back to the original will be
necessary.

For our sixteen villages, the full grouping with contiguity constraint
proceeded as follows:

Step

1

2

3

4

5

6

7

8

9

10

11

12

Places
Grouped

(13-14-15
(2-4

B-1

C-3

5-6

(7-8
(9-10

E-F

G-12

H-11

D-16

J-K

L-M

A-N

Distance

7.1
7.1

8.6

5.9

10.0

14.1
14.1

19.6

29.2

33.9

35.9

36.7

50.9

59.2

Forming
Group

A
B

C

D

E

F
G

H

J

K

L

M

N

0

Average
Intra-Group
Distance

8.1
7.1

8.1

7.0

10.0

14.1
14.1

17.1

24.2

23.8

18.6

The linkage tree is given in Figure 11. Comparison between this and that for
the unconstrained grouping (Figs. 5 and 11; the villages are placed in the
same position on the two horizontal axes to aid comparison) indicates the major
differences. These involve first, villages 11 and 12 which, because of their
great spatial distance are only grouped together at the last step but two in
the constrained solution, as against step three in the unconstrained; and,
secondly, the separate identity until the last step of the group of villages
closest to the town (13, 14, 15). Note also the interesting point that the
distance involved at the third step was shorter than that at the other two,
a consequence of the prior grouping of villages 1, 2 and 4; only 1 is adjacent
to 3, which is closest in the variable space (Fig. 2) to 2 and 4.

(ii) Grouping and Regionalising: An Example 

An example of regionalisation procedure, using Ward's method, is a recent
paper by Byfuglien and Nordgard (1974) on farming types in eastern Norway.
Their data referred to 86 spatial units (communes and combinations of communes),
for each of which they had information on six variables referring to farming
activity. The six variables were reduced to four, which were orthogonal, using

principal components analysis.

28
29



Fig.11 Linkage tree for Hierarchical Clustering with Centroid Replacement
and Contiguity Constraint of villages in Figure 2.

In their analyses of these data, the authors produced both a type of
farming areas classification and a farming-types regionalisation. For the for-
mer, no contiguity constraint was imposed, and they identified eight different
types of farming areas. Because most of those types comprised several groups
of non-adjacent areas, the resulting map consisted of thirty separate areas
(Figure 12A). In their regionalisation, which used the same procedures plus
a contiguity constraint, sixteen farming-type regions were identified (Figure
12B).

Comparison of the two maps in Figure 12 will indicate the differences be-
tween the regional type analysis (12A) and the contiguous regions analysis
(12B) in their division of the same area. Clearly, the researcher must be sure
what sort of classification he wishes to produce. As a general guide, it is
probably the case in almost all studies that, unless a continguous regional-
isation is required, the regional type procedure is more 'efficient'. This
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point is indicated in Figure 13, where the sum of the squared distances with-
in groups is expressed as a percentage of the sum of all squared distances in
the original matrix. At the left of this diagram, where all 86 units are
separately identified, the within/total percentage is zero. As one moves to
the right, with fewer groups, so the percentage increases, slowly at first
and then rapidly. At each step, the regional type analysis percentage is lower
than that for the contiguous region analysis, because the former groups to-
gether the most similar units but the latter only does so if they are also
contiguous.

In this, as in so many other aspects of the classification procedure,
choice on the part of the researcher can have a significant influence on the
outcome. Contiguous regions are a special case of regional types, and the
analyst must be sure, before he proceeds, just what end-product he desires,
and what by-products this will produce.

Fig. 12 A division of eastern Norway using Ward's method, A without
contiguity constraint, and B with contiguity constraint (after

Byfuglien and Nordgard, 1974).
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IV DIVISIVE METHODS 

Most of the discussion in this brief introduction to classification pro-
cedures in geography has been concerned with agglomerative methods, since they
are the most widely used. In them, we start by treating each individual ob-
servation as a separate group, and then proceed to group the groups. Another
set of techniques is available, however, which operates in exactly the opposite
way: it begins by assuming that all of the individuals are in one group, and
then proceeds to divide the group into sub-groups. Again, a variety of tech-
niques has been devised - such as Iterative Intercolumnar Correlational Analy-
sis (McQuitty and Clark, 1968) - but we will deal here with only one method,
Association Analysis, which has been fairly widely used fOr a particular type
of data.

(i) Association Analysis 

This method was developed by two botanists, Williams and Lambert (1959),
to cope with the classification of plant communities. It is particularly suit-
ed to nominal data (often known as binary data), which record only the pre-
sence or absence of a species (variable) at a site (observation), rather than
any intensity of species' presence. Any data measured at other scales - ordinal,
interval, or ratio - can, of course, be re-written in binary form to make use
of the method.

Association analysis is based on differences between species in their
distributions over sites, and uses the chi-square statistic. An example of
its operation is given here using the hypothetical data of Table 7, which
shows the presence/absence of the nests of eight different bird species (A--
-H) in twenty different woodland samples. Presence is shown by a 1 in the
relevant cell; absence by a zero. (We have taken presence/absence as the divid-
ing line, but we could have coded, say, any woodland with less than five nests
per 100 metre square as zero).

The grouping proceeds as follows. First, the chi-square (x
2

) statistic
for the distributions of each pair of species is calculated. This involves
preparation of a 2 x 2 table:

Fig. 13 The efficiency of the classifications shown in Figure 12. On the
vertical axis, the within-group distances as a percentage of the
total distances are shown; on the horizontal axis the number of
groups is indicated. The solid graph refers to the grouping with
contiguity constraint, the pecked  line to the grouping without such
a constraint (after Byfuglien and Nordgard, 1974).
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Cell a lists the number of sites (woodlands) in which both of the species are
present, call b those sites containing species y but not species x, and so on:
N is the total number of sites. Chi-square is then computed, using the common
formula for its application to a 2 x 2 table:
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Table 7 Distribution of bird species by woodlands 

Woodland A B C

Species

D E F G H

1 1 0 1 0 1 0 1 0

2 1 1 1 0 0 .0 1 1

3 1 1 1 0 0 0 0 0

4 1 1 1 0 0 0 1 1

5 0 0 0 1 1 1 0 0

6 1 0 0 0 1 1 1 1

7 0 0 1 0 0 0 0 0

8 1 1 1 0 0 0 1 1

9 0 1 1 1 0 0 1 0

10 1 1 1 0 0 0 0 1

11 0 0 1 1 0 0 1 0

12 1 0 1 0 0 0 1 1

13 0 1 0 1 1 1 0 0

14 0 0 0 0 1 1 1 1

15 1 0 0 0 1 0 0 0

16 0 0 0 1 0 1 1 1

17 0 1 0 1 1 1 0 1

18 0 0 0 1 1 0 1 0

19 0 0 0 1 1 1 0 1

20 0 0 0 1 1 1 1 0

34

(784 x 20)/9504 = 15680/9504 = 1.6

Table 8 Inter-Species chi-square statistics

A B C
Species

F G HD E

A - 1.6 5.1 13.4 1.8 5.7 0.4 1.8

B 1.6 - 3.3 0.4 3.0 1.2 0.5 0.8

C 5.1 3.3 - 5.1 12.8 13.3 0.8 0

D 13.4 0.4 5.1 - 1.8 5.1 0.1 1.8

E 1.8 3.0 12.8 1.8 - 7.5 0.8 0.8

F 5.7 1.2 13.3 5.1 7.5 - 0.6 0.8

G 0.4 0.5 0.8 0.1 0.8 0.6 - 0.8

H 1.8 0.8 0 1.8 0.8 0.8 0.8 -

29.8 10.8 40.4 27.7 28.5 34.2 4.0 6.8

At the next stage of the procedure, we decide which species to use as
the one to divide the woodlands into two groups.) The species chosen is that
which is most dissimilar from all of the others, and therefore is assumed to
be the best discriminator between types of woodlands. Since the size of an
individual X4 is positively related to the degree of dissimilarity between
two species' distributions, then the most dissimilar overall is that species
with the largest sum of its seven x

2
 values. So the column sums are computed,

and are given in Table 8. From these, it is seen that species C is the most
dissimilar and this forms the basis of the division: all woodlands containing
species C are placed in one group, and those without species C in another,
giving the following group membership:

Group Members

I - C present 1,2,3,4,7,8,9,10,11,12

II - C absent 5,6,13,14,15,16,17,18,19,20

We now have two groups and the full procedure is repeated separately for
each. Distribution tables for the seven remaining species are drawn up
(Table 9); species C is no further use in the classification, since within

the resulting sums indicate that group I should be divided on the basis of
presence or absence of species A, whereas species D is the discriminator with-
in group II. This gives four groups, on each of which the process is repeated.

Division continues until all groups contain two or fewer members, beyond
which further classification would be meaningless. Occasionally larger groups
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Table 9 Distribution of bird species by two woodland groups

Group I Group II

Species Species
Woodland  Woodland 

A B D E F G H A B D E F G H

1 1 0 0 1 0 1 0 5 0 0 1 1 1 0 0

2 1 1 0 0 0 1 1 6 1 0 0 1 1 1 1

3 1 1 0 0 0 0 0 13 0 1 1 1 1 0 0

4 1 1 0 0 0 1 1 14 0 0 0 1 1 1 1

7 0 0 0 0 0 0 0 15 1 0 0 1 0 0 0

8 1 1 0 0 0 1 1 16 0 0 1 0 1 1 1

9 0 1 1 0 0 1 0 17 0 1 1 1 1 0 1

10 1 1 0 0 0 0 1 18 0 0 1 1 0 1 0

11 0 0 1 0 0 1 0 19 0 0 1 1 1 0 1

12 1 0 0 0 0 1 1 20 0 0 1 1 1 1 0

Table 10 Inter-species chi-square  statistics

Group I Group II

Species Species

A B D E F G H A B D E F G H

A - 1.3 6.0 0.5 0 0 4.3 - 0.6 6.0 0.3 1.4 0 0

B 1.3 - 0.1 1.6 0 0.1 1.6 0.6 - 1.1 0.3 0.6 2.5 0

D 6.0 0.1 - 0.3 0 1.1 2.5 6.0 1.1 - 0.5 0.5 0.5 0.5

E 0.5 1.6 0.3 - 0 0.5 1.1 0.3 0.3 0.5 - 0.3 1.1 1.1

F 0 0 0 0 - 0 0 1.4 0.6 0.5 0.3 - 0 2.5

G 0 0.1 1.1 0.5 0 - 0.5 0 2.5 0.5 1.1 0 - 0.4

H 4.3 1.6 2.5 1.1 0 0.5 - 0 0 0.5 1.1. 2.5 0.4 -

E 12.1 4.7 10.0 4.0 0 2.2 10.0 8.3 6.1 9.1 3.6 5.3 4.5 4.5

can not be divided further, because the members are all completely alike. In
our example, woodlands 2, 4, and 8 form a group of 3 at the fourth step.
These three each have a presence score for three of the species still being
considered (B,G and H) and an absence score for the other two (D and F); they
are alike in all respects, and the only further division is into unique in-
dividual woodlands. (Their uniqueness would not be on the criteria of the
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eight bird species being used in the classification, but some other criterion;
location perhaps). The full grouping proceeds as follows:

As with the agglomerative procedures, we are faced with the ques-
tion 'when should the grouping be stopped?'. The answer is generally arbitrary,

when there is only one degree of freedom; Gregory, 1972). Choice of the .05
level rather than any other reflects convention. Furthermore, statistical
significance testing is irrelevant where samples are not being used. The rule

provides  a useful  assessment device. however.

cedure, indicating that - on the statistical significance criterion - the pro-
cess should end after step 2. A linkage tree with the x

2 values on the ver-
tical axis indicates the procedure (Fig. 14). In this the letters at the breaks
in the divisive process indicate the species on which the division was made,
the number of members of each group is indicated within the circle, the group
identification is shown by Roman numerals and the positive (presence) and nega-
tive (absence) signs indicate which group has the species on which the split
takes place, and which has not.
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As with all of the other techniques discussed here, a range of minor
variations on the association analysis theme has been introduced, using dif-

constraint can be built in, however, and the method produces regional types
only. One advantage of the method is that it is easily applied to the data
matrix in both dimensions. Our analysis analysed differences between the vari-
ables (the bird species) and classified the woodlands, but we could just as

fied the bird species; the former method is known as 'normal' association
analysis and the latter as 'inverse' association analysis.

Association analysis has been widely used in ecological and biogeograph-
ical work, whose data are frequently in binary form (Frenkel and Harrison,
1974), but it is of value in a range of other fields. Caroe (1968), for ex-
ample, used both the 'normal' and the 'inverse' approach in a study of the
functional structure of East Anglian settlements in 1846. The data comprised
the presence/absence coding of 61 trade and service functions for 76 settle-
ments. Normal analysis suggested eleven groups of settlements at the .05 level,
whereas inverse analysis indicated twelve groups of central functions. Com-
bination of these two groupings into a diagram (Fig. 15), in which a dot re-
presents the presence of a function in that settlement, suggests a clear hier-
archical central place system ranging from the regional market centres through
to the small villages. This is, in effect, a re-ordering of the original data
matrix, in a form which highlights the order among its 4636 cells.

ASSOCIATION ANALYSIS: FINAL GROUPING BY TRADES AND SERVICES

AND BY SETTLEMENTS, 1 846

Fig. 14 Linkage tree for Association Analysis of the Woodlands in Table 7.
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Fig. 15 Groups of Settlements and of Central Functions in East Anglia
1876, according to Association Analysis (after Caroe, 1968, p.264).
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V CONCLUSIONS 

Classification is a large field, as a number of recent reviews suggest
(Everitt, 1974; Cormack, 1971; Sibson and Jardine, 1971). Only a relatively
small proportion of the available methods has been used in geographical re-
search, but even so, this means considerable variation within the literature
in terms of actual procedures employed. Only some of the simpler, more easily
applied techniques have been discussed here, though the rules on which they
operate are similar to those of many others which space did not allow us to
consider.

Perhaps three main related conclusions can be drawn from the examples
we have discussed. The first is that, although the procedures we have invest-
igated are fairly straightforward, if we are dealing with a data set of any
magnitude - particularly in the number of observations to be grouped (as in
Jones' study) - then the process rapidly becomes tedious and time-consuming,
and therefore probably prone to simple error. Fortunately, computer programs
are now widely available to remove the tedium, but herein lies the second
conclusion. Careless choice of method may produce results which could well be
misleading, and one of the dangers of the availability of programs - for many
statistical routines and not just classification - is that people may choose
a method simply because a program is available rather than on logical grounds.
Where a program offers a large number of options (such as the popular CLUSTAN
routine: Wishart, 1969), choice may be even more haphazard. Another problem
with computer routines is that most of them, because of limited memory size,
cannot cope with large data sets and distance matrices, leading several re-
searchers (e.g. Pocock and Wishart, 1969) to investigate possible ways of re-
ducing the labour.

The final conclusion stems from the first two. Although we realise the
necessity for classification, there has been little discussion among geographers
about the definitional problems involved. We do not have well-developed theor-
ies of regions and of regional types to compare with those developed for their
own purposes by, say, educational psychologists (McQuitty, 1967). Grigg (1965,
1967) initiated some discussion on the basis of his careful outline of the
logic of regionalisation (see Bunge, 1966a; Grigg, 1966), but most geographers
have been concerned more with finding a technique and getting on with the
classification rather than with making sure for what it is they are classify-
ing.

Classification is a crucial stage in scientific development, therefore.
All of the technical problems have not been solved (despite Bunge's 1966b
claim), but a range of easily-applied methods is available to the researcher.
Selection among these requires some choice, and therefore careful considera-
tion of the purpose of the study, as does evaluation of the output.
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