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Chapter 1  
 
Introduction 
 
 
This research focuses on improving modelling methods and techniques to analyse urban 
growth as a complex phenomenon. The broader concept of urban development implies 
changes, growth or decline. The term includes the physical, socio-economic and 
environmental dimensions. Physically and functionally, urban development includes both 
new development and urban redevelopment. In contrast to decline, growth involves the 
transition into urban of non-urban activities and spaces. The physical aspects of urban 
growth are related to land cover, the functional to land use. Hence, temporal and spatial 
urban growth indicates the spatial and temporal dimensions of land cover/land use change 
at the level of the urban landscape. 
 
The aim of modelling is to abstract and represent the entity being studied. Modelling can be 
conceptual, symbolic or mathematical, depending on the purposes of the specific 
application. In the domain of urban planning, modelling can be utilised for analysing, 
evaluating, forecasting and simulating urban systems to support decision-making. From the 
perspective of spatial science, modelling must take both the spatial and temporal 
dimensions of urban systems into account.  
 
 
1.1 Relevance 
 
1.1.1  Societal relevance 
 
Spurred by economic development and the space technologies revolution (transport, 
communication and information), rapid urban growth and restructuring are expected over 
the next 10 to 20 years (Masser and Ottens, 1999). This will be characterised by urban 
redevelopment in the city centre, suburban expansion with new sub-centres, and leapfrog 
urban sprawl.  
 
Urban growth has two contradictory facets. On the one hand, mega-cities act as engines of 
economic and social growth; on the other, most of this is being accompanied by both 
poverty and environmental degradation, e.g. encroachment on valuable agricultural land, 
increasing use of the private car and energy consumption, inner-city decline, premature 
write-down and under-utilisation of the existing built environment. The impacts of land use 
changes on environmental sustainability will become globally significant through their 
cumulative effects. This is considered to be one of the major global change issues 
(Vitousek, 1994). 
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Faced with the severe negative impacts, urban planners need to rethink the most important 
development policies and manage urban sprawl and urban growth more scientifically in the 
future. For instance, in the USA, urban sprawl has sparked off a national debate over land 
use policy that includes smart growth management and growth boundary measures 
(Brueckner, 2000).  
 
In developing countries such as India (Thangavel, 2000) and China (Yeh and Li, 2001b), 
patterns of urban growth (compact or sprawling) have been studied in the context of their 
special social and economic circumstances. There is no universal solution. However, it is 
recognised that scientific management and planning should be based on a proper 
understanding of the spatial and temporal processes of urban growth. This is the major 
objective of modelling spatial and temporal urban growth.  
 
1.1.2  Scientific relevance 
 
Theoretically, urban growth modelling should be considered as an interdisciplinary field as 
it involves numerous scientific and technical areas, e.g. geographical information science 
(GIS), remote sensing (RS), urban geography, complexity theory, land use/cover modelling 
etc. Understanding urban growth and applying this knowledge for planning are both closely 
linked with these areas. Hence, a systematic and "holistic" perspective should be adopted in 
the process of modelling.  

(1) Complexity  
 
Complexity theory has become a hot topic across all scientific disciplines, especially in the 
21st century (Batty and Torrens, 2001). Its overall objective is to define some general 
properties of the complex systems involved. It is applied in various disciplines and findings 
are exchanged. Its progress can provide many disciplines with philosophically innovative 
ideas, but it also needs new research, development and application. There is a growing body 
of literature that views the city as a complex system (Allen, 1997a; Batty and Longley, 
1994; Portugali and Benenson, 1995).  
 
Urban growth is in essence a complex subsystem; it involves multiple actors with differing 
patterns of behaviour at various spatial and temporal scales. It centres on understanding the 
dynamic interactions between the socio-economic and built environments and major natural 
environmental impacts. Complexity in the domain of urban growth can be divided into such 
classes as spatial, temporal and decision-making processes (as described in chapter 2 of this 
dissertation). Because of their size of operation, complex systems are difficult to understand 
without building models. Modelling spatial and temporal urban growth helps to identify the 
complexity hidden in its processes and provides urban development planning and land 
management with new theoretical concepts and methods.  
 
(2)  Land use change modelling 
 
Under the umbrella of sustainable development (e.g. the International Geosphere-Biosphere 
Programme (IGBP), the International Human Dimensions Programme on Global 
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Environmental Change (IHDP) and NASA's Land Cover and Land Use Change Program), 
land use/cover change (LUCC) has attracted a great deal of attention. It spans the global, 
national, regional and local levels and is interdisciplinary in nature, with agricultural, 
ecological, landscape, forest and urban sub-themes. This research considers the complex 
interactions between land use/cover change and other systems, such as the impacts of 
change on ecological systems and vice versa. A systematic understanding of land use/cover 
change needs individual cases at different geographical levels and from a range of 
disciplines. Urban growth results from the transition from non-urban into urban land uses, 
both physically and functionally. In this land use/cover change, the human dimension is 
important. The outcome is a result of the interaction between natural and human systems. 
Land use/cover modelling aims at quantitatively specifying the mechanisms of the physical 
and functional transitions of the land system and interprets the causal effects hidden in its 
processes (Agarwal et al., 2000). Modelling spatial and temporal urban growth is a way of 
exploring the spatial and temporal patterns and processes of land use/cover transition at the 
level of urban landscape. They are able to provide quantitative evidence to aid decision-
making in urban planning and sustainable land management. 

(3)   Geographical information science 
 
Urban growth remains a major topic concerning GIS and remote sensing applications. 
Remote sensing and GIS have proved to be effective means for extracting and processing 
varied resolutions of spatial information for monitoring urban growth (Masser, 2001). GIS 
has gradually shifted its emphasis from system-oriented to science-oriented (e.g. 
International Journal of Geographical Information Science). Apart from key techniques, 
GIS needs to incorporate broader and more fundamental scientific concepts in order to 
better understand geographical phenomena such as process, pattern, heterogeneity, scale 
etc. Urban growth is the projection of political, social and economic activities onto a land 
system at the level of the urban area. The spatial and temporal dimensions are major 
concerns of GIS and remote sensing. Modelling spatial and temporal urban growth enriches 
the spatial science of GIS. Methodological research into urban growth can contribute to 
improving current GIS, in particular its spatial analysis and modelling functions such as 
exploratory spatial data analysis and spatial econometrics (Goodchild, 2000). 

(4)  Urban geography 
 
Urban geography is a branch of geographical science focusing on the urban context. Urban 
growth is one of its major concerns. Urban growth is not a universal process with similar 
attributes in all world regions but a set of complex phenomena conditioned by various 
cultural and historical forces in different places (Laurence and Edward, 1981). Systematic 
research on specific cases can be beneficial to local planning systems. Comparative studies 
are useful for better understanding differences and similarities. Empirical studies are a 
prerequisite for forming and confirming the theories of urban geography. Urban modelling, 
as a tool to quantify and analyse urban phenomena and issues, is an important methodology 
in urban geography as well. Progress in urban modelling is impacting on and has been 
impacted by the changes in society. When entering the information society, new 
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opportunities and challenges coexist for urban modelling. New opportunities come from the 
advances in complexity science, computer techniques, remote sensing and GIS. New 
challenges originate from the emerging world economy and information society that are 
leading to the restructuring of urban economies. Systematic research on macro socio-
economic processes and urban consequences will improve our insights into the new urban 
geography. 
 
1.1.3  Practical relevance  
 
Since 1949, Chinese cities have undergone two waves of urban growth, the first spurred by 
the rapid industrialisation from 1953 to 1965 and the second stimulated by land reform 
from 1987 onwards (chapter 3). Rapid spatial expansion has caused China’s cultivated land 
per capita to decrease significantly from 1800 m2 in 1949 to 1133 m2 in 1995 (Zhang, 
2000a). The massive loss of agricultural land has evoked the awareness of the central 
government. The phenomenon threatens its sustainable development strategy. In 1997, a 
country-wide project under the auspices of the China State Land Administration was 
implemented to monitor the dynamics of urban expansion in 100 municipalities. Landsat 
Thematic Mapper (TM) images acquired for 1989/1992 and 1996/1997 were used to 
examine the scope and the speed of urban expansion in this period (Ji et al., 2001). It can be 
predicted that an urgent follow-up task will be to model urban expansion for the purpose of 
decision-making in planning and management at various levels of government, based on the 
outcome of the monitoring exercise. 
 
Urban sprawl (spreading urban growth) has become a hot topic in the urban planning and 
management practices of many countries in both the developed and the developing world. 
Individual case studies and further comparative research can be helpful in the sharing of 
experiences and lessons. 
 
 
1.2  Research Questions  
 
As described above, modelling spatial and temporal urban growth is at the intersection of 
such fields as complexity, land use/cover change, GIS/remote sensing and urban 
geography. It needs the inputs of new concepts, new methods and new techniques from 
these fields. Innovative scientific progress requires a multidisciplinary framework to 
integrate various lines of research and development. When looking at the development 
history of urban modelling, each progressive step was closely linked to those of other 
disciplines, in particular systems science, computer science and quantitative techniques 
(e.g. remote sensing and GIS) (details in chapter 2). Understanding urban systems is the 
first step to guaranteeing the success of modelling (Batty and Torrens, 2001; Cheng and 
Yang, 1998). Further, advanced modelling needs the physical support of computation 
power and case studies with sufficient data. With the rapid progress made in computer 
techniques and remote sensing, computation and data availability have proved to be less of 
a barrier for modelling that is focused on the spatial and temporal dimensions. 
Consequently, a major problem is how to (theoretically and methodologically) understand 
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the complexity inherent in urban systems and their subsystems for the purpose of decision 
support. 
 
1.2.1  Complexity modelling 
 
Complexity theory is promising and actively pursued in academic circles, but is still quite 
new and insufficiently linked with reality and practice. The research line was initiated in 
logical and natural sciences such as mathematics, physics, chemistry and ecology. 
Currently, it gradually diffuses to the social sciences. As a pioneering research community, 
the famous Santa Fe Institute has published numerous papers exploring the applications of 
complexity in social sciences. Human geography, with a focus on the interaction between 
natural and human systems, has seen an increase in complexity analyses. The concepts in 
complexity theory have been widely employed for systematic thinking about complex 
geographical phenomena such as self-organisation, emergence, hierarchy, scale etc. 
Further, many modern methods for modelling complexity have been explored, e.g. fractals, 
chaos, self-organisation, fuzzy logic, cellular automata etc. (see details in chapter 2). 
However, urban growth research, a sub-field of urban geography, has not yet paid enough 
systematic attention to complexity. Batty and Longley (1994) reported a preliminary 
exploration of fractal methods for modelling the scale independence and spatial irregularity 
of urban growth. This research was detailed and expanded later by other scholars 
(Frankhauser, 2000; Makse et al., 1998; Shen, 2002a). Currently, numerous publications are 
reporting on the methodology of using cellular automata and multi-agent approaches to 
model urban growth patterns and processes (Benenson, 1998; Clarke and Gaydos, 1998; Li 
and Yeh, 2002; Ward et al., 2000a; Wu, 1998d). These studies show that modelling 
complexity is highly valuable in offering innovative thinking and methods for 
understanding urban growth. However, they are still insufficient when it comes to fully 
understanding and modelling the complexity inherent in urban growth. First, the complexity 
of the urban growth system is not clearly explained from the perspective of either system 
science or geographical science. Second, the methods of modelling need further extension 
and modification as required by practical urban planning. Consequently, among the major 
research questions are: 
 
• What is the specific complexity of spatial and temporal urban growth? 
• What are the strengths and weaknesses of modern methods in complexity 

understanding when applied to the urban growth system? 
• How should appropriate methods for a specific case be selected and implemented? 
 
These questions will be addressed in this study. In terms of systems science, urban growth 
is defined as a complex system; its complexity is elaborated in chapter 2. However, 
constrained by available data sources, only some aspects can be modelled in this research. 
The focus will be on structural and functional complexity, temporal complexity in 
comparative measurement, spatial complexity in patterns, and complexity in processes.  
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1.2.2  The spatial and temporal measurement of urban growth 
 
Disorderly urban sprawl has been widely criticised in both developed and developing 
countries. The scientific planning and the management of urban growth need the 
quantitative measurement of growth patterns. With the progress of modern remote sensing 
techniques, earth-observation-based monitoring of urban growth has been widely accepted 
and implemented by national, regional and local governments (Chen et al., 2000; Quarmby 
and Cushnie, 1989; Ward et al., 2000b; Ji et al., 2001) because it is the prerequisite for 
comparing spatial and temporal change patterns. This change analysis can be performed 
with multi-temporal and multi-source imagery. Various methods have been put forward in 
recent literature (I-Shian, 1998; Shou, 2000; Yeh and Li, 2001b). These methods include 
spatial, statistical, economic and integrated indicators, often in a comparative analysis 
setting (details in chapter 4). However, few methods touch on the comparison of temporal 
growth patterns for one city. Here, the challenge can be stated in the following research 
questions: 
 
• What is the proper definition of urban sprawl, in particular from the spatial 

perspective? 
• How can temporal urban sprawl be measured? 
 
 
1.2.3  Spatial and temporal pattern modelling 
 
The concept of pattern has special definitions in different disciplines. In geographical 
terms, pattern refers to a "regular arrangement or logic ordering of objects in geo-space", 
the manner in which a phenomenon is distributed in time and space (see details in chapter 
2). Space logic is called spatial pattern. In addition, a temporal pattern can be defined for 
changes over time (time logic). Various types of patterns have been studied in urban 
analysis, such as residential or settlement patterns (I-Shian, 1998), population and 
employment patterns (Ingram, 1998), land development patterns (Wu and Yeh, 1997), land 
use change patterns (Kiril, 1998; Yeh and Li, 1998), and transport/land use interaction 
patterns (Jun, 1999). These studies focus on the spatial patterns of physical and functional 
objects. Interpretation of both spatial patterns and their complexity in urban growth is still 
deficient, especially from an urban planning point of view. Recently, multi-scale analysis 
has attracted more and more attention in pattern modelling (e.g. Kok and Veldkamp, 2001; 
Stein et al., 2001; Walsh and Crawford, 2001). The concept "scale" is mainly interpreted as 
spatial extent and resolution, which is linked with hierarchy theory. Such a classification 
can facilitate a more detailed spatial data analysis. However, employing such different 
scales does not generally provide more powerful explanations of the patterns being 
modelled. Or rather, it only provides the same level of information for planning and 
management purposes. The multi-scale issue should be re-interpreted by linking it to 
planning rather than to data (details in chapter 5). The relevant questions include: 
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• What is the definition of multi-scale in the context of urban growth planning and 
management? 

• How can spatial and temporal patterns of urban growth be modelled in a multi-scale 
framework? 

• What are the spatial and temporal determinants of urban growth on the multiple scales? 
 
 
1.2.4  Spatial and temporal process modelling 
 
In the context of urban studies, process refers to the sequence of changes in space and time; 
the former is called a spatial process, the latter a temporal process (see details in chapter 2). 
It should be noted that strictly speaking spatial and temporal processes can not be separated 
in reality, as all geographical phenomena are bound to have a spatial and a temporal 
dimension. The process defined here does not include social and economic processes, 
which are the major driving forces of urban growth at macro scales. In recent literature it is 
stated that the urban development process is self-organising, stochastic, catastrophic and 
chaotic (see details in chapter 2), referring to the underlying mechanisms resulting in the 
complexity of the urban growth process. Therefore, a number of methods − self-organising, 
stochastic, catastrophic, chaotic and the mixed perspective respectively − have been 
explored and applied for process modelling. Examples include Markov chain stochastic 
modelling in land use/cover change (Petit et al., 2001; Weng, 2002), cellular automata 
modelling in the land development process (Wu and Webster, 1998; Li and Yeh, 2000), 
chaotic process modelling in rainfall-runoff (Sivakumar et al., 2001), and multi-agent 
modelling in residential dynamics (Benenson, 1998). Modelling processes, especially 
temporal processes, is much more difficult than modelling static patterns, as the modeller 
needs to consider dynamic interactions in space and time. The methods currently available 
can only model and interpret parts of spatial and temporal processes on varied scales, but 
many factors are still not incorporated, especially those dealing with complex dynamics. 
Moreover, most methods are not sufficiently linked with decision-making processes in 
urban development and planning − although this linkage should be the ultimate objective of 
modelling. Most authors focus on improving computational or mathematical algorithms 
from a primarily modelling point of view. Another major problem is the rudimentary or 
simplistic incorporation of the temporal component. This affects the comprehensive 
understanding of dynamic processes. Consequently, the major questions can be summarised 
as: 
 
• How can urban growth process be conceptually understood? 
• How can process modelling be linked with decision-making processes in urban 

planning? 
• How can temporal processes be incorporated into modelling? 
 
1.2.5  The transformation of Chinese cities 
 
The transition of the economic system of Chinese cities has brought about major 
transformations in the physical and functional urban structures over the last five decades. 
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This transformation requires that the urban planning system be modified from a centrally 
planned economy to a transitional economy (Yeh and Wu, 1999) based on a sound 
understanding of the urban development process of Chinese cities. Previous studies 
regarding Chinese cities mostly concentrated on political, social and economic processes 
(see details in chapter 3). The studies on spatial patterns and processes were initiated in the 
period after the 1980s and focused on economically developed regions such as Shanghai, 
Beijing, Guangzhou and Shengzhen. Case studies of other cities are very rare and 
systematic research over longer periods is completely lacking. The empirical investigation 
of Wuhan city in this research will explore the following questions: 
 
• How can the urban growth of Wuhan in the past five decades be evaluated? 
• What are the spatial and temporal patterns and processes of Wuhan? 
• How does the Wuhan case relate to other Chinese cities? 
 
 
1.3   Research Objectives 
 
Summing up, the general research question is: Where, when and how did the urban growth 
occur? This results in a focus on spatial, temporal and decision-making processes in this 
study. 
 
The general objective of this research is to develop a theoretical framework and 
methodology for modelling spatial and temporal urban growth, in order to better understand 
the complexity inherent in urban growth systems and to generate and improve relevant 
knowledge for local urban planning. Five research objectives can be specified: 
 
• Analysis of the complexity of the urban growth system and evaluation of the current 

methods available for modelling this complexity; 
• Monitoring urban growth of a fast growing city in the developing world, based on 

remotely sensed imagery, and using modelling to evaluate its structural and functional 
changes; 

• Development and demonstration of a quantitative method for comparative 
measurement of long-term temporal urban growth; 

• Development and demonstration of an interpretable method for urban growth pattern 
modelling; 

• Development and demonstration of a spatially and temporally explicit method for 
understanding the urban growth process. 
 

Due to the limited data and time available, methodological exploration forms the major 
focus of this research. A case study of Wuhan city in P.R. China is selected for testing the 
methodology to be developed. Methodology development is concentrated on each of the 
four specific complexity issues described above. System-level modelling (see chapter 7) is 
not the aim. 
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In this research, urban growth is defined as physical and functional changes due to the 
transition of non-urban to urban land. Urban land use restructuring or urban redevelopment 
is not the concern of the research. Moreover, owing to the unavailability of three-
dimensional data this research only focuses on the horizontal dimension. The driving forces 
of urban growth originate from political and socio-economic processes, which are 
important for qualitative analyses of cause-effects at macro scale but are beyond the scope 
of this thesis. Ideally, process modelling should seek to predict or simulate future 
development. However, prediction is based on understanding. The focus of this study is on 
understanding urban growth. The impacts of urban growth on local ecological systems are 
not included in this research. 
 
 
1.4 Methodology 
 
This research is primarily methodological and theoretical in nature. The methodology is 
highly dependent on the concepts used, the methods selected and the data available. 
Concepts must be based on an understanding of the complexity of urban growth and the 
information requirement of urban development planning. The selected methods should be  
based on an evaluation of the techniques available in both complexity modelling and spatial 
analysis of GIS. This needs extensive literature review and the development of evaluation 
criteria for the selection of methods. Complexity study is much more successful, relatively 
speaking, in the areas of natural science, especially ecology. Perhaps the most promising 
approach has been the application of systems theory and ecological theory to the analysis of 
urban evolution and flows of material through the urban environment (Kropp, 1998). New 
concepts and techniques applied in urban modelling mark a dramatic shift from conceiving 
cities based on predominantly physical metaphors as machines for conceptualising cities to 
using biological metaphors for organisms (Sui, 1998). 
 
As such, similar concepts can be borrowed from other relevant research areas such as 
landscape ecology. Data must be collected from primary and secondary sources. Aerial 
photography and SPOT imagery are the major primary sources in this research. Fieldwork 
and to an extent interviews for key information are also used to capture local knowledge. 
The flowchart displayed in figure 1.1 summarises the seven chapters that make up this 
study and their relationships.  
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 Figure 1.1  Flowchart of the research 

Literature review 

Case study with RS imagery 

Theory and Methodology 
 
Urban growth system 
• Pattern, process and behaviour
 
Complexity 
• Spatial complexity 
• Temporal complexity 
• Decision-making process 

complexity 
 
Methods for modelling 
• CA, MA, ANN, Fractal 
 
Conceptual model         

     Chapter 2

Monitoring Urban Growth 
 
• Data sources 
• Data processing /classification 
• Temporal mapping 
• Urban sprawl 
                                  Chapter 3 

Major Findings 
• Implication for local planning          
• GIS and spatial/temporal modelling   
• Complexity                                                                   Chapter 7 

Modelling Urban Growth 
 

• Structural and functional evaluation - Chapter 3 
• Morphology analysis 
• Spatial pattern analysis 
• Urban land use structure change 

• Comparative measurement of temporal urban growth - Chapter 4
• Temporal mapping 
• Data disaggregation 
• Integration with urban activities 
• Global evaluation 

• Spatial and temporal pattern analysis - Chapter 5 
• Hierarchical multi-scale method 
• Exploratory spatial data analysis 
• Spatial logistic regression 

• Spatial and temporal process analysis - Chapter 6 
• Multi-stage method 
• Dynamic weighting  
• CA-based simulation                                    
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1.5  Thesis Structure 
 
The research comprises theory, methodology and application, which correspond to the three 
major sections of the thesis. Chapter 2 offers the theoretical framework for modelling. 
Chapter 3 deals with the data and modelling requirements for the case study area. As the 
core of this research, chapters 3 to 6 present four methods that are tested in pilot 
applications.  
 
Chapter 1 provides a general overview of the research. This includes its relevance, the 
questions that are addressed, its research objectives and scope, and its methodology. 
 
Chapter 2 provides the theoretical and methodological discussions that are relevant to this 
research. The theoretical section is dominated by the analysis of the urban growth system 
and its complexity; the former includes pattern, process and behaviour, the latter is divided 
into spatial, temporal and decision-making processes. The concepts of scale, hierarchy, 
heterogeneity, self-organisation, emergence etc. are elaborated in this discussion. Next, 
currently prevalent methods of modelling, such as neural networks, multi-agent, spatial 
statistics, fractals and cellular automata, are evaluated based on the operational criteria, e.g. 
data availability, interpretability and GIS linkage. This evaluation results in a conceptual 
model for the next four chapters. 
 
Chapter 3 systematically monitors and evaluates the spatial and temporal urban growth of 
Wuhan city in P.R. China during the last five decades, using aerial photography and 
satellite images as the primary data sources. This chapter aims to improve local knowledge 
of urban growth in order to produce the data framework for the modelling exercise, and 
also to develop methods for modelling structural and functional complexity. After an 
introduction to urban development policies and urban master planning since 1949, urban 
growth patterns, including road networks and centres/sub-centres of Wuhan, are mapped for 
1955, 1965, 1986, 1993 and 2000 and interpreted. Following this, the spatial and temporal 
patterns are quantitatively evaluated from the perspectives of annual growth rate, urban 
morphology, spatial pattern, master plan and land use structure change. The evaluation 
makes it possible to compare the Wuhan case with other Chinese cities for the purpose of 
identifying similarity and disparity. This chapter ends by identifying further modelling 
requirements, which is the starting point for the following three chapters. 
 
Chapter 4 theoretically discusses the relevant definitions of urban sprawl and explicitly 
develops a method for comparatively measuring temporal urban growth. Incomparability of 
temporal measurement is one type of temporal complexity. We argue that urban sprawl is 
just a matter of relative degree and absolute space is not an adequate approach in temporal 
measurement. This chapter presents an innovative and interpretative method to integrate the 
physical aspect of urban growth with the socio-economic information of built-up areas, 
based on the concept of relative space. The method comprises four steps: temporalmapping, 
data disaggregation of socio-economic activities, integration based on spatial gravity, and 
global evaluation. In a case study of Wuhan city, this method is used to analyse urban 
sprawl in the periods 1955-1965 and 1993-2000. 
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Chapter 5 presents a preliminary multi-scale framework for spatial pattern modelling based 
on spatial hierarchy theory. This framework starts with a hierarchical conceptual model, 
which aims at theoretically linking planning hierarchy, analysis hierarchy and data 
hierarchy. Analysis hierarchy is the focus of this research, which addresses three scales: 
probability of change (macro), density of change (meso) and intensity of change (micro). 
The multi-scale analysis perspective seeks to distinguish spatial determinants on two 
different scales, which can provide deeper insights into urban growth patterns. Also a 
method is presented to implement the framework, based on the integration of exploratory 
data analysis and spatial logistic regression. This combination has served to improve 
interpretation. This framework is tested by analysing the urban growth of Wuhan city in the 
period 1993-2000. The scale-dependent and scale-independent determinants are found 
significant on two scales.  
 
Chapter 6 presents an innovative methodology to understand spatial processes and their 
temporal dynamics on two interrelated scales (municipality and project), using a multi-
stage framework and dynamic weighting concept. The multi-stage framework aims to 
model local spatial processes and global temporal dynamics by incorporating explicit 
decision-making processes. It is divided into four stages: project planning, site selection, 
local growth and temporal control. These four steps represent the interactions between top-
down and bottom-up decision-making involved in land development for large-scale 
projects. Project-based cellular automata modelling is developed for interpreting the spatial 
and temporal logic between various projects forming the whole urban growth. Dynamic 
weighting attempts to model local temporal dynamics at the project level as an extension of 
the local growth stage. The methodology is tested with reference to the urban growth of 
Wuhan city, from 1993 to 2000. 
 
Chapter 7 evaluates the findings of the study with reference to the research objectives set 
out above and offers discussion and suggestions for further research. 
 
 



Chapter 2* 
 
Understanding the Urban Growth System 
 
 
Abstract 
 
The rapid urbanisation and urban sprawl in particular in the developing world require a 
scientific understanding of complex urban growth patterns and processes. This knowledge 
is highly crucial to sustainable land management and urban development planning. Progress 
in modern remote sensing and GIS techniques has opened up great opportunities, and 
significant success has already been achieved in monitoring and managing fast urban 
growth. However, these techniques are still poor when it comes to supporting decision-
making on sustainable development, as reasonable theories and methods have not been 
sufficiently and systematically developed to understand the complexity inherent in urban 
growth. Understanding the urban growth system is a prerequisite for modelling and 
forecasting future trends of urban land use/cover change and its ecological impacts. As 
urban growth involves various actors with different patterns of behaviour, we argue that 
scientific understanding must be based on elaborated complexity theory and a 
multidisciplinary framework. The theoretical analysis can provide a guideline for selecting 
modelling methods currently available in complexity modelling and in remote sensing and 
GIS environments. This chapter first proposes a conceptual model for defining urban 
growth and its complexity, in which spatial, temporal and decision-making complexity are 
distinguished as separate domains. Second, this chapter links the conceptual model with the 
major current methods of modern urban modelling, such as cellular automata, fractals, 
neural networks, multi-agent, spatial statistics etc. This confrontation enables the 
possibilities of various modelling methods to understand urban growth complexity to be 
indicated. Third, this chapter evaluates the operational implementation of representative 
methods based on criteria such as interpretability, data need and GIS embeddedness.  
 
Key words: understanding, urban growth, complexity, modelling, methods 
 
 
 
 
 
 
 
 
                                                           
∗ Based on  Cheng et al. (2003a) and Cheng et al. (2003b). 
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2.1  Introduction   
 
Geography is not about collecting facts, expressed as a proposition in logic, but about 
understanding the causes − the processes in space and time which created these facts 
(Frank, 2000). The process is typically represented by the complex interactions between 
humanity and nature. Traditional differential equations were the only well-known 
formalism to describe processes that affect change in time and space (Frank, 2000). 
However, this method is only suitable for physical geography and not appropriate for topics 
from human geography. The latter has properties that distinguish it completely from the 
former. The importance of human geography is strongly linked with the risks of human 
decision-making at varied spatial and temporal scales. Over the last 20 years, complexity 
issues have deeply affected modelling approaches in geography (Occel, 2002). 
 
In the field of urban planning, one of the important subjects of concern is to predict the 
trend of land use transition (Osaragi and Kurisaki, 2000). However, prediction without a 
scientific understanding of the system under study implies a certain degree of uncertainty 
due to the numerous unknown factors involved. This may result in risky decision-making in 
urban development planning and management. Wrong decision-making may cause severe 
economic and environmental losses, or even lead to large disasters. As a consequence, 
scientific decision-making has been the pursuit of urban development planning and 
management that is highly dependent on the reasonable understanding of the objects 
involved. Understanding needs modelling to analyse the complex relationships involved in 
the decision-making; it also needs an understanding of the properties of the problems being 
studied. 
 
To date, quite a number of models have been developed and applied in wide scientific 
areas. But most of them have been criticised. This may indicate that most objects being 
modelled are not completely understood conceptually. Rakodi (2001) argues that one of the 
proposals for improving the quality of planning is an attempt to improve the understanding 
and analysis of the interrelated components of the urban development process in order to 
arrive at more appropriate priorities and sets of policies.  
 
Looking through the history of modelling, it is quite clear that its progress is dependent on 
the advances in other areas such as system sciences (including mathematics, physics and 
chemistry), computer science and techniques, and various application domains. Progress in 
system sciences and computer science has brought about a new revolution in quantitative 
geography. The "quantitative revolution" in economics, geography and the social sciences 
reached the planning profession in 1960s (Wegener, 2001). The emergence of "the old three 
system theories" (general system theory, information theory and cybernetics) and computer 
techniques in the 1940s spurred the first modelling revolution, which is based on structural 
linear equations but is not spatially explicit. Famous paradigms include the Lowry urban 
development model (Lowry, 1964), the spatial interaction model (Wilson, 1970) and the 
input-output model (Leontief, 1970). It is persuasive that the big forward movement in 
remote sensing (RS), geographical information science (GIS) and system theories, 
especially the developing complexity and non-linear theories (the most promising science 
in the 21st century), is undoubtedly stimulating a new development wave of modelling. The 
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reasons are threefold. First, complexity theory brings hopes for re-understanding the 
systems or phenomena under study. A recent resurgence of interest in complexity issues is 
evident as new theories and methods have mushroomed in the last few decades (Wu and 
David, 2002). Second, new mathematical methods create new means to represent and 
quantify the complexity. Third, remote sensing and GIS guarantee the availability of data 
on various spatial and temporal scales.  
 
We argue that scientific understanding must be based on complexity theory and a 
multidisciplinary framework. In the field of urban analysis and modelling, perhaps the most 
promising approach has been the application of systems theory and ecological theory to the 
analysis of urban evolution and the flows of materials through the urban environment 
(Kropp, 1998). However, approaches that capture the complexity of large urban systems, 
and efforts to integrate the various themes are rare (Kropp, 1998). The application of 
complexity theory in urban analysis (qualitative or quantitative) has been increasing 
recently − for example deterministic chaos, stochastic dynamics, artificial life, ecological 
and natural evolutionary dynamics, evolutionary and genetic programming, cellular 
automata, percolation theory, cellular games, agent-based modelling, and neural networks. 
However, the complexity of urban growth and its impacts on urban development planning 
and sustainable growth management have not been systematically researched.  
 
Here, within the framework of complexity theory and in the environments of remote 
sensing and GIS, we attempt to answer these questions: What is the urban growth system? 
And why and how should the complexity of this complex system be understood? With this 
purpose in mind, this chapter first proposes a conceptual model to define the urban growth 
system and then another conceptual model to project the complexity of the urban growth 
system onto spatial, temporal and decision-making process dimensions. Second, this 
chapter links the conceptual model with the major current methods of modern urban 
modelling such as cellular automata, fractals, neural networks, spatial statistics, multi-agent 
etc. This confrontation makes it possible to indicate the possibilities of the various 
modelling methods to understand urban growth complexity. Third, this chapter evaluates 
the operational implementation of representative methods based on criteria such as 
interpretability, data need and GIS embeddedness. Finally, it ends with some discussion 
and conclusions. 
 

2.2  Complexity of Urban Growth 
 
Modelling urban growth aims to support urban development planning and sustainable 
growth management. Scientific planning and management must be based on the proper 
understanding of the dynamic process of urban growth, i.e. from past to present to future. 
Such understanding enables planners to experimentally simulate "what-if" decision-making 
based on various scenarios. However, the dynamic process involves various socio-
economic and physical and ecological components at varied spatial and temporal scales, 
which result in such a complex and dynamic system. Consequently, it requires a systematic 
perspective to understand this complexity. 
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2.2.1  Complexity 
 
That the urban system is highly complex has become a well-recognised fact. Systems 
thinking has been widely accepted by urban planners and other decision-makers engaged in 
urban management and construction. While the concepts of "complexity" themselves are 
not new, the application of these concepts to socio-economic processes is a relatively new 
phenomenon. Advocates of complexity theory see it as a means of simplifying seemingly 
complex systems. Complexity often results from the non-linear interactions among 
complex system components, which frequently lead to emergent properties, unexpected 
dynamics and the characteristics of self-organisation becoming the basic properties of 
complex systems.  
 
Non-linear relationships and feedback among all components at the same and different 
scales often lead to instability and unpredictability in large complex systems. 
 
Emergence (as a phenomenon that high-level behaviours emerge naturally out of low-level 
interactions) implies that the behaviour of the small part is different in isolation than when 
it is part of the larger system. This description is often summarised as "a whole that is 
greater than the sum of its parts or in simple terms, much coming from little". Thus the 
collective behaviour of a complex system is dependent on the behaviour of all of its parts.  
 
For example, Portugali and Benenson (1997), who have intensively studied the theoretical 
aspects of socio-cultural emergence during recent years, show the emergence of different 
forms of cultural and economic segregation as a consequence of the interactions between 
individuals and the city environment at the local and global levels. 
 
Self-organisation (the spontaneous emergence of macroscopic non-equilibrium organised 
structure due to the collective interactions among a large assemblage of simple microscopic 
objects as they react and adapt to their environment) implies that the system organises itself 
from within and structures are not imposed from the outside − in other words, owing to 
purely internal dynamics instead of any external force. It requires an interaction with its 
environment and non-linear relations between its elements.  
 
In a self-organising system (SOS), the local actions and interactions of individuals are the 
source of the higher-level organisation of the system into patterned ordered structures with 
recognisable dynamics. Since the origins of order in SOS are the subtle differences among 
components and the interactions among them, system dynamics cannot be understood by 
decomposing the system into its constituent parts. Self-organisation theory suggests that 
insignificant local interaction behaviour can lead eventually to a qualitatively different 
global structure (Wu, 1998a; Batty, 1995), which constitutes the basis of cellular automata 
and multi-agents theory. SOS theory has been applied for explaining many urban 
phenomena, such as spatial economies (Krugman, 1996) and urban evolution (Allen, 
1997b; Haken and Portugali, 1995; Portugali, 1999; Schweitzer and Steinbrink, 1998). 
Order in the spatial structures or urban systems emerges from the structured responses of 
multitudes of individuals to outside forces and constraints (Benguigui et al., 2001b). 
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A branch of self-organisation theory, synergetics, attempts to illuminate explicit 
relationships between the behaviour of individuals (micro level) and evolving patterns 
(macro level). The approach is based on concepts such as order parameters, which typically 
represent macroscopic patterns, and the so-called slaving principle showing the relation to 
microscopic structures (Daffertshofer et al., 2001). The initial goal of synergetics was to 
understand how the emergence of a macroscopic system, showing a high degree of order, 
may be explained by the microscopic behaviours (Tannier and Frankhauser, 2001). The 
principles have been gradually popularised and applied to socio-economic and ecological 
systems. Haken and Portugali (1995) applied a synergetic approach to explain the self-
organisation of urban settlement, based on a framework of pattern recognition within which 
the interplay between the material pattern of cities and the cognitive pattern of cities were 
conceptualised and subsequently analysed.  
 
Complexity frequently takes the form of hierarchy, whereby a complex system consists of 
interrelated subsystems that are in turn composed of their own subsystems, and so on, until 
the level of elementary component is reached (Kronert et al., 2001). Hierarchy theory 
applies hierarchy to organise concepts and interpret various complexities. The theory 
examines closely the issues of scale, levels of organisation, levels of observation, and levels 
of explanation in a complex system characterised by hierarchical structures and interactions 
across levels. Hierarchy theory suggests that when a phenomenon is studied at a particular 
hierarchical level (the focal level, often denoted as Level 0), the mechanistic understanding 
comes from the next lower level (Level -1), whereas the significance of that phenomenon 
can only be revealed at the next higher level (Level +1) (Kronert et al., 2001). 
 
The key to understanding hierarchical structure is scale. Scale is the central concept for 
describing and explaining the complex hierarchical organisation of the geographical world 
(Marceau, 1999). In a hierarchical system, higher levels (or smaller scale) set constraints or 
boundary conditions for lower levels. The latter operate much too rapidly to be of interest 
and can be ignored. In spatial analysis, the scope of scale can be threefold: spatial, temporal 
and decision-making (see chapter 5). 

2.2.2  Complex system of urban growth 
 
When we consider urban growth as a system, in particular a complex system, we need to 
uncover the universal and unique characteristics that it shares with and distinguishes it from 
other complex systems. This exploration is conducted by answering four relevant research 
questions. The first question is: Where is urban growth occurring from a system 
perspective? 
 
As far as the type of urban development is concerned, it consists of physical expansion and 
functional changes. The former refers to the change in space (transition from non-built-up 
to urban), such as increasing the physical size of a built-up area, the latter to the change in 
major activities (land uses), such as residential or commercial function. Although the focus 
of this research is on the physical expansion, the functional aspects have to be taken into 
account in interpreting the causal effects of the former as both interact spatially and 
temporally. For example, the activities at a location may influence the change in space at 
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another location; the activities in a period may impact on the change in space at another 
later period. As a result, space and activity should be the basic elements of any systems 
defined for understanding urban growth. 
 

            
In figure 2.1, it is supposed that urban growth occurred in a specific period from time tl  to 
t2; apparently the evolution of urban growth is closely related to three systems − P, U and 
N. U itself is a highly complex social and economic system, as the concentration of 
considerable urban activities present at time tl shows. It offers current activities rather than 
space for urban growth to come. N is a typical physical and ecological system, including 
various ecological units (water body, forest etc.) and agricultural land. It primarily provides 
possible opportunities and potential for urban growth in space, instead of activities until 
time t2. P is a spatial and conceptual system that results from a spatial planning scheme. It 
prepares organised space and activities for urban growth in the future. Urban growth is a 
temporally relative term. New development units will be administratively transformed from 
rural management into an urban built-up area after a certain term has elapsed since birth. 
For example, in figure 2.1 urban growth, being the transformed area from tl  to t2 , will 
become a part of system U after t2 from system N at time tl . As the main topic of this 
research, new urban growth is treated here as an independent system within the specific 
period under modelling. Under such an assumption, urban growth G can be defined as a 
system resulting from the complex dynamic interactions (only from tl to t2 ) between the 
three systems (P, U and N). The thin arrows in figure 2.1 refer to the interaction between 
the three systems, and the thick arrows to the contributions to urban growth made by the 
three systems. System P contributes planning control and requirements to G; system N 

Urban Growth 
G (tl  - t2)    

Developed 
Urban System 

U ( tl  ) 

Developable Non-
Urban  System  N 

( tl  ) 

Planned Urban 
System  P  

( t2 ) 

Figure 2.1  Where is urban growth occurring? 
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contributes developable land, and system U contributes activities and stimulant factors to 
the growth of G. 
 
A key to understanding urban growth is to understand the complex dynamic interactions. In 
terms of physics, system U exerts "pull" forces on system G, which is attracted by a certain 
scale of urban social and economic activities. Conversely, system N exerts "push" forces on 
G, which is excluded by the limitation and requirement of ecological protection or 
sustainable agriculture. Hence, G results from the interaction between "push" and "pull" 
forces. We can say the interaction is open, non-linear, dynamic and emergent. Urban 
growth is a self-organised system. 
 
The major decision-making in urban growth is related to plans, policies and projects. 
Projects are special land use or development proposals initiated usually by various levels of 
actors. Projects evolve in the context of various levels of policy and plans. Urban growth 
creates a new dynamic system, which comprises a quantity of projects constructed that are 
increasing with time from t1 to t2. It is an open system. In the course of urban development, 
it incessantly exchanges matter, energy and information with external physical and 
ecological systems (water, land), other regions and cities. It imports a variety of 
regulations/decision-making styles, investment from higher organisations, external 
investors, inhabitants and managers. Its non-linearity is indicated in the following aspects. 
In the spatial dimension, new development density (population density or land conversion) 
decreases non-lineally with the distance from the city centre and sub-centres. This is mostly 
represented by a negative exponential function (Clark, 1951) or an inverse power function 
(Batty and Kim, 1992). In the temporal dimension, new growth does not follow a linear 
trend but, in most cases, a logistic trend (Herbert and Thomas, 1997). The interactions 
among a huge number of factors have proved to have the unknown non-linear relationship, 
such as the famous interaction between transport and land use (Wilson, 1998). 
 
The structure and function of each local project depend not only on its neighbouring 
projects but also its built-up environment, i.e. these new projects interact not only with each 
other but with developed areas, as well as spatially and temporally. These non-linear 
interactions result in globally ordered land use patterns. The order is typically indicated by 
a large-scale spatial agglomeration or by clustered patterns. From this, we can infer that 
urban growth is a typical self-organised system where the three systems are treated as a 
whole. 
 
As a focus, this research only discusses the impacts of other systems on urban growth, as 
indicated by the one-way arrows (figure 2.1). In reality, the impacts of system G on N have 
been the major concern of landscape ecology, the interactions inside system U being the 
major concern of urban land use change. Therefore, urban growth involves landscape 
ecology (pattern and process), urban planning (decision-making) and urban geography 
(activities and behaviours). We need an interdisciplinary instrument to understand these 
complex relationships. Complexity theory is undoubtedly an ideal tool to construct 
conceptual frameworks systematically.  
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Second, we need to answer the questions: What should be understood in supporting urban 
development planning and management? And how can urban growth be represented for 
modelling purpose? Traditional approaches to urban science as exemplified in the work of 
Christaller and others are based on the assumption that cities grow homogeneously in a 
manner that suggests that their morphology can be described using conventional Euclidean 
geometry. However, recent studies have shown that the complex spatial phenomena 
associated with actual urban systems are better described as a dynamic process consistent 
with growth in disordered patterns. The process of urban growth does not exist 
independently but rather coexists with pattern and behaviour. They interact mutually and 
comprise three interrelated conceptual subsystems that are crucial to the decision-making 
for urban planning and management. The work of Sui (1998) shows a need to understand 
urban form, process and policies in this new information society. When moving to urban 
growth, an emphasis should be given to pattern, process and behaviour.  
 
As illustrated in figure 2.2, understanding urban growth can be summarised as five 
interweaving levels: policy, actor, behaviour, process and pattern. Policy is the level proven 
to be the most influential factor or driving force of urban growth on the macro scale. Pattern 
is the lowest level, which is a directly observable outcome. Process indicates the dynamics 
of urban growth, behaviour indicates the actions of the actors involved, and actors indicate 
the agents of behaviour. From policy to pattern, the qualitative degree is decreasing and the 
quantitative degree is increasing. As a result, modelling has to follow a ladder (figure 2.2), 
from pattern gradually to policy level. This ladder works in the opposite direction to the 
real urban growth hierarchy. On the one hand, in the terms of hierarchy theory (see 
previous section), understanding a single level must consider its lower and upper levels as 
they are comparatively closely linked.  
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Figure 2.2  A ladder for modelling  
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Consequently, to understand a process, one must take its pattern and behaviour into 
account. On the other hand, as actor and policy are interrelated, they principally impact on 
the decision-making units and processes, and are linked with behaviours. Thus, process, 
pattern and behaviour are becoming the key levels for modelling urban growth. A pattern is 
the temporal snapshot of a process, and behaviour is the decision-making source of a 
process.  
 
(1)  Pattern 
 
What is the definition of pattern? How to classify and distinguish the patterns of urban 
growth? The Oxford English Reference Dictionary defines pattern as "a regular or logic 
form, order, or arrangement of parts such as behaviour pattern". Two key components are 
stressed in the definition: elements and the logical ordering among the elements. As such, 
spatial pattern focuses on the spatially ordering and temporal pattern on the dynamic 
ordering, i.e. logically ordering described from the perspectives of space and time 
respectively. However, the concept "pattern" varies with discipline in academic circles. In 
spatial sciences, pattern refers to a "regular arrangement of objects", which may be 
explained in terms of structures, processes and systems. It refers to the manner in which a 
phenomenon is arranged in time and systems. In landscape ecology, patterns refer to the 
spatial configuration of discrete landscape elements, which can be of different geometrical 
nature. 
 
To summarise, pattern is a relative term, which is dependent on a specific system under 
study. Pattern is based on defined elements of the system. In this sense, urban growth 
patterns can be viewed from two standpoints: one is on the urban growth system itself, the 
other is as part of a larger system (G, U, P, N). The former only comprises new 
development units. The latter includes not only urban growth but also the three other 
systems U, P, N. A development unit can be defined as any spatial entity that will be 
subject to change, albeit physical or functional, during the period to be modelled. The 
physical change means the appearance or disappearance of a new unit; the functional 
change indicates the new usage of a unit, such as change from industrial to commercial. 
The pattern in system G is called univariate as it focuses on the logic arrangement among 
the new development units. Landscape metric, point-pattern and spatial auto-correlation 
belong to this category, which contributes to the quantitative description of the spatial 
distribution of urban growth. In a larger system, elements include relevant spatial entities 
coming from three other systems, which stimulate or constrain the occurrence of new 
development units. They can be river, water body, railway line, slope, shopping centre, road 
network etc. Actually, this category aims to model the spatial relationship between G and 
P, N, U, instead of G's spatial distribution. It is called a multivariate pattern, which 
contributes to the quantitative description of interaction pattern between multiple systems. 
 
Various types of "pattern" studies have been carried out in urban modelling, such as 
residential or settlement pattern (I-Shian, 1998), land use development pattern (Kiril, 1998; 
Yeh and Li, 1998), population and employment pattern (Ingram, 1998), development 
pattern of informal settlement (Mahmud and Duyar-Kienast, 2001), land development 
pattern (Wu and Yeh, 1997), and transport/land use interaction pattern (Susantono, 1998). 
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Wu and Yeh (1997) focus on the multivariate functional pattern (land use) between system 
G and P, N, U in a case study of Guangzhou city in China. They model not only spatial 
patterns but also temporal patterns in two periods. These models are very helpful in 
comparing and explaining the land development patterns under two distinct economic 
systems. 
 
Pijanowskia et al. (2002) study the multivariate physical pattern (land cover) between 
system G and P, N, U in a case study of Michigan’s Grand Traverse Bay. They explore 
how factors such as roads, highways, residential streets, rivers, the Great Lakes' coastlines, 
recreational facilities, inland lakes, agricultural density and the quality of views can 
influence urbanisation patterns in this coastal watershed. Artificial neural networks (ANNs) 
are used to learn the patterns of development in the region and test the predictive capacity 
of the model, while GIS is used to develop the spatial predictor drivers and perform spatial 
analysis on the results. 
 
(2)  Process 
 
Space and time are well-known notions but in order to explain them they must be 
connected to other fundamental concepts such as change or process. Since relative space is 
inseparably fused with relative time, nothing in the physical world is purely spatial or 
temporal; everything is process. Change must be seen as a composite of processes that 
occur on a wide band of time scales in space. Therefore, the link between space and time is 
through the process itself, where specific processes determine specific temporal and spatial 
conceptualisation (Dragicevic et al., 2001). The process discussed here does not include the 
social and economic processes, which are the driving forces of physical and functional 
urban growth. 
 
Process generally refers to the sequence of changes in space and time; the former is called 
the spatial process, the latter the temporal process. It should be noted that strictly speaking 
spatial and temporal processes cannot be clearly separated as any geographical phenomena 
are bound to have spatial and temporal dimensions or named a spatio-temporal process. 
Understanding change through both time and space should, theoretically, lead to an 
improved understanding of change and of the processes driving change (Gregory, 2002). 
 
However, spatial processes are much more than any sequence of changes. Spatial process 
implies a logical sequence of changes being carried on in some definite manner, which lead 
to a recognisable result (Getis and Boots, 1978). Summing up, the key components of 
process are change and logical sequence. The former is defined by a series of patterns. The 
latter implies the understanding of process. In contrast with pattern, process contains a 
component of dynamics. 
 
Pang and Shi (2002) propose a spatial system theory in which they define spatial process as 
a system containing two components: based on structure and movement (including add, 
delete, move, merge and subdivide operations). They actually correspond to pattern and 
sequence (a set of operations) of change. This is a generalised process for spatial modelling 
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in GIS. However, it is not suitable for urban growth as urban growth only includes rural-
urban land cover conversion and not decline in land use in the inner city. 
 
In landscape ecology, fragmentation is a common process related to landscape change, 
affecting both its structure and function. It causes the division of landscape elements into 
smaller pieces. In this domain, landscape pattern comprises various patches, which 
represent the diverse structure and function of landscape elements. Fragmentation of 
patches or patch dynamics (Wu and David, 2002) can be utilised to explain the ecological 
process of landscape pattern change. It is a spatial process in system N. 
 
Landis and Zhang (2000) define spatial processes as those by which activities at one 
location affect or are affected by activities at another location. They identify four types of 
spatial processes that arise in urban activities: spatial diffusion and dispersal, exchange and 
transfer, interaction, and segmentation or percolation. The outcome of the spatial process 
refers to urban land use. Process is to understand the causal relationships of urban land use 
change; they are spatial processes in system U. Arbia (2001) classifies the spatial processes 
of individual firms into a birth process (new firms) and a growth process (existing firms) 
and proposes a model of economic activities on a continuous space. This classification aims 
to analyse the economic behaviour of individual firms. It is not an explicit spatial process. 
 
Benguigui et al. (2001a) described city growth as a leapfrogging process, based on 
population growth in a case study of the Tel-Aviv Metropolis. With reference to three case 
studies (Beijing, Shanghai and Guangzhou), Gaubatz (1999) generalised the urban 
development process of Chinese cities after land reform was initiated in 1987 into three 
aspects: production of urban plans, urban renewal, and privatisation of the housing and real 
estate market. These two definitions are only given as a specific requirement of the 
analysis, not in any systematic way. 
 
According to hierarchical theory, processes − in particular spatial processes − may be 
divided into two levels: global and local. The former takes the whole study area into 
account, the latter only a neighbourhood. For example, Mendonca-Santos and Claramunt 
(2001) defined explicitly spatial processes on two scales (landscape and class or local) in 
order to explain the change in landscape patterns. At the landscape level (global), spatial 
processes are identified as fragmentation, perforation, diversification and simplification. 
And at the class level (local), spatial processes are characterised by expansion, contraction, 
stability, invasion, domination and succession. They argued that different levels (landscape 
and class) have a specific time scale: evolution process on a local scale is likely to happen 
in a faster mode than the ones identified at the landscape level. 
 
To sum up, the classification of process is very complex, and dependent on the specific 
requirements of the analysis. The same patterns can be explained from the standpoint of 
different processes. In urban growth, when we focus on urban growth system G, we may 
classify it as a spontaneous or self-organised process. The former is indicated by sporadic 
patterns and the latter is reflected by clustered patterns. This classification can be better 
linked to social and economic processes and also the decision-making processes of urban 
development planning. When we focus on the interaction between the three systems, we 
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can define the process as leapfrog, space fill-in, dispersed, scattered, road-influenced, 
spread etc. This classification in particular considers the interaction of urban growth with 
developed urban areas from a global perspective. 
 
(3)  Behaviour  
 
Urban growth results from direct or indirect decisions to alter the current uses of land at 
various levels. The analysis of urban growth necessarily asks who decides to change the 
transition, and where, when and why. The factors that are taken into account relate to the 
particular decision-making units and processes.  
 
Behaviour refers to the decision-making of actors. Spatial behaviour focuses on spatial 
decision-making, temporal behaviour on temporal decision-making. The key components 
of behaviour are decision making and the actor. In spatial science, examples include way-
finding, travel mode, site selection, and land use allocation. 
 
The actors from the three systems U, P, N − individuals, households, businesses, 
developers, farmers, landowners, planners and governments − make decisions about their 
social and economic activities, and their spatial location and temporal scheduling, leading 
to changes in land cover and land use. These decisions affect, directly and indirectly, the 
physical and functional system G through the conversion of land, the use of resources, and 
the generation of interaction.  
 
For example, the projects for commercial use make choices about scale, location, cost and 
transport. Households make choices about employment, location, housing type, travel 
mode, and other lifestyle factors leading to varied spatial behaviours. Developers make 
decisions about investing in development and redevelopment. Governments make decisions 
about investing in infrastructures and services and adopting policies and regulations. 
Decisions take place at the individual and community levels through the economic and 
social institutions. The actors interact in three sub-markets: the job market, the land market 
and the housing market. These actors also interact in non-market institutions, including 
governmental and other non-profit and non-governmental organisations.  
 
A variety of decision making and diverse actors create disparate spatial and temporal 
behaviours in the urban growth process. Urban growth is highly impacted or controlled by 
the major actors of urban construction, planning and management. Urban spatial structure 
can be described as a cumulative and aggregate order that results from numerous locally 
made decisions involving a large number of intelligent and adaptive agents. The behaviour 
of these agents is subject to their rules of action based upon new information. The local 
behaviour of multiple decision-makers can eventually lead to qualitatively different global 
patterns. Due to the number of actors involved in urban growth, the spatial behaviour of 
urban growth falls into various levels: individual behaviour, planners' behaviour, 
developers' behaviour etc. Spatial behaviour regarding urban growth includes site selection 
behaviour and spatial spread behaviour (such as scale, density, intensity). Temporal 
behaviour contains the speed of growth. 
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Decisions are made under constraints (space and time), and they reflect the attitudes, values 
and beliefs of people and of society. Therefore, behaviours are individually subjective and 
stochastic but follow global regulation in statistical terms. Meanwhile the basis for making 
decisions may change over time.  
 
For instance, previous studies regarding the urban growth of Chinese cities (Gaubatz, 1999;  
Fung, 1981; Wu, 1998b) have shown that because of the determinant role of the state 
budget the state and work units were the main urban developers in the period before 1987. 
Urban planning principally contributed to site selection for industrial projects. Since the 
land reform initiated in 1987, however, with the retreat of state work units from urban 
construction, the comprehensive management of local governments and the new land-
leasing system, the right of controlling urban space has been transferred from work units to 
local governments and then to external developers (Wu, 2000a). More actors are involved 
in the decision-making, with more vague functions (Han, 2000; Jiang et al., 1998; Zhang, 
2000b). As a result, to understand the urban development process, the roles of various 
actors and their behaviour should be taken into account. Wu (1998b) argues that, in order to 
explain the complicated spatial structure and process of Chinese cities, one must understand 
the two points: capital and its movement, social actors/agents and their functions/roles.  

2.2.3  Projection of complexity in urban growth 
 
Much of our understanding of explicit dynamic processes will coincide with our ability to 
understand complex systems in general (Box, 2000). A third question is: What is the 
complexity of urban growth? or How should we look at its complexity? 
 
(1)  Sources and measurement of complexity  
 
Contemporary urban growth is characterised by dispersal and decentralised patterns, 
especially in the USA (Gordon and Richardson, 1997). Restructuring has involved the 
decentralisation of jobs, services and residences from traditional urban centres to suburban 
settings and "edge cities" within expanded metropolitan areas (Garreau, 1991). The new 
urban regions are multi-centred, with more than one core (Fishman, 1990). This trend is the 
result of a variety of heterogeneity.  
 
Kolasa and Pickett (1992) gave a more conceptual definition of heterogeneity: "a system is 
heterogeneous in time and/or space if a specific temporal interval and/or different location 
is characterised by different values". Homogeneity and heterogeneity can be defined as the 
"border" between individual levels of hierarchy. 
 
Systems of any interest are composed of heterogeneous agents and objects, indeed their 
very richness comes from such heterogeneity (Batty and Torrens, 2001). Socio-economic 
events have an explicit heterogeneous spatiality and temporality. Their structure and 
function are defined in and by space, as well as in and by time, such that no two locations 
are alike. Maintaining heterogeneity may be critical for the movement of energy, matter and 
information within different social contexts. Or rather, heterogeneity is the source of 
complexity of any system. 
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In the field of landscape ecology, increasing attention is given to the importance of spatial 
heterogeneity in understanding the relationship between pattern and process (Turner, 1989). 
Hierarchical patch dynamic models are being developed to incorporate the effects of spatial 
heterogeneity on ecosystem dynamics. An increasing hierarchical order is often 
accompanied by an increase in heterogeneity (Kronert et al., 2001). 
 
Urban growth consists of the various scales of new projects. Large-scale projects are 
characterised by heavy investment, long-term construction and the number of actors 
involved; examples include airports, industrial parks and universities. In contrast, small-
scale projects are characterised by rapid construction, light investment and few actors; 
examples can be a private house and a small shop.  
 
Urban growth results in various land uses with different levels of social, economic and 
environmental values. This is a higher dimension of heterogeneity, indicated in the 
attributes of spatial objects. For instance, a university accommodating many people has a 
high social value but a low economic value. Conversely, a sewage treatment plant 
accommodating few workers has a low social and economic value but a high environmental 
value. As a result, each unit of new development is assigned different values. They are the 
spatial entities carrying heterogeneous social, economic and environmental activities. 
 
Consequently, urban growth comprises a large number of varied scale projects. The 
functional differences between them, and also between the new units and the other three 
systems, create a massive flow of matter, people, energy and information. They are the 
sources of the complexity inherent in urban growth. Our observation or assumption is that 
the spatial, temporal and decision-making heterogeneity of urban growth results from 
socio-economic-ecological heterogeneity. Such heterogeneity may originate from self-
organised socio-economic processes. For example, the self-organised process to some 
extent can be explained by scale economy, multiple nuclei etc. The integration or 
interaction between these categories of heterogeneity creates complex patterns, behaviours 
and processes of urban growth.  
 
As a first step towards decision-making support, quantitative measurement plays a crucial 
role, affecting the accuracy of modelling and further the risks of decision-making. To 
effectively measure the complexity of a system remains an unsolved issue even in 
complexity theory. In urban growth, such complexity can be threefold (or projected onto): 
spatial measurement, temporal measurement and decision-making measurement, which 
correspond to the three categories of heterogeneity. In the published literature, although 
numerous indicators are designed for the quantification required by any specific analysis 
such as proximity, accessibility, and density based on remote sensing and GIS techniques, 
they are still not rich enough to understand all aspects of multiple complexity. A major 
reason is that conceptual understanding of any specific complex system is still limited at 
present. 
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(2)  Spatial complexity  
 
Classic location theory utilises micro-economic concepts such as perfect competition and 
perfect rationality; but the over-simplified economic and spatial landscape it assumes is not 
sufficient to explain existing spatial processes where location choices depend on 
relationships rather than on an individual actor's choices (Besussi et al., 1998). 
 
A frequently cited shortcoming of GIS and most spatial analysis tools is their difficulty in 
dealing with dynamic processes over landscapes (Box, 2000). This is not because of a lack 
of people thinking about dynamic processes in space, nor is it from a lack of talent or 
technology. It has more to do with the fact that space is inherently complex, and dynamic 
processes often become complex when they are regarded in a spatial context. As a result, 
the first step to spatial modelling is to recognise the spatial complexity in the study. Spatial 
complexity may include spatial interdependence, multi-scale issues and structural or 
functional complexity. 
 
Spatial dependence is defined as a functional relationship between what happens at one 
point in space and what happens at a neighbouring point. In urban growth, spatial 
dependence is indicated by the impacts of neighbouring sites on land conversion of any site 
− which is the result of a causal relationship among neighbouring entities, e.g. interaction. 
The impacts can be twofold: positive (stimulation) or negative (constraint) from three 
systems (U, P, N). Examples of positive impacts may include transport infrastructure or 
developed urban area; in particular low density fringe growth is highly dependent on 
transport infrastructure. Examples of negative impacts may be steep terrain and non-
developable land such as deep lakes. The complexity lies in the following facts: 
 
• The impacts are determined by an unknown number of factors and their spatial 

relationships are non-linear; 
• The intensity of spatial dependence or neighbourhood size is spatially and locally 

varied; 
• Land conversion includes probability (occurred or not), density (scale), intensity (floor 

number), function (land use) and structure (shape or morphology); each may have its 
distinct spatial dependence. 

 
Urban growth involves a number of hierarchical structures. In the spatial dimension, U 
includes different levels of shopping centres and road networks; system N includes 
different levels of ecological units; system P contains different levels of urban planning 
(general plan, district plan and zoning plan). As a result, urban growth G may be related to 
more complex spatial hierarchies as interacting with three systems. From the perspective of 
land development, urban growth can be divided into different scales of projects, such as 
large-scale new development zones, key-point industrial zones or parks, middle-scale new 
residential areas, and small-scale shops. Spatial complexity resulting from the multi-scale 
issue lies in the following facts: 
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• Urban growth pattern, process and behaviour and their relationships are spatially varied 
with different scales; 

• The relationships between scale and various levels of urban development planning and 
land management are still fathomless; 

• The spatial framework supporting multi-scale modelling is impacted by numerous 
institutional factors, especially in developing countries. 

 
Patterns and processes have components that are reciprocally related, and both patterns and 
processes, as well as their relationships, change with scale. Different patterns and processes 
usually differ in the characteristic scales at which they operate. Scale issues are inherent in 
studies examining the physical and human forces driving land use and land cover changes 
(Currit, 2000). An understanding of how processes operate at various spatial scales and how 
they can be linked across scales becomes a primary goal when investigating these complex 
phenomena (Marceau, 1999). 
 
In spatial science, structure is the physical arrangement of ecological, physical and social 
components, and function refers to the way the components interact (Zipperer et al., 2000). 
Urban growth involves both; structure is more linked with pattern and function rather than 
with process. The representation or semantics understanding of a spatial system is diverse. 
The spatial representation of structure and function may influence the spatial understanding 
of urban growth pattern and process. Its complexity lies in the following: 
 
• The self-organised process of urban growth has complex spatial representation and 

understanding; 
• The interaction between pattern and process is dynamic and non-linear. 
 
(3)  Temporal complexity  
 
In the time dimension, the physical size of a city is increasing continuously, with a 
functional decline in some parts, such as the inner city. However, urban growth means only 
increasing the number of new units transformed from non-urban resources. In different 
countries, regions and cities, the speed, rate and trend of urban growth are very distinct. In 
developed countries (e.g. the USA, the UK), urban growth may be much more gentle than 
that in rapidly developing countries such as China and India. Urban growth is largely 
controlled or impacted by its economic development scale and environmental protection 
strategy. Or rather it is controlled by the systematic co-ordination between the three 
systems. For example, when system N is not influential and strong, more arable land might 
be encroached upon. Economic development is not predictive, in particular in the long 
term, due to numerous uncertain factors. The non-linear interactions between the three 
systems lead to a non-linear curve of urban growth. This results in patterns, processes and 
behaviours of urban growth that are temporally varied, i.e. temporal scale is a highly 
influential factor for understanding its dynamic process. In the longer term, urban growth 
might be considered uncertain and unpredictable or even chaotic. Urban systems are rather 
complicated and their exact evolution is unpredictable (Yeh and Li, 2001a). This means its 
development process is sensitive to unknown initial conditions such as war, natural disaster, 
and new policies of the central government. These conditions can not often be predicted, 
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particularly in quantitative terms. If the system of interest is chaotic, the prediction of the 
values of all system variables is possible only within a usually short time horizon. 
 
Generally, urban growth is in a state of disequilibrium, especially in most rapidly 
developing cities. In such cases, uncertainty becomes predominantly important, because in 
these systems spontaneous growth or any surprising changes that depart from observed past 
trends, indeed any form of novelty or innovation, open up the path of system evolution. 
This can be illustrated by the so-called "evolutionary drive", showing how the error-making 
of a particular type of individual in an initially pure population eventually diversifies the 
characteristics and behaviours of the population. This indicates that the urban development 
process contains stochastic components to a certain degree. 
 
The temporal scales of various decision-making are also different. Large-scale projects 
such as shopping centres or industrial parks frequently take a few years, much longer than 
small-scale constructions such as a shop. It is likely that various levels of actors have 
different temporal scales of decision-making behaviour. Local government needs to have a 
series of procedures, such as public participation or interviews with local people, to support 
their democratic decision-making. Individuals or households are able to make much 
quicker decisions because their decision-making process is simple and the criteria for their 
decision objectives are also fewer. 
 
From the perspective of urban planning and management, understanding the dynamic 
process of urban growth includes the temporal comparison of various periods. Such 
comparisons enable planners to modify or update their planning schemes in order to adapt 
to the changing environment. However, these comparisons are subjective and depend on 
numerous fuzzy criteria. 
 
As a complex system, urban growth involves a certain degree of unpredictability, phases of 
rapid and surprising change, and the emergence of system-wide properties. Temporal 
complexity is specifically indicated in the following ways: 
 
• Patterns, processes and behaviours of urban growth are temporally varied with scale; 
• The dynamic process of urban growth is non-linear, stochastic or even chaotic in the 

longer term; 
• Temporal comparison of urban growth is subjective and fuzzy. 
 
(4)  Decision-making complexity 
 
Quantitative geographers increasingly recognise that spatial patterns resulting from human 
decisions need to account for aspects of human decision-making processes (Fotheringham 
et al., 2000). In particular, the urban spatial structure is viewed as a result of interlocked 
multiple decision-making processes (Allen and Sanglier, 1981a). Decision-making 
complexity is indicated in the unit and process of decision-making, and the actors or 
decision-makers. 
 



      Chapter 2 

 

30

The decision-making unit and process of large-scale projects are relatively more 
complicated than those of small-scale ones. They involve more actors or decision-makers. 
For example, in China, decision-making in an industrial park project may include 
investment sources, site location, development scale, time scheduling. Actors may include 
central government, local government, foreign investors, local developers and work units. 
However, a small shop only needs the decision-making of one private developer. Large-
scale projects are limited in quantity and their decision-making is more certain and well 
planned if compared with others. The latter are large in quantity and their decision-making 
is more uncertain, dynamic and less organised. However, the collective behaviours of 
small-scale projects can be controlled or guided by various management and urban 
development policies. From the perspective of self-organising theory, all of these small-
scale and large-scale projects are spatially and temporally self-organised into an ordering 
system. The decision-making behaviours of different functions of projects are also 
disparate, e.g. commercial and residential. Their differences are indicated in the various 
actors and the criteria for respective decision-making. Consequently, decision-making in 
urban growth is a completely multi-agent, dynamic and stochastic system. 
 
As discussed above, urban growth involves various levels and scales of decision-making, 
from individual land rent to a government's master plan. Each actor has a distinguishing 
domain of decision-making and profit pursuit, which are frequently in conflict. The 
interactions between these actors are spatially and temporally varied. This is a typical 
multi-agent system spanning broad spatial and temporal scales.  
 
Understanding the dynamic process of urban growth must be based on the linkage with the 
decision-making process as the final users of modelling are the various levels of decision-
makers. However, the interaction between these actors is in essence non-linear, dynamic, 
and self-organised. The ability to realistically represent the behaviour of the key actors 
depends on the level of aggregation at which actors and their behaviours will be represented 
in the model. Real decision-makers are a diffuse and often diversified group of people who 
will make a series of relevant decisions and trade-offs over a period of time. Their decisions 
will depend on a broad range of characteristics, such as site characteristics, locational 
conditions and legal constraints. Furthermore, in the real world the costs and benefits of 
alternative decisions are both distributed and valued differently among these decision-
makers. In addition it is important to note that these actors also learn through time. Hence, 
the interaction between the spatial, temporal and decision-making processes is much more 
complicated. 
 
Summing up, decision-making complexity is specifically indicated as follows: 
 
• Decision-making for urban growth is a multi-agent dynamic and stochastic system;  
• Its spatial and temporal projection is a self-organised process; 
• Decision-making behaviours are subjective and fuzzy. 
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(5)  An example in transport and land use interaction 
 
The pattern of urban development principally results from the accumulative effects of 
transport/land use interactions at different spatial and temporal scales. The term interaction 
implies a feedback mechanism between transport and land use systems. The land use 
system supplies the transport system with estimates of the location and volume of travel 
generators. The transport system affects the land use system through the notion of 
accessibility, often in a temporally lagged manner. As an integral part of such accessibility, 
changes in travel costs become part of the mechanism used to relocate labour, residence and 
other urban economic activities. Many empirical studies have shown that the interactions 
are complex, bi-directional, and difficult to sort out due to spatial and temporal scaling 
factors. In the temporal scale, the interactions can be distinguished and summarised as 
follows (Hanson, 1995): 
 
• Short-term effects of land use on transport; 
• Medium-term effects of transport on employment location; 
• Long-term effects of transport on housing location. 
 
The implication is that transport system changes, notably major infrastructure investment in 
new highways or rail transit lines, will need time to affect urban land use patterns. Once 
introduced, such land use patterns may also, but within shorter time frames, induce further 
changes in urban travel demand.  
 
At the spatial scale, on the one hand, the link between transportation and land use may be 
stronger only when transport costs are significant, or when transport or development 
decisions significantly affect accessibility. These conditions are generally met in two very 
different circumstances: heavily congested downtown areas and rapidly growing suburban 
areas. On the other hand, the impact of highway investments today, with a mature highway 
system, may not be the same as in earlier periods. They have a decreasing impact. 
 

2.3  Complexity Modelling 
 
This section is going to answer the fourth question: How can the complexity of urban 
growth be modelled (understood) and what are the strengths and weaknesses of each 
method from the perspective of complexity described above? 
 
In one philosophical tradition, understanding means the construction of models (Newell, 
1997). There are a number of ways of classifying models of urban growth. For example, in 
terms of system completeness, models can be system-level or specific-level. The former 
takes all components of urban systems into account; the latter focuses only on a specific 
phenomenon or problem by using a limited number of components in the system under 
study, such as residential dynamics. In terms of dimension, they can be divided into spatial 
models, temporal models and spatio-temporal models. Different dimensions distinguish 
focus or emphasis and requirements of data. In terms of analysis objectives, they can be 
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pattern models, process models and behaviour models. With the general purpose of 
understanding the complexity of urban growth, we hereby attempt to classify them as 
cellular automata modelling, multi-agent modelling, neural network modelling, fractal 
modelling etc., according to the methods available for modelling complexity and non-
linearity.  

2.3.1  CA-based modelling 
 
Cellular automata (CA) are dynamic discrete space and time systems. A classic cellular 
automaton system consists of a regular grid of cells, each of which can be in one of a finite 
number of k possible states, updated synchronously in discrete time steps according to a 
local identical interaction rule.  
 
The idea of CA is closely associated with that of microscopic simulation in which the 
behaviour at a local scale gives rise to an emerging global organisation (Webster and Wu, 
2001). Global structure in a CA system is often seen to emerge out of purely local 
interactions between cells. This is attractive because it matches our intuitive sense that 
much human spatial activity is not centrally planned or organised, but arises from the 
responses of various actors, residents, developers, planners, politicians and local 
circumstances (O'Sullivan, 2001). It also holds out some promise of deeper insight into the 
enduring mystery of the relationship between processes at the micro level and the macro 
level of geographical and economic activity. 
 
As an effective bottom-up simulation tool, CA first offer a new way of thinking for 
dynamic process modelling, and second provide a laboratory for testing the decision-
making processes in complex spatial systems. By mimicking the manner in which macro-
scale urban structures may emerge from the myriad interactions of simple elements, CA 
offer a framework for the exploration of complex adaptive systems (Torrens and 
O'Sullivan, 2001). CA represent a modelling approach quite different from top-down and 
macroscopic approaches (Webster and Wu, 2001).  
 
CA have many advantages for modelling urban phenomena, including their decentralised 
approach, the link they provide to the complexity theory, the connection of form with 
function and pattern with process, the relative ease with which model results can be 
visualised, their flexibility, their dynamic approach, and also their affinities with 
geographical information systems and remotely sensed data (Torrens and O'Sullivan, 2001). 
Perhaps the most significant of their qualities, however, is their relative simplicity.  
 
The many applications of CA can be classified into three types: complexity and GIS theory, 
theoretically artificial urban studies, and empirical case studies. Research has shown the 
great potential of CA for discovering the complexity (in particular spatial complexity) of 
urban system or its subsystems. 
 
The first type links CA with complexity and GIS theory, e.g. CA theory (Batty and Xie, 
1994; Childress et al., 1996; Couclelis, 1997; Itami, 1994; Wolfram, 1984), map dynamics 
(Takeyama and Couelelis, 1997), CA calibration (Li and Yeh, 2001; Wu, 2002), graph-
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based CA (O'Sullivan, 2001), Voronoi-based CA (Shi and Pang, 2000), event-based CA 
(Gronewold and Sonnenschein, 1998) and fuzzy CA (Wu, 1998d). In complexity, many 
contributions come from other areas such as informatics, biology, physics and ecology. 
They use abstract models for exploring such general properties of complex systems as 
emergence, self-organising criticality and chaos. As regards the spatial complexity of the 
urban systems, as Torrens and O'Sullivan (2001) argue, CA models have been used to 
explore the self-organising properties of urban systems and experiments with fractal 
geometry and feedback mechanisms. However, there remains room for connecting that 
work with studies in other disciplines. Indeed, many aspects of complexity studies remain 
relatively unexplored by urban CA. In GIS, they attempt to develop more advanced spatial 
analytical functions based on CA modelling or they try to expand CA from raster data 
structure to another format. This direction still shows an increasing trend. 
 
The second type links CA to theoretical urban studies, e.g. urban development patterns 
(Batty, 1998), self-organising competitive location theory (Benati, 1997), polycentric 
structure (Wu, 1998a), emergent urban form (Xie and Batty, 1997), land use dynamics 
through their life cycles (Batty et al., 1999b), real estate investment simulation (Wu, 1999), 
and urban socio-spatial segregation (Portugali et al., 1997). In these studies, transition rules 
are linked with urban theories to test theoretical hypotheses by using simulated or real data. 
Published literature has shown that this is a very promising direction, although little 
explored, which may bring new means for developing and interpreting new urban theories. 
One of the manifold potential uses of CA in urban theoretical research is the generation of 
novel city-like phenomena from theoretically informed components (Torrens and 
O'Sullivan, 2001). 
 
In the third class, CA works as a spatial decision support system for simulation, prediction 
and planning based on real case study areas. This is a category of practice-oriented research 
where data availability and quality largely affect the application of CA on various scales 
(regional, metropolitan and town). Examples include urban land use dynamics (White and 
Engelen, 1993, 2000), the prediction of future urbanisation patterns (the San Francisco Bay 
and Washington/Baltimore corridor) (Clarke and Gaydos, 1998) (Gold Coast in Australia) 
(Ward et al., 2000a), Spanish cities (Silva and Clarke, 2002), long-term simulation of 
sprawl in the Ann Arbor Region (Batty et al., 1999a), land development process simulation 
(Guangzhou) (Wu and Webster, 1998), identification of diffused city (central area of 
Veneto region) (Besussi et al., 1998), urban form planning (a city in Guangdong, China) 
(Yeh and Li, 2001a), regional-scale urbanisation (Li and Yeh, 2000), urban development 
density (Yeh and Li, 2002), urban development plan (Chen et al., 2002), landscape dynamic 
(Soares-Filho et al., 2002), urban expansion based on population density surface (Wu and 
Martin, 2002), and suburban expansion of a peripheral municipality (town of Amherst, in 
metropolitan Buffalo, NY) (Batty and Xie, 1994). 
 
In these applications, classic CA have been modified to incorporate urban theories and the 
understanding of specific practical issues of the study area. These applications span various 
spatial and temporal scales. They have adequately shown that CA offers a flexible and 
advanced spatial modelling environment that has not been available before.  
 



      Chapter 2 

 

34

However, of the complexity of urban growth, first they principally touch on spatial and 
decision-making complexity, with little about temporal complexity. The former includes 
pattern-oriented growth simulation, such as shown by Clarke and Gaydos (1998). The latter 
aims to aid the decision-making process of land conversion in urban growth (Wu, 1998c) or 
to simulate the fuzzy behaviour of decision-making in agricultural land encroachment (Wu, 
1998d). Second, these applications focus on the simulation of spatial patterns rather than on 
the interpretation or understanding of the spatio-temporal processes of urban growth. CA 
models are constrained by their simplicity, and their ability to represent real-world 
phenomena is often diluted by their abstract characteristics (Torrens and O'Sullivan, 2001). 
As a consequence, there are many tasks waiting for further exploration of urban growth 
complexity based on CA. 

2.3.2  Agent-based modelling 
 
Multi-agent (MA) systems are designed as a collection of interacting autonomous agents, 
each having their own capacities and goals but related to a common environment. This 
interaction can involve communication, i.e. the passing of information from one agent and 
environment to another. 
 
An agent-based model is one in which the basic unit of activity is the agent. Usually, agents 
explicitly represent actors in the situation being modelled, often at the individual level. 
Agents are autonomous in that they are capable of effective independent action, and their 
activity is directed towards the achievement of defined tasks or goals. They share an 
environment through agent communication and interaction, and they make decisions that tie 
behaviour to the environment.  
 
From the perspective of modelling, multi-agents also have attractive features (White and 
Engelen, 2000): (1) as a tool to implement self-organising theory such as a straightforward 
way of representing spatial entities or actors having relatively complex properties or 
behaviours; (2) an easy way to capture directly the interactive properties of many natural 
and human systems, as well as the complex system behaviour that emerges from this 
interaction. Agent-based simulation is ideally suited to exploring the implications of non-
linearity in system behaviour and also lends itself to models that are readily scalable in 
scope and level. The approach is useful for examining the relationship between micro-level 
behaviour and macro outcomes. Multi-agent models can locate agents and other resources 
of the environment in space and thus include the effects of space on the behaviour of the 
agents and the effects of the agents on the environment (Frank, 2000).  
 
It is important to realise that agents are not necessarily either spatially located or aware. In 
many models, spatial mobility is not considered at all, although sometimes the term "space" 
appears as a metaphor for "social distance". The implications of the outcomes of such 
models for actual, physical spatial outcomes are not generally considered, because in most 
agent-based models the researchers' main concern is understanding how individual 
behaviour leads to global outcomes in a generic sense, rather than in the modelling of the 
real world per se (Haklay et al., 2001).  
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Agent-based models of this kind have only recently made their appearance in the social 
sciences (Batty, 2002), largely due to advances in computation and data that enable 
individual objects or events to be simulated explicitly, and to date most applications have 
been to theoretical situations (Batty, 2002; Epstein and Axtell, 1996). For the urban system 
MA are excellent tools for representing mobile entities in urban environments, e.g. people, 
households, vehicles etc. They have been used in urban contexts to simulate pedestrian 
movement in dense urban environments (Kerridge et al., 2001) and relocate householders 
(Benenson, 1998).  
 
Benenson (1998) reported a multi-agent simulation model of the population dynamics in a 
city, in which inhabitants can change their residential behaviour depending on the 
properties of their neighbourhood, neighbours and the whole city. The agent in this model 
is characterised by its economic status and cultural identity and these two properties differ 
in nature. This model is based on an artificial city, which is used to test some urban theories 
such as social segregation. The most substantial application of agent-based models in the 
socio-economic domain is the monumental TranSims. This is a hybrid, lying somewhere 
between more traditional transport gravitation-interaction models and a full-blown real-time 
agent-based simulation. It currently models the activities of up to 200,000 individual 
travellers, which is where the model departs from previous transport planning models 
(Haklay et al., 2001).  
 
Consequently, current applications of MA mainly focus on abstracted theoretical research 
or micro-behaviour simulation. There is no report that MA has been applied solely for 
understanding urban growth on a certain scale. However, it can be inferred that MA are an 
ideal tool for understanding decision-making complexity of urban growth at a micro scale, 
such as a single large-scale project. 

2.3.3  Spatial statistics modelling 
 
Traditional statistical models, e.g. Markov chain analysis, multiple regression analysis, 
principal component analysis, factor analysis and logistic regression, have been very 
successful in interpreting socio-economic activities. Markov chain (Lopez et al., 2001), 
multiple regression (Theobald and Hobbs, 1998) and logistic regression (Wu and Yeh, 
1997; Wu, 2000b) have been widely used for modelling urban growth with varied strengths 
and weaknesses. 
 
Lopez et al. (2001) report a model for predicting land cover and land use change in the 
urban fringe, a case study in Morelia city, Mexico. They conclude that the most powerful 
use of the Markov transition matrices seems to be at the descriptive rather than the 
predictive level. Linear regression between urban and population growth offered a more 
robust prediction of urban growth in Morelia.  
 
Wu and Yeh (1997) apply logistic regression for modelling land development patterns in 
Guangzhou between 1978 and 1992, based on a series of aerial photographs. They found 
that the major determinants of land development have changed: from distance from the city 
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centre to closeness to the city centre; from proximity to inter-city highways to proximity to 
city streets; and from more related to less related to the physical condition of the sites etc. 
This demonstrates that various factors are changing their roles in the process of land 
development. This research has shown that logistic regression has a stronger capacity for 
interpreting urban development based on the probability of land conservation. 
 
However, traditional statistics are criticised as being ineffective in modelling spatial and 
temporal data. The major reason is that spatial and temporal data often violate basic 
assumptions such as the normal distribution, appropriate error structure of the variables, 
independence of variables, and model linearity (Olden and Jackson, 2001). Two 
alternatives are frequently adopted. One is incorporating spatial sampling into traditional 
analysis (Atkinson and Massari, 1998; Dhakal et al., 2000; Gobin et al., 2001). The other is 
developing new statistics based on spatial relationships such as spatial dependence and 
spatial heterogeneity. New methods for analysing spatial (and space-time) data include 
spatial data analysis (Griffith and Layne, 1999; Haining, 1990), spatial econometrics 
(Anselin, 1988), local spatial analysis (Ord and Getis, 1995) and geographically weighted 
regression (GWR) (Fotheringham et al., 2000). 

2.3.4  ANN-based modelling  
 
An artificial neural network (ANN) is a system composed of many simple processing 
elements operating in parallel, whose function is determined by network structure, 
connection strengths, and the processing performed at computing elements or nodes. The 
development of a neural network model requires the specification of a "network topology", 
a learning paradigm and a learning algorithm.   
 
Unlike the more commonly used analytical methods, the ANN is not dependent on 
particular functional relationships, makes no assumptions regarding the distributional 
properties of the data, and requires no a priori understanding of variable relationships. This 
independence makes the ANN a potentially powerful modelling tool for exploring non-
linear complex problems (Olden and Jackson, 2001). According to published literature on 
its various applications, its strength lies in prediction and performing "what-if" types of 
experiment (Corne et al., 1999).  
 
In the geographical sciences, recent ANN applications include spatial interpolation (Rigol 
et al., 2001), transport planning (Shmueli, 1998), transport and land use interaction 
(Rodrigue, 1997), land cover classification (Foody, 2002), image classification (Skidmore 
et al., 1997), urban change detection (Liu and Lathrop, 2002), and land cover 
transformation (Pijanowskia et al., 2002).  
 
Shmueli (1998) used an ANN model to test whether or not there is a connection between 
socio-economic and demographic variables and travel activities. Skidmore et al. (1997) 
found that the neural network did not accurately classify GIS and remotely sensed data at 
the forest type level. Kropp (1998) applied a self-organising map (SOM) ANN model to 
classify 171 cities into four dimensions that represent all relevant features of the system and 
assess their sensitivity to change. As a form of non-linear dimension reduction, SOM 
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successfully provided an effective tool to identify cities that are susceptible to perturbations 
of human-nature interactions. Rodrigue (1997) provided an overview of a parallel 
transportation/land use modelling environment and concluded that parallel distributed 
processing offers a new methodology to represent the relational structure between elements 
of a transportation/land use system and thus helps to model these systems. He also 
considered that sequential urban modelling does not represent complex urban dynamics 
well, and he proposed a parallel network (back-propagation algorithm) model to simulate 
the spatial process and spatial pattern of integrated transport/land use system.  
 
In urban growth, Pijanowskia et al. (2002) integrated ANN and GIS to forecast land use 
change, where GIS is used to develop the spatial predictor variables. Four phases were 
followed in their research: (1) design of the network and of inputs from historical data; (2) 
network training using a subset of inputs; (3) testing the neural network using the full data 
set of the inputs; and (4) using the information from the neural network to forecast changes.  
 
These applications show that ANN is an ideal method of understanding non-linear spatial 
patterns, on which short-term prediction may be based. However, the major drawbacks of 
ANN, including its black-box and static nature, make it of limited value for modelling the 
urban growth process.  

2.3.5  Fractal-based modelling 
 
Benoit Mandelbrot, who coined the term in 1975, defines a fractal as "a set for which the 
Hausdorff-Besicovitch dimension strictly exceeds the topological dimension (Mandelbrot, 
1967; Mandelbrot, 1982). Fractals were originally used for natural objects such as 
coastlines, plants and clouds or ill-defined mathematical and computer graphics. These are 
essentially spatial objects whose forms are irregular, scale-independent and self-similar. 
Recently, however, increasing analytical geographical analysis and analytical urban 
modelling has shown that planned and designed spatial objects such as urban forms and 
transportation networks can also be treated as fractals (Batty and Longley, 1994; 
Frankhauser, 2000; Shen, 1997; Shen, 2002a; Vicsek, 1991). It is considered that fractal 
dimension is one of the few concepts that are directly relevant to the problem of urban 
complexity (White and Engelen, 1993; Yeh and Li, 2001a). 
 
The complexity represented by fractals is measured by a fractal dimension of a real number 
rather than an integer at various spatial dimensions. The fractal dimension may provide a 
less ambiguous approach to analysing the spatial structure and phenomena than current 
complexity measures.  It is thought that a comparison between conventional density 
measures and the fractal dimension index gives more insight into the usefulness of fractal 
dimensions for modelling urban form, growth and development.  
 
Cities are similar in a variety of ways, central place theory being the clearest demonstration 
of this principle (Batty and Longley, 1994). Fractal models give us a very different 
perspective on studies of urban density. This book explains how the structure of cities 
evolves in ways which at first sight may appear irregular, but when understood in terms of 
fractals reveal a complex and diverse underlying order. Recent studies have shown that the 
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complex spatial phenomena associated with an actual urban systems are better described 
using fractal geometry consistent with growth dynamics in disordered media (Makse et al., 
1998). Makse et al. (1998) proposed and tested a model that describes the morphology of 
cities, the scaling of the urban perimeter of individual cities, and the area distribution of city 
systems. The resulting growth morphology can be understood from the interactions among 
the constituent units forming the urban region, and can be modelled using a correlated 
percolation model in the presence of a gradient. Shen (1997) applied a box-counting fractal 
dimension to calculate the fractal dimension of 30 urban transportation networks and then 
further tested the relationship between the fractal dimension and the urban population. It is 
thought that a comparison between conventional density measures and the fractal 
dimension index would give more insight into the usefulness of fractal dimension in 
modelling urban form, growth and development. Road network density is closely tied to 
many other parameters of urban development, such as population, urban growth, land use 
etc. The fractal dimension of a transportation network may also be used as an indicator of 
the complexity of the network. 
 
Diffusion limited aggregation (DLA), a physical model used to describe aggregation 
phenomena, has been applied to describe urban growth (Batty and Longley, 1994). The 
growth of an urban area simulated through DLA can generate a fractal structure similar to 
that of real cities. But Makse et al. (1998) criticise the DLA model for generating only one 
large central place or cluster, whereas a real urban area is formed by a system of central 
places spatially distributed in a hierarchy of cities. They also propose a correlated 
percolation model which could predict the global properties (such as scaling behaviour) of 
urban morphologies. The model is better able to reproduce the observed morphology of 
cities and the area distribution of sub-clusters and can also describe urban growth 
dynamics. But this model studied the impact of urban policy on growth only from the 
perspective of interactions among dependent units of development. 
 
A considerable number of studies report that fractal analysis can be used to measure the 
similarity between real and simulated spatial patterns created by cellular automata (Yeh and 
Li, 2001a). But it should also be noted that fractal measures of spatial complexity are 
difficult to interpret due to the fact that the same value of the fractal dimension may 
represent different forms or structures. It is also limited in urban process modelling as the 
temporal dimension is not incorporated in modelling.  

2.3.6  Chaotic and catastrophe modelling 
 
Catastrophe theory (Clarke and Wilson, 1983) and the theories of bifurcating dissipative 
structures (Allen and Sanglier, 1981b) attempt to model urban changes. But they have been 
pitched at the traditionally macro level and thus it has been hard to develop coherent 
explanations of the kind of changes emerging from the smallest scales which subsequently 
restructure the macro form of the system (Batty, 1998). 
 
Chaos theory effectively means that unpredictable long-term behaviour arises in 
deterministic dynamic systems because of their sensitivity to initial conditions. For a 
dynamic system to be chaotic it must have a "large" set of initial conditions that are highly 
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unstable. No matter how precisely you measure the initial conditions in these systems, your 
prediction of its subsequent motion goes radically wrong after a short time. The key to 
long-term unpredictability is a property known as sensitivity to initial conditions. A chaotic 
dynamic system indicates that minor changes can cause huge fluctuations. As a result, it is 
only possible to predict the short-term behaviour of a system, especially for socio-economic 
systems such as cities. Although, chaos theory is able to explain the complex temporal 
behaviour of urban growth from a theoretical research viewpoint, the temporal scale of data 
available from urban growth is too limited to uncover its long-term behaviour. 
 
Self-organised criticality (SOC) is a universal phenomenon occurring across a broad range 
of disciplines. It is thus a powerful interdisciplinary approach for understanding system 
complexity in a more general framework. Batty (1998) applied the concept of SOC to 
explain the temporal urban development pattern by using the cellular automata technique. 
He suggested that real cities in their evolution over time display this characteristic, which 
has not yet been tested in his research. Wu (1999) modified a simple sand-pile model from 
SOC theory to explain the urban development process resulting from real estate investment 
through cellular automata simulation.  
 
Sprott et al. (2002) tested the phenomena of SOC in the field of landscape ecology, based 
on a simple cellular automata model. They found that spatial distributions and temporal 
fluctuations in global quantities show power-law spectra, implying scale-invariance, the 
characteristic of self-organised criticality when a system evolves into a self-organised 
system. 

2.4  Evaluation of Modelling  

2.4.1  Review of urban modelling history 
 
Planning is a future-oriented activity, strongly conditioned by the past and present. Planners 
have always sought tools to enhance their analytical, problem-solving and decision-making 
capabilities. Consequently, urban modelling should be able to assist planners in looking to 
the future. It should facilitate scenario building and provide an important aid to future-
directed decision-making. 
 
Urban modelling bloomed in the late 1950s and throughout the 1960s in both the USA and 
Western European countries, e.g. the Lowry model was designed in 1964 and first 
introduced into the process of urban planning by using aggregated data. However, with the 
massive transformation from an industrial to an informational economy, urban modelling 
gradually faded away as a dominant planning and decision-making paradigm in the late 
1970s and through most of the 1980s (Sui, 1998). Modelling techniques from the 1960s to 
the 1980s were dominated by a-spatial, static, linear, cross-sectional, deterministic 
approaches, such as regression analysis, mathematical programming, input-output analysis 
and even system dynamics. They proved inadequate to reflect the complex, dynamic and 
non-linear factors inherent in urban systems or subsystems (Lloyd-Jones and Erickson, 
1997; Sui, 1998), and were of limited value in supporting planning decision-making. 
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Consequently, the new challenge requires that the focus of modern urban modelling be 
shifted from macro to micro, from aggregate to disaggregate, from static to dynamic, from 
linear to non-linear, from top-down to bottom-up, from structure to process, from space to 
space-time, due to the unpredictability, instability, uncomputability, irreducibility and 
emergence that exists in the process of urban evolution. Famous examples including 
TransSim and UrbanSim (Waddel, 2002) indicate the current trends of urban modelling. 
The time and space dimensions need to be incorporated into the urban modelling process by 
further integrating with GIS and complexity and non-linearity theories.  

2.4.2  Criteria of evaluation 
 
A major distinction among methods can be drawn on the basis of their purpose and the 
objective of their study. Their purpose can be descriptive, explanatory, predictive, 
prescriptive. The major criteria for evaluating the operation of various methods are, in 
terms of data requirement, their linkage with GIS, and their interpretability. 
 
(1)  Data requirements 
 
Questions of urban growth have attracted interest among a wide variety of researchers 
concerned with modelling the spatial and temporal patterns of land conversion and 
understanding the causes and consequences of these changes. Aided by new spatial data 
capture technologies such as very high-resolution remote sensing satellites and global 
positioning systems (GPS), relatively accurate and comprehensive digital data sets of 
metropolitan areas collected and maintained by public agencies are now becoming widely 
available (Longley, 1998). Remote sensing potentially provides a strong data-source 
framework within which to monitor change and understand urban growth, e.g. frequently 
used Landsat TM, SPOT, IRS and even IKONOS imagery. Nevertheless, it is well known 
that classified urban land cover does not bear a spectrally identifiable correspondence with 
urban land use as urban land use is defined by a social purpose and not a set of physical 
quantities. Remote sensing data are useful for providing outline descriptions of urban form 
but are less helpful in understanding the functional characteristics of urban growth.  
 
Spatially and temporally explicit models at fine levels of spatial and temporal resolution − 
the individual parcel level − are increasingly being developed as the required computational 
and technological infrastructure improves continuously and as data at this level become 
available. However, in the developing world, poor data infrastructure has been a major 
barrier in implementing some advanced methods of modelling. Socio-economic attributes 
based on various levels of spatial statistical units (see chapter 4) and parcel-based land 
ownership are still not available or accessible to the modelling community. Our inability to 
monitor land cover changes in a consistent way in the long term also seriously limits our 
capacity to understand the driving forces and processes controlling these changes (Petit and 
Lambin, 2001). 
 
As illustrated in figure 2.1, understanding urban growth involves pattern, process and 
behaviour. However, current data infrastructure only offers pattern and partial process with 
spatial data at limited spatial and temporal scales. Consequently, urban growth modelling 
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remains dominated by macro spatial models (pattern and process); and the spatial 
behaviours linked with micro-scale functional data and temporal complexity based on 
higher temporal resolution data are still in the state of theoretical research. This situation is 
even worse in the developing world. Fractal, CA, ANN and logistic regression studies have 
widely utilised remote sensing imagery as inputs to their modelling. 
 
(2)  Linkage with GIS 
 
GIS first came to fame in the early 1980s as a technique for geo-referenced data input, data 
storage, data processing, data retrieval, and data output, with simple data models and a few 
spatial analysis functions. The first GIS provided only limited decision-making capacity, 
due to insufficient spatial modelling functions. The inability to incorporate urban models 
and to more directly support policy-making processes are two main deficiencies of the 
current geo-spatial technologies and tools (Nedovic`-Budic`, 2000). The integration of both 
did not take place until the late 1980s. GIS can provide the urban modeller with new 
platforms for data management, spatial analysis and visualisation. Loose, close and tight 
coupling strategies are frequently adopted. At present, ANN and CA have been integrated 
into GIS such as the ArcView extension (spatial modeller: ANN, fuzzy logic and logistic 
regression) and IDRISI (CA). Open source software development is becoming popular, 
such as UrbanSim, which has a free environment for users to develop or modify their own 
models. Such progress has opened up more opportunities for the applications of these 
advanced methods of modelling. 
 
(3)  Interpretability 
 
Urban growth modelling aims to understand complex dynamic and non-linear processes, 
and therefore the capacity of interpretation is crucial. Compared with logistic regression, 
the Markov chain model lacks explanatory power as the causal relationships underlying the 
transition studies are left unexplored. The transition probabilities are estimated as 
proportions of cells that have changed state from one point in time to another. This 
approach remains a useful way of estimating these probabilities despite the development of 
procedures for estimating transition probabilities on the basis of more complex scientific 
consideration. ANNs have a greater predictive and non-linear power than traditional 
approaches. However, their property of "black box" provides little explanatory insight into 
the relative influence of the independent variables in the prediction process. This lack of 
explanatory power is a major concern in spatial pattern analysis because the interpretation 
of statistical models is desirable for gaining knowledge of the causal factors driving spatial 
phenomena. Traditional statistical approaches can readily identify the influence of the 
independent variables in the modelling process and also provide some degree of confidence 
regarding their contribution. Olden and Jackson (2001) concluded that where the 
underlying data structure and assumptions are met for a particular traditional statistical 
technique, there is no reason to believe that major differences will exist between traditional 
approaches and ANNs. However, ANNs were shown to be superior to regression 
approaches for non-linearly distributed data. 
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Cellular automata (CA) and multi-agent (MA) approaches overlap to some degree; CA is 
sometimes considered to be a type of multi-agent system (White and Engelen, 2000). 
Comparatively, CA focuses on the city level (Wu and Webster, 1998) and the regional level 
(White and Engelen, 2000). In contrast, MA is only applied on the household (Bernard, 
1999) and family (Benenson, 1998). The MA approach deals with decisions posed to 
people more frequently (Benenson, 1998). CA models focus on landscapes and transitions, 
agent-based models focus on human actions. CA are most suitable in urban simulation 
contexts for representing infrastructure. MA are better used to model population dynamics.  
 
MA differ from CA in their spatial mobility: agents can be designed to navigate (virtual) 
spaces with movement patterns that mimic those of humans, while CA are only capable of 
exchanging data spatially with their neighbourhoods. Additionally, agents can be given 
functionality that allows them to evolve over time, altering their attributes and behaviour 
with the help of artificial intelligence. Comparatively, MA are based more on abstract 
cellular space as micro data are difficult to access. However, MA applications to urban 
studies have not been as widespread as those of CA, despite offering the advantages for 
urban simulation.  

2.5  Conclusions 
 
From the literature and the evaluation above, it can be seen that some methods are still in 
the theoretical stage or applied for artificial city analysis, and need very good data 
infrastructure. Some methods are more effective on a macro scale than on a micro scale. 
Each method has its strengths and weaknesses, and respective data requirements and 
application domains. The selection of methods should depend on the demands of the 
analysis, the feasibility of the techniques and the availability or limitation of the data 
framework.  
 
First, as discussed above, urban growth involves three different systems P, N, U. To model 
their dynamic interactions at varied spatial and temporal scales, current methods of 
modelling are not adequate to understand all the complexity inherent in urban growth 
described in the previous sections. Hence, only a limited number of complex phenomena 
can be modelled. 
 
Second, physical data are becoming more readily available, particularly on the macro-scale 
now, due to the low price of satellite imagery in recent years. On this macro-scale, socio-
economic data are much easier to access as aggregated data are based on annual statistics. 
This results in the fact that urban growth modelling focuses mainly on spatial complexity 
understanding such as CA-based dynamic simulation, ANN-based pattern analysis and 
fractal-based morphology analysis. The difficulty in accessing micro-scale socio-economic 
data and higher-resolution (spatial and temporal) data limits the understanding of temporal 
and decision-making complexity in urban growth. Chaos theory and the MA model have 
not been widely applied for planning practice. The theoretical experiment based on artificial 
cities is also a feasible modelling means (Batty, 1998; Bura et al., 1996; Wu, 1998a). The 
poor interpretation capacity of most models (such as CA, fractal and ANN) means that they 
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are less used for practical applications than traditional or spatial statistics such as logistic 
regression and geographically weighted regression (GWR). 
 
The conceptual modelof the strategy adopted in this research, as illustrated in figure 2.3. 
Here, the complexity that can be modelled depends on four factors: the demand from urban 
development planning and growth management, the data that is available from multiple 
sources, the concepts from other relevant disciplines, and the theories and methods from 
complexity science. These concepts are based on the theories of complexity and need 
models to test theories. Methods need data for implementation. The advanced theories and 
methods discussed above have great potential for understanding urban growth complexity. 
As the result of the dynamic interactions, urban growth modelling involves numerous 
variables from three systems P, N, U. This is a basic principle for the models in the later 
chapters. Their interpretation needs to be linked to the experiences of other disciplines such 
as agriculture, landscape, ecology and environmental science. Consequently, a 
multidisciplinary framework is advocated to incorporate the concepts for developing new 
methodologies for understanding urban growth. In this research, four types of complexity 
regarding urban growth will be modelled. These are complexity in structure and function 
(chapter 3), complexity in temporal measure (chapter 4), complexity in pattern (chapter 5) 
and complexity in process (chapter 6). The specific concepts, methods and data of each 
model will be elaborated in these four chapters. The major methods for modelling include 
fractal for structural complexity, landscape metric for functional complexity, data 
disaggregation and spatial auto-correlation for temporal measures, exploratory data analysis 
and spatial statistics (logistic regression) for pattern complexity, and cellular automata for 
process complexity. 
 
 
 
 
 
 
 
                       
                                                            
 
 
 
 
 
 
 
 
 
 
 Figure 2.3  A conceptual model for the strategy adopted in this research 
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Chapter 3* 
 
Monitoring & Evaluating Urban Growth in Wuhan 
1955-2000 
 
 

 
Abstract  
 
The transfer from a planned to a market economy is presenting a challenge to Chinese 
urban planning, which requires a change of planning methods and techniques from 
blueprint to process-oriented planning. These changes create a need to monitor and evaluate 
spatial and temporal urban growth as a first step to understanding this dynamic process 
under various socio-economic conditions. The rapid advances in remote sensing and geo-
information science and techniques make urban growth studies more feasible than before. 
This chapter systematically presents a methodology for monitoring and evaluating 
structural and functional changes for a rapidly growing city. With the aid of fractal and 
landscape metrics approaches, this methodology primarily comprises morphology analysis, 
urban land use structure change and spatial pattern analysis. As a case study, Wuhan city 
has undergone a series of major physical and socio-economic changes over the last five 
decades. Although it partially shared common development with other Chinese cities, the 
changes also had specific features. So far, a systematic study on the temporal urban growth 
of Wuhan has not been published in academic literature. In this research, temporal mapping 
is carried out for the five years 1955, 1965, 1986, 1993 and 2000, based on aerial 
photographs, SPOT images and other data sources. This study reveals temporal variations 
in the spatial urban growth process.  
 
Key words: urban growth, monitoring, evaluation, Wuhan, structure and function 
 
 
 
 
 
 
 
 
 
 
 
                                                           
∗ Based on  Cheng et al. (2001) and Cheng et al. (2003c). 



Chapter 3 

 

46

3.1  Introduction 
 
Owing to the transformation from a centrally planned economy to a transitional economy, 
Chinese urban planners are facing a huge challenge to modify the urban planning system 
(Yeh and Wu, 1999). The new urban planning system should be based on understanding the 
urban development process of Chinese cities in transformation. This issue is attracting more 
and more attention of not only Chinese scholars but also international urban researchers 
(e.g. Chan, 1994; Gaubatz, 1999; Hsu, 1996; Khakee, 1996; Kirkby, 1985; Laurence and 
Edward, 1981; Victor, 1985; Wu, 2000a; Wu, 2001; Wu and Yeh, 1997; Xu, 2001; Yao, 
1998; Zhang, 2000b).  
 
These studies have four main distinguishing features. First, the urban development process 
of Chinese cities is differentiated into two periods: before and after 1978 or 1987 (Gaubatz, 
1999; Laurence and Edward, 1981; Victor, 1985; Wu and Yeh, 1997). This means that the 
economic reform in 1978 and the land reform in 1987 are the key factors impacting the 
urban development process. It shows that changes in urban landscape systems are driven by 
complex political, social and economic systems.  
 
Second, most studies focus on the impacts of relevant policies or actors on urban 
development, such as the interplay between state and market on urban development in 
Shanghai (Han, 2000), foreign investment on urbanisation in the Pearl River Delta (Victor 
and Yang, 1997), foreign investment on the real estate industry (Jiang et al., 1998), the 
roles of local government in urban sprawl in China (Zhang, 2000a), the effects of foreign 
investment and changing urban governance on urban restructuring in Shanghai (Wu, 
2000a), the relations between investment sources, development organisation and planning 
regime and the changing urban landscape in Guangzhou (Wu, 1998b), the urban planning 
transition before and after land reform (Yeh and Wu, 1999), and the impact of the housing 
reform (Chen, 1996; Wang and Murie, 1999; Wu, 1996).  
 
Third, some studies use population data as the indicator of urban growth (Hsu, 1996; Shen, 
2002b) in descriptive analyses, particularly when analysing a longer period, e.g. since 1949. 
Generally population statistics are generally more easily available than geo-spatial 
information, as most detailed spatial information could only be used after the 1980s when 
GIS was introduced in government organisations. Most studies regarding spatial 
development do not cover the period before 1980. A systematic analysis of 50 years of 
urban growth has not yet been done for Chinese cities. 
 
Finally, the selected studies are mostly located in economically strong regions or mega-
cities such as Guangzhou, Shanghai, Beijing and Shenzhen. This geographical focus 
prevents a complete understanding of the urban growth processes of Chinese cities. 
 
These pioneering studies have focused on some determinant policies such as investment 
structure, industry structure, housing commercialisation, land leasing, urban planning, 
decentralisation of decision-making and the main development actors such as the state, 
local governments, developers, employers and investors, all of which are changing the 
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spatial form of Chinese cities. They provide valuable evidence for further comparative 
study and guidelines for specific applications to other cases and even to new planning 
schemes. However, the main concern of urban planning and urban spatial systems at the 
urban landscape level must be recognised and linked with various policies. Political, social, 
economic and institutional variables finally have to be projected onto landscape systems 
when they are implemented. Moreover, with the rapid advances in remote sensing and 
geographical information science and techniques (GIS), modern satellite imagery, together 
with traditional aerial photography, has become available, with rich multi-resolution and 
scales, as a data source for monitoring urban development processes (Masser, 2001). By 
using GIS, it is technically feasible to integrate large quantities of data for further spatial 
analysis related to urban development.  
 
For example, Ji et al. (2001) report on a project carried out in 1997 under the auspices of 
the China State Land Administration to monitor the dynamics of urban expansion in 100 
municipalities throughout China. Most of the 100 cities were selected from eastern, 
southern and coastal regions. Landsat Thematic Mapper (TM) images acquired for 
1989/1992 and 1996/1997 were used to examine the scope and the speed of urban 
expansion in this period. They also indicate that the monitoring of land use changes will be 
carried out every two years in China by targeting specific areas of interest. SPOT and other 
higher spatial resolution images are being considered for the future work.  
 
So far, Wuhan city has not been systematically studied, especially not regarding its urban 
spatial and temporal growth. The cities considered in the former studies are quite different 
in local social, economic and political environment from Wuhan. For this reason, 
systematic research on Wuhan could be beneficial to the whole Chinese planning system as 
urbanisation is not a universal process with similar attributes in all world regions, but a set 
of complicated phenomena conditioned by various cultural and historical forces in different 
places (Laurence and Edward, 1981). Comparison of Chinese cities helps to form complete 
images of the urbanisation process in China. 
 
Given these considerations, this chapter analyses and evaluates the urban growth of Wuhan 
over the last five decades. It is divided into six sections. Following the introduction, a brief 
overview of urbanisation in China since 1949 is presented in section 2. This serves as 
background information for the Wuhan case studies. Section 3 deals with the 
methodologies of systematic evaluation, including morphology analysis, spatial pattern 
analysis and land use structure change. Section 4 focuses first on monitoring and mapping 
temporal urban growth, based on a time series of multiple data sources, and then the 
evaluation of this temporal growth is described from multiple analytical perspectives. The 
final section of the chapter discusses these findings with reference to other Chinese cities 
(e.g. Guangzhou) and to modelling. 
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 3.2  Urban Growth in China 
 
3.2.1  Urbanisation since 1949 
 
In the last century, two great events brought earth-shattering changes to China. The first 
was when the Chinese Communist Party came to power and a new type of government was 
born in 1949. The second was when China initiated its economic reform and embarked on 
an "Open Door" policy in 1978, which led to land reform in 1987. These events had a 
profound impact on China’s urbanisation in the period 1950-2000. The urbanisation level 
(the ratio of non-agricultural population to total population) of China increased from 11% 
in 1949 to 22% in 1983 to 28% in 1993 and to 36% in 2000 (China Population Statistical 
Yearbook, 2001). Chinese cities can be classified according to a five-level hierarchy (Yao, 
1998) based on the magnitude of the non-agricultural population: super-mega (>2 million), 
mega (1-2 M), large (0.5-1.0 M), middle (0.2-0.5 M) and small (<0.2 M). There were five 
mega-cities in 1949, 13 in 1978 and 37 in 1998.  
 
Rapid urbanisation creates opportunities for new urban development. However, it has also 
brought about serious losses of arable land; this occurred in other developed countries such 
as the USA, and in the UK before 1950 (Firman, 1997). China has the lowest farmland 
acreage per capita at 800 m2 in 1994 (Yang, 1996). During the period 1991-1997, the area 
taken up by urban expansion was 1,200,000 ha; but these figures probably underestimate 
the actual situation, as land taken by the expansion of rural villages is not included (Ji et al., 
2001). 
 
3.2.2  Urban development policies  
 
The process of urbanisation reflects the urban development policies of a specific period. 
Four different policies can be identified for the periods: 1949-1960, 1961-1977, 1978-1987 
and 1988-2000 respectively (Kirkby, 1985; Leaf, 1995; Young and Deng, 1998).  
 
(1) The 1949-1960 period 
 
The first phase (1949-1952) is called the national economic recovery phase. In this phase 
the central government adopted a series of policies to expropriate and take over enterprises 
from the defeated Guomingdang government. This facilitated a rapid recovery of the 
national economy. However, urban development was restricted by a shortage of capital, 
which seriously limited investment in housing and urban infrastructure. 
 
During the 1953-1957 phase, the government implemented its first five-year plan. Soviet-
style industrialisation became the goal for the country’s economic development (Young and 
Deng, 1998). Urban development principally consisted of the construction of new factories, 
new power generation facilities and transportation projects that directly supported industrial 
production (Laurence and Edward, 1981). At the same time, inner-city redevelopment 
projects in the major industrial cities were planned, although few were realised (Kwok, 
1981). Many major cities in China, particularly those with heavy investment from the 
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central government (Zhongdian chengshi), underwent a very high rate of spatial expansion. 
Many cities increased their original area several times over between 1949 and 1957 (Fung, 
1981).  
 
The period (1958-1960) is called “The Great Leap Forward” (GLF). During this period, 
large city projects were drastically reduced in scale, concentrating on individual public 
buildings, such as exhibition halls and hotels (Kwok, 1981). 
 
(2)  The 1961-1977 period 
  
This period can be divided into two parts: the readjustment period (1963-1965), and the 
“Cultural Revolution” (1966-1976). In 1961, severe economic recession interrupted the 
policy of industrial construction. The period between 1962 and 1965, the period of recovery 
from the Great Leap Forward, was followed by the "third-front" development (san xian jian 
she), which lasted from the 1960s to the early 1970s. During this period, the investment 
focus of the state shifted from mega-cities such as Shanghai and Wuhan to mountain areas 
such as Sichuan, Guangxi and Yunnan for the purpose of national military defence. 
Consistent with the strategic thinking, the government also adopted a policy of urbanisation 
“to control mega-city, develop medium/small-size city”. Consequently, the development 
and expansion of large cities was reduced drastically while small and medium-sized cities 
experienced continuous development (Kwok, 1981). In most mega-cities, apart from public 
buildings and small-scale factories, there was virtually no urban construction. Land 
development was restricted to small projects (Jian Feng Cha Zhen). As the development 
emphasis was put “first on production, second on living consumption”, house construction 
was stopped after 1958. By the late 1970s, many Chinese inner-city neighbourhoods were 
dilapidated, inadequately serviced and overcrowded (Gaubatz, 1999). 
 
(3)  The 1978-1987 period 
 
China's economic reform in 1978 and in particular the urban economic system reform in 
1984 offered most Chinese cities an opportunity to adjust their economic structure. The 
tertiary sector was given more emphasis. The previous order “secondary, primary, tertiary” 
was re-ranked as “tertiary, secondary and primary”. The revival of the tertiary sector 
resulted in rapid economic development. Supported by rapid local economic growth, the 
rate of urban expansion speeded up. Residential construction by work units also started 
after 1978. Previous studies of Guangzhou, Beijing and Shanghai (Gaubatz, 1999) indicate 
that the mega-cities reduced the share of industrial enterprises in the central city area during 
the 1980s. Despite various housing reform schemes, the state work unit system continued to 
play an indispensable role in housing provision (Wu, 1998b). Most Chinese cities 
undertook massive renewal projects within older urban districts during the 1980s and 1990s 
(Gaubatz, 1999). In Guangzhou city, over 98% of the land developed was converted from 
agricultural land use; and industrial, government, institutional and community facilities 
were the dominant types of land development during the period 1979-1987 (Wu and Yeh, 
1997).              
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(4)  The 1988-2000 period 
 
While the first wave of direct foreign investment in China (1980-1991) was related to 
industrial growth, the second wave, beginning in 1992, has also been directed towards 
infrastructure and land development (Gaubatz, 1999). After the successful experiment of 
land management reform in the Shenzhen Special Economic Zones (SEZ) in the early 
1980s, the paid transfer of land use rights was accepted by the First Session of the Seventh 
People’s Congress in 1987. Following this, the State Council announced “Regulations on 
land use tax collection in cities and towns” in 1988. This land reform first brought the land 
value concept into urban development of Chinese cities through the so-called land leasing 
system. Land was solely owned by the central government but administered by local 
governments or municipalities. Land use rights can be transferred through organised 
negotiation, open auctions and competitive bidding. Land lease terms vary with land use 
type, for example 70 years for commercial and 50 years for residential use. 
 
Since 1991, when the central government approved the first group of 27 new high-tech 
development zones in mega-cities such as Beijing and Wuhan, land leasing and land 
development have been hot topics state-wide, stimulated by the land reform. The State 
Land Administration Bureau reported that the number of new development zones at city 
level was 117 in 1991 but reached 2700 in 1993 (Huang, 1995). In most cases, these zones 
are designated for the expansion of particular sectors of the economy and designed to 
promote specific and specialised activities such as special economic technology, high and 
new technology, tariff-free zones and foreign investor zones. These developments indicate 
a new land development pattern Most zones are located at some distance from the often 
crowded and fully developed existing urban centres. They are characterised by 
comprehensive development (Yeh and Wu, 1999), resulting in the emergence of large 
peripheral residential communities, and development zones and sub-centres through 
discontinuous, low-density and leapfrog development (Wu, 1998b).  
 
Although China has opened its land market and also had established a commercial real 
estate industry in 1988, it was not until 1992, when Deng Xiaoping made his famous speech 
during his tour of south China, that the pace of economic reform was speeded up and the 
real estate market was reformed to attract more domestic and foreign investments. The real 
estate industry soon became the leading industry in China (Jiang et al., 1998). Inner cities in 
China became huge construction sites. Investment in commercial housing increased from 
27% of the total urban housing investment in 1991 to nearly 60% in 1994; at the end of 
1995 there were more than 23,000 real estate development companies working in China 
(Wang and Murie, 1999). The new land development pattern, based on real estate (Yeh and 
Wu, 1999), led to another component of the new urban landscape (Wu, 1998b). Urban 
restructuring involved the emergence of new business districts. In Shanghai, new clusters of 
high-quality commercial housing were constructed. Industrial growth in this period was 
dominated by high and new technology spatially concentrated in new development zones. 
Shi (2000) explored the land use change mechanism by studying the case of Shenzhen, 
based on images from 1980, 1988 and 1994. His findings show that the external driving 
forces are the rapid growth of population, foreign investment and the development of 
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tertiary industry based on real estate, while mediating forces are the transportation network, 
topography and existing land use patterns. 
 
3.2.3  Urban development planning since 1949 
 
Urban planning practice in post-1949 China can be divided into four main stages 
corresponding to the periods defined in the previous section: 
 
• Physical planning evolving from industrial site planning in the 1950s; 
• Turbulent urban planning during the political turmoil (1960-1978); 
• Recovery and establishment of the urban planning system (1978-1989); 
• The new urban planning system since the 1989 City Planning Act in a transitional 

economy (1989-present). 
 
Planning doctrines used in the former Soviet Union dominated Chinese urban planning 
before 1987. The strategic emphasis was on industrial construction. The first step was to 
facilitate the site selection for projects, the next step to construct self-sufficient 
communities centred around state-owned factories or government centres or institutes. 
These communities or "work units" (Dan wei) provided as many services for working and 
living as possible. For instance, a typical university contained teaching facilities, 
laboratories, kindergartens, primary to high schools, dormitories, dining halls, apartments, 
hospitals, gas stations, post-offices, open markets, barber’s shops etc, which were clustered 
together and walled but administered as a single work unit. Spatial organisation based on 
work units enabled people to reduce their travel demands. In most cases, land development 
was organised by the work units spontaneously rather than by urban planning, because they 
obtained most of their financial support from their superior departments instead of local 
government. Growth was accomplished largely through the expansion of these small 
independent cells (Gaubatz, 1999). This project-specific pattern was valid until the 
introduction of the land market. In this sense, urban planning was only an extension of the 
economic plans of local and central government. As Yeh and Wu (1999) noted, urban 
planning was perceived as a tool to realise the socialist ideology of planned development 
and to "translate" the goal of economic planning into urban space. The industrial location 
trend was to disperse activities widely throughout the city to foster the work unit ideal by 
achieving the integration of housing and factories and urban- and district-level self-
sufficiency (Gaubatz, 1999). Development control was not carried out by urban planning 
but through the so-called "capital construction procedure". 
 
Economic reform challenged the local planners to plan new development zones. In most 
cases, the zones are meant for the expansion of particular sectors of the economy and 
designed in order to promote these specific and specialised activities (Gaubatz, 1999). They 
are often planned for specific companies. For instance, the Zhuankou development zone in 
Wuhan is designed for car manufacturing and is a joint-venture enterprise between the local 
government and the French Citroen car manufacturer. The Wujiashan Taiwanese 
Development Zone in Wuhan, as its name suggests, is financed by Taiwanese developers. 
The 1989 Urban Planning Act was a major event in the history of urban planning in China. 
Planners were authorised by law to inspect the compatibility between construction and the 
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plan and empowered to stop building or require the units to follow certain planning permit 
procedures. 
 
The introduction of the land market (since 1987) challenges planners to organise urban 
restructuring as their main task. Deng Xiaoping’s tour of south China speeded up the pace 
of land development to attract more foreign investment. However, the concurrent 
decentralisation of decision-making, the increase in development actors and conflicts 
among developers, local residents and government are increasingly weakening the role of 
urban planning in urban development. Land development based on the market principle 
frequently leads to the delay of planning schemes as local governments acquiesce in the 
face of the unreasonable demands of developers. The inconsistency between planning and 
construction is making urban planning much more involved in the process of political 
decision-making. Traditional blueprint planning has proved unable to deal with the 
complex dynamic changes in the cities. Therefore, new forms of process planning, strongly 
based on urban studies, information, negotiation and management, have become dominant. 
The planning practice that can be observed in some cities, including Wuhan, indicates that 
Chinese urban planning is still in the transition phase from a planned to a market economy. 
 
 
3.3  Methodology 
 
Urban growth involves complex physical, social, economic and ecological processes. As a 
consequence, the interpretation and evaluation of urban growth based solely on qualitative 
knowledge is difficult if not impossible. Physical or ecological processes lead to changes in  
landscapes, and the socio-economic processes to changes in land uses. Therefore, analysing 
urban growth should take both (physical and functional) into account and should also be 
based on quantitative modelling.  
 
Individual indicators are only able to explain a specific aspect of the processes. In most 
cases, urban indicators are closely related and also complementary. As socio-economic 
systems are in essence complex, we argue that the non-linear interaction between a number 
of spatial and temporal indicators can be expected to improve the capacity for interpreting 
the systems under study. Or rather, in terms of self-organising theory, the interactions 
between these indicators can lead to global emergence, i.e. increased capacity for 
interpretation. The spatial indicators used in this study quantify the structural and functional 
complexity inherent in urban growth systems. Structure is the physical arrangement of 
ecological, physical and social components, and function refers to the way the components 
interact (Zipperer et al., 2000). Adolphe (2001) defined four urban structure variables − 
urban form, land use intensity, land use heterogeneity, and connectivity − for analysing the 
influences of ecological conditions on an urban-to-rural gradient. Structural and functional 
complexity is indicated in the aspects of urban form, morphology, land use and master 
planning for the urban growth system. A proposed methodology is displayed in figure 3.1, 
which is based on monitoring temporal urban growth from remotely sensed imagery. This 
methodology consists of several steps: data collection from multiple sources, data 
processing such as image fusion and digitising, temporal mapping, evaluation based on 
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spatial indicators and comparisons. The main quantitative analysis includes morphology 
analysis, spatial pattern analysis and land use structure change. Fractal analysis, regression 
analysis and landscape metrics are selected as analytical methods. 
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Figure 3.1  Flowchart of the methodology proposed 

Growth rate 
analysis 

Spatial pattern 
analysis 

Morphology 
analysis 

Land use 
structure change 

Master plan 
matching  

Quantitative evaluation 

Comparison of 
temporal urban growth

Temporal mapping 
and animation 



Chapter 3 

 

54

3.3.1  Urban morphology analysis 
 
There are three classic theories of urban morphology: the concentric area theory (an urban 
pattern of concentric rings with different land uses and a central business district), the 
sector theory (the concentric zone pattern modified by specific development along 
transportation corridor), and the multiple nuclei theory (patchy urban pattern formed by 
multiple centres of specialised land use activities) (Carter, 1995). These theories structure 
urban morphology from a primarily static viewpoint. All of them are less well suited to 
analysing the more complex urban spatial evolution we witness today. 
 
Recently, the spatial indicator approach has been introduced to describe urban morphology. 
For example, Adolphe (2001) proposed a simplified spatial modelling of urban morphology 
complexity. He defines a set of indicators of the environmental performance of urban 
fabrics: density, rugosity, porosity, sinuosity, occlusivity, compacity, contiguity, solar 
admittance and mineralisation. This model has been embedded in a GIS model called the 
"morphologic urban model" and applied to the analysis of existing urban fabrics. This 
method provides multiple viewpoints to quantify the geometrical properties of urban 
systems. However, this method is also static and not suitable for temporal evaluation. 
Moreover, local urban planners have extensive qualitative knowledge of the spatial 
morphology of dynamic growth, which would benefit from further quantitative 
confirmation based on GIS. Here, we propose a subjective method to confirm the dynamics 
of urban development axes based on local knowledge. Development axes represent the 
trends of new development in a specific period. Linear regression analysis is used to test the 
relevant hypotheses. 
 
3.3.2  Spatial pattern analysis  
 
Numerous studies show that a fractal approach to analysing a landscape may generate 
promising indicators of its structural complexity. It reveals morphological patterns of a 
higher order, and the approach provides a tool for modelling the spatial heterogeneity and 
complexity of landscape structure and processes of change. Recently, an increasing volume 
of analytical urban modelling has shown that planned and designed spatial objects such as 
urban forms (Makse et al., 1998) and transportation networks (Kim et al., 2003; Shen, 
1997; Shen, 2002a) can also be treated as fractals.  
 
However, it should be noted that fractal measures of spatial complexity still lack adequate 
interpretation capability for urban spatial patterns because the same value of a fractal 
dimension may represent different forms or structures. Consequently, the values can be 
more significant when they are used for the purpose of comparative analysis, such as 
different urban land use patterns (Batty and Longley, 1994), urban growth patterns (Batty 
and Longley, 1994), simulated and observed patterns (White and Engelen, 1993; Yeh and 
Li, 2001a), and transport network patterns (Kim et al., 2003; Shen, 1997).  
 
From the perspective of geo-computation, fractal measures focus on the global scale of 
geographical space and  only use its geometrical information. It is a global measure like 
spatial auto-correlation. Another difficulty in applying fractal measures is the selection of 
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appropriate fractal dimensions, as more than 10 different notions of dimension have been 
acknowledged by mathematicians: topological dimension, Hausdorf dimension, correlation 
dimension, self-similarity dimension, box-counting dimension, capacity dimension, 
information dimension, Euclidean dimension, Bouligand dimension, space-filling 
dimension, and Lyapunov dimension. They are all interrelated. Some of them make sense in 
certain situations, but not at all in others. Self-similarity is only defined for strictly self-
similar objects, i.e. deterministic fractals. However, in practice, most real fractals in nature 
and in the man-made world display self-affinity rather than strict self-similarity. These 
fractals should be measured according to their stochastic properties, applying statistical 
methods such as regression analysis.  
 
Compared with the capacity dimension mentioned above, where the spatial objects are 
assumed to be spatially homogeneous, the information dimension is more powerful for 
modelling the spatial distribution of complex spatial objects as the heterogeneity of spatial 
distribution is taken into account. It is based on the concept of Shannon’s information 
theory. This algorithm is easy to implement in a GIS environment. A common procedure is 
to partition the whole study area into a finite set of rectangles or squares. No difference 
between using rectangles or squares has been reported. Supposing that the total length and 
width of a study area are represented by L and W respectively; the nth partition is 
corresponding to create a grid with n × n pixels, each with length L/n and width W/n. 
Generally, the minimum partition is a 3 × 3 grid (i.e. n=3). This grid layer will be overlaid 
with the layer to be modelled. Cij means the grid element in the ith column and jth row. The 
probability of Cij can be indicated by the value Pij as follows (equation 1). 
              

 
Where Nij means the measure of the studied spatial objects in Cij. For example in urban 
growth, it is the number of cells in Cij occupied by new development units; in road 
networks, it could be the length of road located in Cij. N is the total measure. I represents 
the total information capacity corresponding to the spatial partition n, which implies the 
measure of spatial distribution. The information dimension can be estimated by the 
following linear regression equation (equation 2): 
 
 
                                           I (n) = D0  + D * log (n) + en 
 
 
Where e is the error term, D0 is the regression constant or intercept and D is the fractal 
dimension based on the least-square method. Generally, D is between 1 and 2. When D=0, 
all spatial objects are concentrated on one point; when D=2, it indicates a homogeneous 
spatial distribution; when D approaches the value 1, the objects cluster to a curve or line 
like a river or a road. The larger D is, the more homogeneous the spatial distribution of the 
studied spatial objects is. 
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3.3.3  Urban land use structure change  
 
Land use is the projection of complex urban socio-economic activities on a land system. 
The structural and functional characteristics of land use reflect the outcomes of socio-
economic processes. Landscape metrics or indices can be defined as quantitative indices to 
describe structures and patterns of a landscape based on information theory. It is an ideal 
means for describing and quantifying the degree of heterogeneity (Kronert et al., 2001). 
From the perspective of geo-computation, landscape metrics characterise the geometrical 
and spatial properties of mapped data.  
 
The landscape index can be applied for describing structures and changes in urban land use. 
Herold et al. (2002) used landscape metrics to describe urban land use structures and land 
cover changes that result from urban growth, based on the spatial information from digitally 
classified aerial photographs of the Santa Barbara, CA urban region. The results show a 
useful separation and characterisation of three urban land use types: commercial 
development, high-density residential and low-density residential.  
 
Table 3.1  Landscape metrics selected and their description 

Metric Abbreviation Description 
Mean patch size MPS Average size of all patches  

in one or all land use  

Patch size coefficient of variance PSCV Standard deviation of patch  
size divided by MPS 

Edge density ED Total length of one or all land 
 use divided by total area 

Mean shape index MSI Average perimeter to area  
ratio for all patches 

Area weighted mean shape index AWMSI Average perimeter to area 
ratio weighted by area 

Mean patch fractal dimension MPFD Average fractal dimension of  
land use patches 

Area weighted MPFD AWMPFD Average fractal dimension  
weighted by area 

Shannon's diversity index SDI Richness of land use types  
(only landscape level) 

Shannon's evenness index SEI Distribution of area among  
all patches (landscape) 

 
 
The landscape metrics have two components: composition and configuration. The former is 
a non-spatially explicit characteristic such as evenness, dominance and diversity. The latter 



Monitoring and evaluating urban growth 

 

57

measure, e.g. shape, edge and neighbourhood, reflects the patch geometry or geographical 
location. To quantify change in urban structural and functional complexity, selected metrics 
(table 3.1) at the land use level include MPS, PSCV, ED, MSI, AWMSI, MPFD and 
AWMPFD. At the landscape level, two additional metrics, SDI and SEI, have been 
selected. The mean patch size (MPS) gives direct information on the landscape 
configuration and its fragmentation. Patch density (PD) and the patch size standard 
deviation (PSSD) values yield information about the density and the size of built-up areas, 
as well as their spatial aggregation for each cover type. PSCV measures the relative 
variability about the mean (variability as a percentage of the mean), not the absolute 
variability. This is the well-established coefficient of variation. 
 
The fractal dimension describes the complexity and the fragmentation of a patch by a 
perimeter/area measure. The area weighted mean patch fractal dimension (AWMPFD) 
measures a different dimension of urban land use structure. This metric averages the fractal 
dimensions of all patches by a higher weighting of larger patches. Edge density (ED) (the 
number of adjacencies between distinct land use classes per hectare) is a fragmentation 
index where the effect of spatial extent is concerned. The metrics attempt to quantify the 
irregularity and complexity of the shapes in the pattern (Saura and Millan, 2001) as an 
expression of the spatial heterogeneity of a landscape mosaic. As an indicator for patch 
shape complexity, MPFD approaches 1 for shapes with very simple perimeters such as 
circles or squares, and approaches 2 for shapes with highly convoluted plane-filling 
perimeters. 
 
 
3.4  Case Study  
 
3.4.1  Location 
 
The geographical position of Wuhan is 30° 33'N and 114° 19'E. Its climate is sub-tropical, 
characterised by a humid monsoon. It is located in central China and on the middle reaches 
of the Yangtze River, the third longest river in the world. Wuhan is in the eastern part of 
Hubei province and is its capital (figure 3.2). Its topography is dominated by relatively flat 
land between 22 and 27 m above sea level. Wuhan is nicknamed "Water City" (Jiang 
cheng), as not only do two rivers (Yangtze and Han rivers) intersect here but the city is also 
surrounded by a number of lakes. As the Yangtze River and the Beijing-Guangzhou railway 
line cross here, Wuhan is a focal point for water, railway and other traffic in China.  
 
Wuhan is a combination of three towns: Wuchang, Hanyang and Hankou. Wuchang was 
named Jiangxia some 1600 years ago. In the area of Hanyang a castle was built during the 
Han Dynasty (206 BC-222 AD). Development of what is now Hankou began during the 
period of the south-north dynasties (420-589 AD). It was situated next to Hanyang before 
the Hanshui River changed its course during the Ming Dynasty (1368-1644 AD), 
separating it from Hanyang. By the 13th century, Wuchang and Hanyang had developed 
into commercial and handicraft towns. In the 1700s, Hankou was already a major inland 
river trading port. 
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Around 1900, the three towns functioned in specific areas, i.e. Hankou in commerce, 
financial services, trade, transportation, regional services, entertainment and information 
services; Wuchang in institutional and educational activities; and Hanyang in the industrial 
steel and machinery sector. The population density of Hankou town ranked second among 
Chinese cities after Shanghai. Between 1840 and 1949, the population of the three towns 
expanded from 0.2 to 1.2 million and the city area, including the suburban areas, expanded 
from 20 to 941 km2 (Pi, 1996). 
 
Until 1840 Wuhan was the city "along the Han River". Later, Wuhan became the city 
"along the Yangtze River". This transition was a result of its opening to the world after 
1840, which converted the city into a centre of not only domestic but also international 
trade due to its convenient water and ground transportation system with good connections 
to the surrounding areas. 
 

3.4.2  Monitoring urban growth 1955-2000 
 

(1)  Data sources 
 
Remotely sensed imagery is a widely recognised primary source for urban growth 
monitoring. Before the 1970s, high-resolution satellite images were not commercially 
available and the military controlled aerial photography. Unfortunately some of them do not 
cover the whole study area and the aerial photographs of 1955 have sub-optimal map 
scales. The SPOT images were captured in the best seasons for Wuhan city, from 
September to November. The land use map of 1993 was created by the Wuhan Bureau of 
Urban Planning and Land Administration through the support of various districts and 
considerable fieldwork. This is considered to have the best accuracy for this research. 
Secondary sources include topographic maps, traffic and tourist maps, master plan 

Figure 3.2  Location of Wuhan city: (a) Hubei in China; (b) Wuhan in Hubei 

(a) (b)

Yangtze River

Wuhan 

Han River
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schemes, a sub-district boundary map and historical documents. Table 3.2 lists the various 
data sources with a time span of nearly half a century.  
 
            Table 3.2  Data sources 

Source (year) Scale/Resolution Coverage 

Aerial photographs (1955) 
Aerial photographs (1965) 

B/W     1: 25,000 
B/W     1:   8,000 

100% 
  70% 

SPOT (Sept. 1986) 
SPOT (Oct.  1995) 
SPOT (Nov. 2000) 

Pan / XS, 10/20m 
Pan / XS, 10/20m 
Pan / XS, 10/20m 

100% 
  80% 
100% 

Topographic maps (1973) 
Topographic maps (1993) 
Land use map (1993) 

1:50,000 
1:10,000 
CAD format 

100% 
100% 
100% 

Master plan 1996-2020 
Master plan 1954, 1988 
Sub-district boundary in 1993 

GIS file (shp) 
1:100,000 
GIS file (shp) 

100% 
100% 
100% 

 
 
(2)  Processing of aerial photographs and images  
 
The aerial photographs of the three periods were scanned at a resolution of 1200 dpi. As no 
flight parameters, ground co-ordinates (including elevation) or large-scale topographic maps 
of the flight period were available for this set of aerial photographs, it was impossible to 
remove radial and tilt distortions from the scanned photographs. No ortho-rectification was 
performed on the images because of the very flat aspect of the terrain in this city.  
 
The topographic maps of 1993 with the scale 1:10,000 are ideal sources of ground control 
points. The original SPOT images have been rectified using some 50 points (for the aerial 
photographs even more) systematically chosen and evenly distributed over the images to 
guarantee enough points in the centre and corners of the images. A second-order polynomial 
model was chosen for the image rectification and resampled using the nearest-neighbour 
algorithm. The root mean square error (RMSE) is strictly limited to 0.3 pixels for SPOT 
images. Due to their smaller scale, the aerial photographs of 1955 have a lower accuracy of 
RMS, which is about 5 pixels. The projection system of WGS84 NORTH with Zone 50 was 
selected for Wuhan. 
 
Image fusion is the combination of different digital images in order to create a new image by 
using a certain algorithm. Image fusion is preferable to both higher spatial resolution and 
wider spectral information for the effective visual interpretation of images. With a fused 
image the interpreter has the benefit of both, without looking at two different images. Image 
fusion was implemented to comprehensively integrate the spectral information from SPOT 
XS (three bands) and the spatial information from SPOT PAN (10 m). Before fusion, 



Chapter 3 

 

60

accurate co-registration is vital for the accuracy of fusion. A map-to-image strategy is 
applied for SPOT PAN, based on the topographic maps. Subsequently, the image-to-image 
method is used for the geo-referenced registration of SPOT XS. Adequate ground control 
points guarantee the accurate position match of two images. Among the three techniques 
(multiplicative, principal component, brovey transform) in ERDAS, the multiplicative 
method was chosen for the fusion, as being better for highlighting urban features.  
 
Before interpretation and digitising, the fused images are transferred into RGB images as 
colour composites and then a supervised classification (maximum likelihood) is made to 
identify pixels with land cover change. Visual interpretation (with local knowledge) is 
carried out to remove any errors of the automated classification exercise.  
 
(3)  Data classification 
 
Urban area 
 
In the course of interpretation, the first difficulty encountered was the definition of spatial 
attributes for digitising. For example, some enterprises or villages administratively belonged 
to neighbouring counties even though they are large-scale or near to the city area. Therefore 
the urban area should be clearly defined in geo-space. The concept of urban land can be 
described according to its physical and functional aspects. "Urban" in functional terms 
means activities. In physical terms, it relates either to density or to land use. The technique 
of remote sensing (satellite images and aerial photographs) focuses on the latter, with the 
assistance of fieldwork. “Developed areas” comprise all areas of continuous development 
that are covered by bricks and mortar, such as buildings and transportation features. 
 
It can be argued that the administrative boundary is not an ideal definition as it rarely 
coincides with the physical extent of urban growth, and large urban agglomerations 
commonly include a number of separate authorities (Kivell, 1993). It is more appropriate to 
apply population size threshold, to use continuously developed areas and the residual urban 
definition from agricultural surveys. 
 
In the case of Wuhan city, in particular during the last five decades, different urban 
development policies have been carried out. Therefore a uniform definition does not exist. 
According to historical records, the modification (in most cases it was expansion) of 
administrative boundaries frequently followed urban sprawl. Consequently, the 
administrative boundaries in a later period can be used for the spatial extent of urban areas. 
For example, when digitising the urban areas of 1955, the boundary of 1965 can be used as a 
reference. Of course, continuously developed areas are the basic concept when monitoring 
urban growth. 
 
Land use/land cover 
 
Land cover or form is essentially the nature of the elements in the landscape, such as the 
types of buildings, structures or open spaces. Information on land cover is discernible from 
remotely sensed imagery. Land use can broadly be defined as the level of spatial 
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accumulation of activities such as production, transaction, administration and residence 
with highly dynamic relationships between them. Urban land use reflects the nature of 
social and economic activities in an area, as well as interactions with other areas (Rodrigue, 
1997). It results from the complicated interactions between the land system and the social-
economic systems. Land use/land cover information is fundamental for understanding the 
spatial and temporal dynamics of urban development, which is the basis for urban 
development planning and sustainable land management. In this research, land use data for 
1955 and 1993 will be utilised for measuring temporal urban sprawl (chapter 4) and land 
cover data for 1955, 1965, 1986, 1993 and 2000 will be used for the modelling exercises 
(chapters 3 to 6).  
 
The selection of a land use classification scheme depends on various factors such as the 
collected data, the local planning system and the purpose of the application. The National 
Land Use Standard Classification (NLUSC) has been promoted in China since 1992. It has 
10 major classes, 46 groups and 73 subgroups. The local land use classifications used 
before 1992 were not nationally uniform and underwent many revisions.  
 
The following land use classification was adopted for the land use map of 1993, which was 
already in digital format (CAD format) and is produced by the urban planning organisation. 
It was also applied to the 1955 aerial photographs. Here, the class "public facility" includes 
both commercial and institutional aspects. The main land use categories are: 
 
• Residential; Industrial; Warehouse; Public facility (commercial, institutional etc.); 
• Utility; Inter-city transport uses; Special uses (military),Water; 
• Green; Town/Villages; Agricultural.  
 
With the improved spatial resolution, SPOT data are commonly used to produce land cover 
maps at the urban-rural fringe (Jensen, 1996). It is possible to make a 1:50,000 land cover 
map. Here, land cover is classified as urban built-up, agricultural, water body and protected 
area (green, sands, special uses), which were principally extracted for the periods 1986 and 
2000. Land cover for 1965 was derived from aerial photographs. Technically, more land 
cover types can be classified. For example, Gao and Skillcorn (1998) report a test based 
only on SPOT XS to identify the land cover at selected urban-rural fringes as residential, 
industrial and commercial, other urban or built-up, pasture and cropland, orchards and 
horticultural, mixed forest, bays and estuaries, forested wetlands or mangrove forests, 
transitional, and barren land. The accuracy of classification could reach 76.2% in the winter 
and 81.4% in the summer. 
 
Road classification 
 
There is not a universal standard for road classification as it varies not only between 
different countries but also with different periods of urban development. Moreover, an 
accurate characterisation of roads is also not available as it is determined by quite a number 
of indicators such as traffic volume, road width and structure, which are difficult 
objectively to collect. In China, before 1992, only three types (major roads, secondary roads 
and tertiary roads) were in existence and used for urban planning. But since 1992, four 
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types (expressways/freeways, major roads, secondary roads and tertiary roads) have been 
adopted in transportation and urban planning as quite a few higher-quality highways have 
been constructed. In this research, to remove the ambiguous definition in road 
classification, only two classes (major and minor) are used to identify their impacts on 
urban development. The identification of major roads is based on the local classification 
available from master plans and tourist maps, which play a role in the decision-making on 
urban development. Some interviews with local planners were also necessary for further 
confirmation.  
 
Centre /sub-centres definition 
 
Most mega-cities in the world are undergoing a shift from a monocentric to a multi-nuclear 
spatial structure. This results in a demand to define, rank and even identify spatial (sub-
)centres in the urban area. Compared with the road classification mentioned above, the 
spatial definition of city centres and sub-centres is much more ambiguous. First of all, the 
activities and buildings typical of the city centre cannot always be clearly defined. Centre 
components could be shopping, administration offices, institutional offices, banking, hotels, 
hospitals, parks etc. These components have not only different magnitudes but also various 
scales. Second, the boundaries of centres are not crisp but fuzzy. Consequently, in theoretical 
terms, a reasonable classification might be based on the comprehensive evaluation of 
information with reference to features such as density, intensity and diversity. Thurstain-
Goodwin and Unwin (2000) report on a research project that tried to define a surface of city 
centres based on an Index of Town. The definition of centres in this research follows local 
knowledge, including maps and planning schemes. Some local planners were also 
interviewed to confirm the definition. 
 
Master plan classification 
 
The major master plan implemented in Wuhan includes the 1954 scheme approved by the 
State Planning Commission, the 1982 scheme approved by the State Council, the 1988 
scheme approved by the Wuhan municipal council and the 1996 scheme approved by the 
State Council. During these periods the land use classification of the planning schemes 
underwent numerous modifications (WBUPLA, 1995). In 1954, urban land use was 
classified into industrial, warehouses, residential, hospitals, schools and green areas. In 
1982 the classification was industrial, residential, warehouses, universities and green areas. 
In 1988 the classes included industrial, warehouses, residential, commercial/trade, 
universities and green areas. In 1996 the classification was extended to residential, low-
density residential, commercial and residential, commercial, banking and trade, offices, 
education and research, culture, hospital and recreation, green areas, industrial, warehouses, 
external transportation, railways, infrastructure, waters etc. The modifications indicate a 
shift in urban development from industry-oriented to service-oriented, as more detailed sub-
classes related to the tertiary section are included in the new scheme.  
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(4)  Visual interpretation  
 
While aerial photographs for land use mapping have been used for many decades, there is 
also ample experience in the use of satellite images with low (Landsat, Thematic Mapper) 
and medium resolution (SPOT) for land cover mapping. Many researchers have developed 
automatic solutions for land use classification based on digital imagery, but there are many 
aspects which remain unsolved, such as image understanding and pattern recognition. For 
urban areas, where urban land use systems involve complex social and economic activities, 
visual interpretation is still the most reliable method for classification. 
 
As the interpretation of an image or photograph is to some extent subjective, a time series 
of urban growth mapping should be carried out by one person (in this case the author) to 
guarantee comparability. Manual interpretation provides a comparable interpretation of 
sequential images when consistent interpretation criteria are applied throughout the 
research by the same analyst. Before digitising, a minimum mapping unit should be 
determined for the various scales of the data sources.  
 
An on-screen digitising approach using the ArcView package was selected for visual 
interpretation because of the easy conversion of data between the ArcView and ERDAS 
formats. First, in the case of fused images, two map files (non-urban and urban land use in 
1993) were created respectively to be backcloths for assisting visual interpretation. The 
changed areas are directly digitised from the images. The procedure can be divided into two 
stages. Stage one is to make a supervised classification identifying possible cells with land 
cover change. This approach generally leads to some misinterpretation, with too many cells 
detected. Stage two eliminates errors and assigns the right land cover attributes. But, in the 
case of aerial photographs, the low accuracy of geo-referenced rectification makes this 
approach ineffective. The interpreted change has to be digitised on the backcloth, i.e. the 
land use map of 1993. The minimum mapping unit can be one 10 × 10 m cell, which is the 
same as the resolution of SPOT PAN. It is very important to go through the relevant 
background materials regarding the development process of the study area. The book 
Wuhan Record of Urban Construction (ECWLR, 1996), which describes in detail the 
history of urban construction from 1949, provides a rich secondary source of information 
for interpretation, especially for the years 1955 and 1965. It is unfortunate that the larger-
scale aerial photographs of 1965 do not cover the whole city. They can be supplemented by 
the scale 1:50,000 topographic map of 1973 despite its lower resolution. It results in a 
coarse land use classification (urban/non-urban) rather than a detailed one, which can 
originally be extracted from aerial photographs. 
 
From the viewpoint of the temporal comparison, some layers have a certain degree of 
fuzziness in their definitions, especially when the study area is large and the period is long. 
For instance, the construction of roads may occur in a different phase of the period to be 
modelled. Their construction time should be taken into account. In this research, a major 
road (linked with the Third Bridge over Yangtze River) was completed in early 2000, 
which can be clearly seen in the SPOT images of 2000. However, this major road was not  
included in the Major Road layer as it did not have any impact on urban development in the 
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period 1993-2000. This observation is confirmed by the very limited land cover changes 
surrounding the road. Other layers are spatially interpreted following similar procedures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(5) Temporal mapping and animation 1955-2000 
 
Animation is an excellent tool to present the time dimension in landscape change. It can also 
be used in interactive data exploration (Ogao and Kraak, 2002). Most animations consist of a 

Figure 3.3  Temporal urban growth in five years 
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set of sequential images, often one for each particular time slice, and the animations display 
them in a fixed sequence. Figure 3.3 maps the temporal urban expansion of Wuhan, 
spanning nearly five decades. Figure 3.4 shows the changing road network and city 
centres/sub-centres. These maps enable us to explore the spatial patterns of urban growth. 
The animations can be seen on the homepage http://www.itc.nl/personal/jianquan. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1955 - 1965 
 
Large-scale new development started after 1953, with the beginning of the first five-year 
plan (1953-1957). During that period Wuhan was selected to be one of the key industrial 
cities that received considerable investment from the central government. Assisted by 
experts of the former Soviet Union, a master plan was drawn up in 1954 (figure 3.11) for 
locating the new industrial projects, and quite a few major key projects were completed or 
started. In 1956, based on the master plan for 1954, Wuhan municipality made a more 
detailed “Wuhan urban construction 12-year plan 1956-1967”, as required by the National 
Economic and Social Development 12-year plan (WBUPLA, 1995).  

Figure 3.4   Temporal mapping of road networks and centres/sub-centres 
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In 1958, when the second five-year plan (1958-1962) and the famous Great Leap Forward 
development began, Wuhan city proposed an ambitious industrial development scheme 
comprising 200 projects. This scheme conflicted to some extent with the construction 
capacity available in 1956. The overheated construction resulted in serious imbalances and a 
decline in the national economy. Hence, at the end of 1958, the local construction committee 
made reasonable adjustments to the project scheme, which then centred on 12 industrial 
zones with a reduced number (from 196 to 118) of industrial projects (figure 3.5). The 
overall investment was also reduced from 3437 million to 1996 million yuan (renminbi) 
(ECWLR, 1996). The modified scheme was approved and implemented immediately. 
However, consecutive three-year natural disasters (1959-1961) seriously slowed down the 
planned urban construction.  
 
In 1961, local government developed a series of policies for economic recovery and started 
to further reduce the planned industrial expansion. By 1965, the planned projects were 
mostly completed; about 13 industrial zones had been built. The major projects included the 
first road-rail bridge over the Yangtze River (1957 in operation), Wuhan Iron and Steel 
Company (1959 in operation), Qingshan Thermoelectric Plant (1959, no. 1 project in 
operation), Wuhan Heavy Machine Tool Factory (1956-1958), Wuhan Boiler Plant (1956-
1960), Wuhan Integrated Meats Processing Factory (1958 in operation), Hanyang Steel 
Factory (1958 under construction) and Wuhan No. 2 Textile Factory (1965 under 
construction), as well as universities such as the famous Huazhong University of Science 
and Technology (1954 under construction). Other projects included the Wuhan department 
store (1959 in operation) and Wuhan theatre (1959 in operation). In this way, Wuhan 
became a famous industrial city and a centre of education and scientific research. 
 
These large-scale developments resulted in discontinuous urban sprawl. Most large-scale 
factories were located in the northeastern part of the city (figure 3.3), which became an 
independent steel town (i.e. Wuhan Steel Company, known as Gangcheng). It was almost 
isolated from the other developed areas. This can be explained by two factors. The first is the 
proximity to the Yangtze River for ship transportation. The second is the availability of 
large-scale developable land. From figure 3.4, it is clearly seen that the right bank of the 
Yangtze River is covered with a higher percentage of water bodies, making it difficult for 
major construction around the developed areas. The spatial link between the new town and 
old city (in Wuchang) was established by two parallel main roads, i.e. the Heping road 
completed in 1958. Several railway lines were constructed to link the new town with the port 
and the major railway stations. The construction of new major roads and railway lines was 
also meant for a few key heavy industrial factories such as the Wuhan Heavy Machine Tools 
Factory and the Wuhan Boiler Factory, which were located close to the major roads. On the 
left bank of the Yangtze River (Hankou and Hanyang towns), new development was close to 
the already developed areas as many of the old factories were already located there. They 
comprised a middle scale of factories built by state and local governments. From figures 3.3 
and 3.4 it can be seen that the factories were built near the old or new railway lines, most of 
the warehouses being located on the banks of the Yangtze River and near railway lines. 
 
In addition to industrial development, around 24.2 ha of new housing was constructed before 
1958 (ECWLR, 1996). Rapid urban growth in this period led to the addition of two 
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commercial centres (figure 3.4). One was located in the "town of steel" (Qingshan), centred 
around the Qingshan department store constructed in 1958. The other was located in 
Hanyang town. 
 
1965-1986/93 
 
After 1965, when state investment in the region was reduced, the urban development of 
Wuhan city slowed down. Further, disturbed by the 10-year Cultural Revolution (1966-
1976), economic development in China as a whole was in disorder. Urban construction was 
dominated by small-scale local industrial projects which were built by the municipality and 
lower levels of organisations such as sub-district committees. Land development was 
restricted in a sporadic pattern (Jian Feng Cha Zhen). Moreover, in 1971, 17 work units 
were relocated to Yangxin county and another 19 to Xianning county, Hubei province, as 
required by central government. However, these units had to move back to Wuhan in 1973.  
 
By the end of 1975, 12 industrial zones had been completed. As a result, 23.7% of the total 
population (2,437,000 in the seven urban districts) and approximately 279,000 employees 
were settled by these industries in 1975 (ECWLR, 1996). According to local records, the 
majority of the industrial sites completed in the 1965-1993 period were constructed before 
1986. Based on the urban development map of 1986 (1986 in figure 3.3), a coarse map (1986 
in figure 3.5) is drawn to display the spatial distribution of the zones. The largest zone with 
code 1 is Qingshan steel town in the northeastern corner. The three zones with codes 7, 8, 
and 9 located in Hanyang town are spatially clustered, whereas the three zones with codes 
10, 11 and 12 in Hankou town are much more spread out. The three zones with codes 2, 3 
and 4 in Wuchang town are mixed with other land uses. These patterns reflect the planning 
of the period. The planning doctrine at the time was that the three towns, except for the steel 
town, should have different functions: industrial for Hanyang, institutional for Wuchang, and 
commercial for Hankou. At the same time, as the development emphasis was put “first on 
production, second on living”, house construction almost stopped in this period. 
 
After 1978, the primary sector in the Wuhan suburbs was restructured. In 1980, Wuhan 
became an open city to the outside world. From 1978 to 1990, local government started to 
pay attention to the development of housing, facilities and infrastructure to compensate for 
the imbalance caused by overemphasising industrial development. For example, some 30 
clustered or planned residential areas larger than 5 ha were constructed in 1975-1990, 
totalling 404 ha (ECWLR, 1996). Wuhan was also listed in 1990 as ranking eighth in the 
whole of China for its provision of urban infrastructure resources (John, 1996). 
 
In 1984, Wuhan was approved by the Chinese government as a pioneer of economic system 
reform in cities. It then acquired more freedom through the “single planning city system”, 
which made the city directly responsible to Beijing. Local reform started with the opening 
of the communication and circulation markets. The economic structure of Wuhan city was  
adjusted and made more modern and rational. These new policies stimulated the rapid 
development of tertiary activities, which had been decreasing since 1949, such as the 
Hanzhenjie small-goods market that was becoming a facility that served several 
surrounding provinces. 
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The master plan approved by the State Council in 1982 needed to be revised to satisfy the 
new market economy. The revised version was implemented in 1988, when Wuhan planned 
the Donghu New Technology Development Zone (DNTDZ) and the Wuhan Economic 
Technology Development Zone (WETDZ) to attract more foreign investment and stimulate 
more rapid economic development. The DNTDZ was approved by the State Council in 
1988. The WETDZ started construction in 1993 with the establishment of a national car 
manufacturing unit in co-operation with French companies. Another national project, the 
Yangluo electric power plant, began operations in 1991. These state investment projects 
were located in the outer belt, occupying a large amount of agricultural land.  
 
But in the 1980s, the emphasis of national state investment was put on coastal cities and 
preferential policies were shifted there. Relatively, Wuhan urban development was much 
slower than in open coastal cities or Special Economic Development Zones such as 
Shenzhen. As a result, despite rapid urban sprawl, its development density is still very low 
due to limited investment sources. 
 
Figure 3.4 shows that a couple of new major roads were constructed in the new developed 
areas of Hankou and Wuchang towns respectively. These roads were planned or completed 
before the new developments. However, due to the change of industry structure, traditional 
industry, in particular heavy industry, was gradually losing its position. The demand for 
railway transportation decreased, and the railway network did not change after 1986. 
However, the development of industrial sections spurred the building of new commercial 
centres as these sectors came in operation around 1986. One was located in Qingshan town 
and others were located in Wuchang.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5  Industrial zones in the two periods 
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Official reports (ECWLR, 1996) indicate that housing construction stopped in the period 
1959-1978 and started again after 1980. The average living area per person increased to 6.09 
m2 in 1990 from 4.05 m2 in 1980.  
 
Summing up, the growth pattern in the period was characterised by relatively slow industrial 
development. In the 19 years, urban development was dominated by inward and outward fill-
in along development axes such as the Yangtze and Han rivers and major roads. 
 
1993-2000 
 
In Wuhan, new types of development characterised by high-tech zones were planned at the 
end of the 1980s, but largely constructed only after 1992, when Deng Xiaoping made his 
tour of southern China. Although, Wuhan was approved as one of the Chinese cities carrying 
out land use rights transfer in 1990, land reform policy was implemented in Wuhan only 
after 1992. Deng Xiaoping’s policy of the "Three Alongs" (developing economic hubs along 
China’s border, along the coast and along the Yangtze River) gave Wuhan its chance. Hence, 
Wuhan was able to speed up new development of the DNTDZ and the ZETDZ, and other 
infrastructure projects, which were becoming focal points of domestic and foreign 
investments.  
 
Since then, Wuhan has become a huge construction site as all over the city new 
development and redevelopment have expanded. This leads to a completely new era for 
overall urban development. New infrastructure has been added: an international airport 
(Tianhe Airport), Hankou Railway Station, the harbour terminal, the Second Road Bridge 
over the Yangtze River, and the Fourth Bridge over the Han River (yuehuqiao). The Third 
Bridge over the Yangtze River (Bashazhou daqiao) was completed in 2000. These projects 
not only strengthen the role of Wuhan as the centre of transportation in central China but 
also improve its investment climate. In the economic sector, the ZETDZ car manufacturing 
base, the Yangluo Electric Power Plant, the Qingshan Trade Harbour and four new 
industrial parks in the DNTDZ gave a boost to both traditional and modern industries. 
 
As shown in figure 3.5 (2000), four zones with various functions were located in three 
towns. Zone 3, which has the largest scale of leapfrog development, is the DNTDZ for car 
manufacturing. Zone 4, unplanned in the previous master plan (1996-2000), is another 
economic development zone for Taiwanese investment. The Guandong and GuangNan 
industrial parks, zone 1, are the research and production bases for the communication, 
software and electronics industries. The Nanhu and Changhong industrial parks, zone 2, are 
the centre for biological engineering, chemical engineering, new materials, electronics and 
aerospace engineering. This zone is a redevelopment project located on the site of the old 
airport. Zones 1 and 2 form the famous ZETDZ. Its site selection largely depends on its 
proximity to universities. Surrounding these zones are nearly 30 universities and colleges, 
and 0.3 million professional employees provide rich labour resources for these new 
industries. Zones 1, 2 and 4 are spatially adjacent to developed areas. These new zones have 
not only changed the industrial structure of Wuhan but are also the focus of foreign and 
domestic investments. Other new developments and re-developments close to or inside 
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developed areas are dominated by small-scale real estate development. For example, in 1997 
residential sites of 5 ha or larger numbered 120, with a total of 1,817 ha (WBRS, 1998). 
 
In the 1990s, fast growth benefited from the improvement of the infrastructure (figure 3.4). 
The second highway bridge (upper reaches) over the Yangtze River was completed in 1994. 
This helped to create the first ring road of Wuhan, together with the first bridge. The ring 
remarkably improved overall accessibility by linking the three towns. Moreover, two more 
bridges over the Han River were planned before 1996 and completed in 2000. As a result, 
improved accessibility strongly reduced the traffic pressure between Hankou and Hanyang. 
The formation of the inner ring had a profound influence on real estate development. 
Although the third highway bridge over the Yangtze River was put into use in 2000, it was 
planned as early as 1988. The southward spread of new development after the 1980s was 
closely related to the bridge. Due to the bridge, zones 1, 2 and 3 are much more closely 
linked than before. In the future, the bridge, together with the fourth bridge will create the 
second ring. 
 
In each town, two new major roads were also constructed (see figure 3.4). In Wuchang, a 
new road (Cuxiong dadao) is located between zones 1 and 2 to serve these areas of high 
population and employment density. In Hankou, an expressway was constructed for 
travelling to the new international airport. These new zones contributed to the emerging 
multi-centre structure of Wuhan. These centres are located near major roads and have 
integrated functions such as shops, new and high technology services, recreation, housing 
and other facilities. 
 
3.4.3  Evaluation 
 
For a comprehensive evaluation of temporal urban growth, an analytical perspective has to 
be chosen. This section compares the temporal growth of Wuhan in four periods (i.e.1949-
1955, 1955-1965, 1965-1993 and 1993-2000), with respect to quantity, speed, morphology, 
land use structure, spatial pattern and master planning. Quantitative methods are used to 
perform the evaluation. The division of the four periods under study is based on data 
availability and the major policy changes as described in section 3.2.  
 
(1)  Urban growth rates 
 
In 1949, Wuhan city had a population of 1.02 million (0.94 million in urban districts and 
0.08 million in suburban districts) living in an urban area of over 303 km2 (including 30 km2 
built-up areas) (ECWLR, 1996). Wuhan was directly administered by the central 
government until 1954, when it became the capital of Hubei province. 
 
The administrative units in Chinese cities can be classified as municipality, urban district 
(suburban district and county), sub-district (town, township and farm) and neighbourhood 
(or residential committee). Since 1997, Wuhan municipality has consisted of two counties, 
nine urban districts (including 88 sub-districts and 1928 neighbourhoods) and two suburban 
districts. Its spatial hierarchy will be described in detail in chapter 4. The population of 
Wuhan municipality comprises agricultural and non-agricultural residents. The non-
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agricultural population is based on the Hukou system (to control the immigration from rural 
to urban areas) not on administrative divisions.  
 
Figure 3.6 shows the population of Wuhan since 1949. It indicates a fast urbanisation 
process between 1949 and 1958 and then a slower growth rate until 1993; after 1993 growth 
rates increased again. Table 3.2 lists the calculated built-up areas for the four periods and the 
urban area of 1949, which is based on an official report (ECWLR, 1996), together with the 
population change. It can be seen that the city size in 2000 is nine times larger than that in 
1949. Rapid urban growth occurred especially in the periods 1955-1965 and 1993-2000, 
with an annual growth rate of 13.4% and 4% respectively. Slow growth took place in the 
period 1986-1993, with an annual growth rate of 1.5%. From the table we can conclude that 
major development waves occurred in the periods 1955-1965 and 1993-2000. These waves 
are a result of major political events: industrialisation initiated in 1953 and land reform 
started in 1987 (which have been described in section 3.2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.3  Urban temporal growth statistics  

Year 1949 1955 1965 1986 1993 2000 
Built-up (ha) 3,000 5,503 12,870 19,315 21,414 27,515 
Annual growth (ha) -  417     737      586       300      872 
Annual growth rate  14% 13.4% 2.4% 1.5%     4% 
Non-agri. population 1,055 1,773 2,299 3,418 3,870    4,449 
Annual popu. growth - 9% 2.6% 1.9% 1.8%    1.9% 
Annual growth rate  11.3% 3% 2.3% 1.9%   2.1% 
Gross popu. density    
     (Persons/ha) 

-    322   179     177    181      162 

Population figures in thousands. Sources for urban areas in 1949 and population are from  
official statistical yearbook.  

Figure 3.6  Population growth of Wuhan municipality from 1949 to 1999 
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Generally, physical growth is consistent with population growth as a linear correlation is 
detected between the column "Built-up" and "Non-Agricultural Population", with a high 
correlation coefficient of 0.98. However, the annual growth rates are different. The most 
rapid annual population growth was in the period from 1949 to 1955. After 1955, the annual 
growth rate changed. This difference reflects population policies such as the migration of 
young people from urban to rural (shang shan xia xiang) and the natural disasters during 
1958-1960. Population growth is strongly correlated with land use change and is a principal 
"driving force" of global land use change. Table 3.3 also shows that the gross population 
density was the highest in 1955 and then decreased sharply. We can conclude that the spatial 
patterns of urban growth have gradually shifted from compact to dispersed.  
 
(2)  Morphology analysis  
 
Morphology analysis makes it possible to summarise the changes and trends of the urban 
spatial structure. The analysis provides a coarse comparison of temporal growth. The time 
series of urban expansion (figure 3.3) offers an intuitive hypothesis that the city gradually 
changed its development axes from rivers to major roads and also shifted from a 
monocentric to multi-nuclear spatial structure. GIS spatial analysis can assist us in testing 
this hypothesis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7  Development axes in five periods
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The development axes can be rivers, railways, major roads and others. The proposed axes for 
Wuhan are shown in figure 3.7. The development axes before 1955 are the two rivers 
(Yangtze and Han), which are described in section 2.3. The main development axis in the 
period 1955-65 was a railway line. After 1965, development initiated on the major roads. 
The temporal relationships between the axes and urban growth are expressed in figure 3.8. 
The X axis indicates the percentage of developed areas, and the Y axis represents the distance 
of the developed areas to development axes. 
 
Figure 3.8 indicates that 90% of the newly developed areas are within 3 km and 
approximately linear to the pre-selected axes. However the sharp and non-linear change of 
the remaining new development (10%) suggests sporadic and leapfrog development. The 
Pearson correlation coefficients R between the five Y variables (distance to each 
development axis) are all above 0.99. This means that the selection of the axes is confirmed 
and consistent between the five periods. The temporal change of the axes illustrates the trend 
and directions of urban growth. For instance, from 1955 to 1965, fast urban growth is related 
to a railway, which results in the large scale industrial area. Two main roads constructed 
between 1986/1993 and 1993/2000 lead to another urban growth trend for the 1986-1993 
and 1993-2000 periods respectively. The direction of growth is outwards from the rivers. 
The difference is indicated by the speed and direction (both sides of rivers) of spread. For 
instance, the period 1955-65 was dominated by the fast spread on the right bank of the 
Yangtze River and slow growth in Wuchang.  
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Figure 3.8  Urban growth and development axes in the five periods 
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This trend was shifted to slow spreading in Hankou for 1986-1993 and quick and parallel 
expansion to river for 1993-2000. From this, we are able to conclude that the new transport 
infrastructure was the key element in shaping the new urban morphology during the last five 
decades. 
 
(3)  Spatial pattern analysis 
 
As the most frequently used algorithm, box-counting is able to quantify space-filling 
effects. The information dimension is more robust to data than the box-counting dimension 
in describing spatial distribution. The spread pattern analysis is implemented here for both 
temporal urban growth and road networks. For computation purposes, the same spatial 
extent is defined for all periods. This enables relevant comparisons. According to equation 
2, the information dimension D can quantify the evenness degree of spatial distribution of 
the entities under study. Therefore, it can provide valuable information about the spread 
patterns of new development units. A greater value of the fractal dimension means that the 
new development is more evenly distributed. The spatial pattern of urban growth, including 
road networks, is impacted by natural constraints (e.g. topography) and socio-economic 
activities; the growth of the information dimension in various periods indicates the 
influences of physical and socio-economic processes on the spread pattern of urban growth. 
This is different from the box-counting dimension, which reflects the space-filling process.  

 
In this research, the information dimension of road networks is calculated by using the 
MapBasic programming language based on the MapInfo GIS platform. The input and 
transfer of vector data from another GIS package such as ArcView are needed. In the case 
of urban growth, the information dimension is computed by a Visual Basic program. The  
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Figure 3.9  Plot of I(n) and Log(n) for the information dimension of the road network in 2000 
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raster layer of urban growth is exported into ASCII format, which is read by a module of 
the Visual Basic program for computing the information dimension.  
 
Figure 3.9 shows the information dimension for the Wuhan road network in 2000. I(n) 
against log(n) in equation 2 (section 3.3) is plotted. It is a straight line with a slope of 1.492 
and a correlation coefficient of 0.998. Table 3.4 shows all information dimensions of urban 
growth and road networks in five different periods. It indicates that the fractal dimension is 
increasing temporally in both urban expansion and road networks. However, the 
comparison of the fractal dimension is valid only for the same scale of development (Yeh 
and Li, 2001a), for example the same size of urban areas. Hence, the increase in the 
information dimension does not mean that the latter period is more balanced in spatial 
distribution than the former as the scale of the newly built-up areas is not the same. 
However, the annual growth rate of the fractal dimension (table 3.4) enables us to compare 
the change of spread patterns. As far as urban expansion is concerned, the annual growth 
rate is higher for the periods 1955-65 and 1993-2000 than for other periods. It indicates that 
urban expansion was spatially more even during the two waves of development. The first 
wave takes the highest value, meaning that the pattern of expansion was more limited by 
physical constraints and more influenced by social and economic activities.  
 
This can be explained by two reasons. First, more developable land was available in 1955-
1965 than in 1993-2000 as during the latter period water bodies also became part of urban 
development. Second, the free land transfer system introduced during the 1955-1965 period 
encouraged more spread urban expansion than did a paid transfer land market, where land 
value plays a crucial role in the site selection of projects. Interestingly, the growth of the 
road networks does not have concrete effects on expansion according to table 3.4. First, it 
shows that road infrastructure construction did not follow the same pattern as urban 
expansion over the past five decades. The information dimension (table 3.4) indicates a 
temporally increasing trend of homogeneity in the spread pattern. Second, large-scale 
construction of road infrastructure was initiated after 1993, and is visible in the high annual 
growth rates. In contrast to urban expansion, road network construction was less important 
than building railway lines in the 1955-1965 period, when major industrial centres were 
primarily linked by railway lines for goods transportation. The majority of new railway 
lines were constructed before 1986 (ECWLR, 1996). 
 
Table 3.4  Information dimension D of temporal urban expansion and the road network 

Information Dimension 1955 1965 1986 1993 2000 
 D  value in urban growth 
(Coefficients R) 
Annual growth rate 

1.6703 
(0.999) 

1.7134 
(0.999) 
0.26% 

1.740 
(0.999) 
0.077% 

1.753 
(0.9998) 
0.11% 

1.779 
(0.9999) 
0.21% 

 
D value in the road network 
(Coefficients R) 
Annual growth rate 

 
1.29 
(0.997) 

 
1.292 
(0.997) 
0.02% 

 
1.371 
(0.996) 
0.3% 

 
1.405 
(0.996) 
0.354% 

 
1.492 
(0.998) 
0.89% 
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(4)  Urban land use structure change 
 
Table 3.5 shows that the land use of 1955 was dominated by three classes; residential, public 
facility and industrial occupied 79% of the total land area of Wuhan. It should be noted that 
public facilities included institutions such as universities (totalling 14) and government 
offices, as well as the commercial sections. The "special uses" class is a military airport. In 
the case of major inter-city transportation, there were a couple of new railway lines added 
together with a new civil airport in Wuchang. The industrial and warehouse sections in total 
accounted for 18.2%, and were evenly distributed over the city. The main commercial 
activities were located in Zhongshan and Jianghan Avenue in Hankou and Jiefang Avenue 
in Wuchang, which formed a concentration area even before 1949. The new development 
exhibited a discontinuous and sporadic pattern in 1955 as most projects were still under 
construction.  
 
Table 3.5 also indicates that the industrial, residential and public facilities accounted for 71% 
of the total land area in 1993. In particular, industry takes approximately the same 
percentage as residential, being equal to nearly 26%. Compared with 1955, the percentage of 
industry and warehouses increased by 13.4%; however, the residential section decreased by 
15.5%. This indicates that the first wave of new growth before 1993 is dominated by  
secondary industry in Wuhan. The first column (from Yao (1998, p.73) shows the average 
land use structure of 15 super-mega-cities (population more than 1 million) of China in 
1991. Apart from the major difference in the use covered by residential area, public 
facilities, industry and warehouse have the same proportion. This shows that the national 
policies of industrial structure were one of the major driving forces of urban development, in 
particular in super-cities, before 1993.  
 
   Table 3.5  Land use structure change (area: ha) 

Classification Chinese mega-
cities (%) 

Wuhan 1955 
area & % 

Wuhan 1993 
area & % 

Wuhan 
1955/93 

Residential 33.62 1984 41.43   5609  25.82  -15% 
Industry 24.92   659 13.78   5626  25.9 +12% 
Warehouse 5.48   212   4.45   1249    5.75  
Public Facility 9.92 1185 24.75   4206 19.36     -5% 
Utility 2.36     42   0.81   1159    5.33  
Green 4.62   216   4.52   1265    5.82  
Transport uses 11.31   425   8.88   1585    7.3  
Special uses 9.27     64   1.35   1026    4.72  
Total     100% 4787 100 21725 100  

  (Note: Chinese mega-cities in 1991: Shanghai, Beijing, Tianjin, Guangzhou, Shenzhen, Shenyang,    
    Chongqing, Wuhan, Zhengzhou, Nanjing, Hangzhou, Kunming, Taiyuan, Xian,  and Haerbin)  
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Table 3.5 shows the major absolute changes of land use are dominated by three categories 
(industrial, residential and public facility). To further compare the changes in the spatial 
structure of the three categories, we introduce landscape metrics as quantitative measures of 
spatial patterns (from Patch-analyst Grid 2.1 in ArcView 3.20a extension). Here, seven 
indicators are calculated at the class level, each reflecting different structural content, nine at 
the landscape level (table 3.6). At the landscape level, SDI and SEI of 1993 show a 7% 
increase compared with the 1955 values (see table 3.1 in this chapter for the definition of 
these indicators). This reveals that social and economic activities during the 1955-1993 
period were slightly diversified and evened in terms of spatial structure. This is reflected by 
the facts as shown in table 3.5, i.e. that many differences between residential and the other 
two in 1955 were reduced by 1993. Housing construction was replaced by more industrial 
projects.  

 
 

Figure 3.10  Urban land use in 1955 and 1993 
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Table 3.6  Landscape metrics of three land use in the two periods 

Land use MPS PSCV ED MSI AWMSI MPFD AWMPFD SDI SEI 
I  (1955) 4.2 207   45 1.43 1.61 1.07 1.08   
P (1955) 3.27 235   85 1.60 2.03 1.09 1.11   
R (1955) 7.23 240 132 1.78 3.60 1.1 1.16   
Landscape 4.78 252 263 1.62 2.72 1.09 1.13 1.01 0.92 
          
I (1993) 5.95+ 607 +  77 + 1.50 + 1.94 + 1.08 1.1   
P (1993) 2.47 - 320 +  72 - 1.48 - 1.82 - 1.08 1.1   
R (1993) 3.65 - 217 + 104 - 1.66 - 2.30 - 1.1 1.13   
Landscape 3.8 - 521+ 253 - 1.55 - 2.03 - 1.09 1.11 1.1 + 1.0 + 

I (Industrial / warehouse); P (Public facility); R (Residential); + : increase, - : decrease 
 
 
Industrial development was the dominant landscape of Wuhan before 1993. MPS at 
landscape level shows a 20% decrease, globally indicating the diminishing of spatial 
agglomeration, from large-scale before 1955 to a smaller scale. This decrease is primarily 
indicated in residential and public facility land use, as shown in their MPS. PSCV at 
landscape level increased by 107%, indicating a significant increase difference in the 
variability of the size of units of land use. After 1955, small-scale development was mixed 
with larger. Change of PSCV at land use level is dominated by the 300% increase in 
industrial land use. This resulted from the in-fill land development pattern of small-scale 
industrial projects, particularly after 1965. ED, MSI and AWMSI show concrete results at 
both landscape and three land use levels, which are indicated by some decrease globally 
and only increase in industrial land use. This indicates a slightly decreasing heterogeneity 
globally and a slightly increasing heterogeneity in industrial projects development. A 
possible explanation is that new industrial projects were located close to old industrial 
centres. The fractal dimension is a measure of the fragmentation of functional units. MPFD 
and AWMPFD show a slight change at two levels in the two periods. This change focuses 
on little increase in industrial land use, implying a slow process of fragmentation in 
industrial project development.  To sum up, the characteristics of urban land use dynamics 
in the period 1955-1993 can be threefold: 
 
• Land development projects became more diverse and heterogeneous; 
• The land development process was more fragmented and split; 
• Industrial projects became spatially more clustered and smaller in size. 
 
As described in section 2.2, during the period 1965-1992, large-scale industrial 
development was replaced by smaller-scale development and its spatial pattern was 
dominated by in-fill development inside urban districts. Housing and public facility 
development was weaken than before 1955. This can be explained by the focus of urban 
development strategy on industrial projects, particularly before 1992. 
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(5)  Master plan matching 
 
This section compares and evaluates the built-up areas between planned and actually 
developed urban land for the two periods 1954-1965 (master plan of 1954 and urban 
development in 1965) and 1988-2000 (master plan of 1988 and urban development in 
2000). Both periods have a nearly equal time span, i.e. 11/12 years. Here, we use the Lee-
Sallee Index (LI) for the quantitative measurement of the spatial match between planned 
and developed. Let A denote planned urban built-up areas and B developed areas. The LI 
index is defined as A∩B/A∪B. When omitting the built-up areas of the base year (1955 and 
1986), varied LI' is recalculated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11  Master plan in 1954 and urban growth in 1955/1965 

Figure 3.12  Master plan in 1988 and urban growth in 1993/2000 
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The results presented in table 3.7 generally imply that master planning under the two 
different political economic systems (command and market economy) did not play an 
important role in guiding urban expansion. However, influenced by the scale of existing 
urban development, LI is relatively less helpful in explaining the effects of master planning 
than LI'. The difference between the two values suggests that master planning under a 
market economy (1988-2000) exerted less control over urban expansion.  
 
  Table 3.7   The areas planned and developed (unit: ha) 

Periods A∩B A∪B LI A'∩B' A'∪B' LI' 
1954/1965 10,612 21,677 49% 2,561 10,496 24.4% 
1988/2000 30,640 49,023 62.5% 3,642 21,878 16.6% 

  
 
 
3.5  Discussion and Conclusions 
 
3.5.1  Temporal urban growth 
 
Wu (1998b) identified four development stages of spatial urban growth in Guangzhou city 
since 1952 (figure 3.13). The small industrial towns located in suburbs before 1960 
dominated the first stage. Key projects formed the backbone of these towns but the factories 
themselves largely provided infrastructure. Low density was one of the main features of 
this period. The second stage focused on continuous developments surrounding the existing 
urban built-up areas and formed a belt of new extensions between 1960 and 1979. 
Insufficient infrastructure was the major physical constraint for large-scale development. 
The third stage was characterised by the emergence of sub-centres due to rapid spatial 
expansion spurred by economic growth between 1980 and 1987. The last stage featured 
both redevelopment in the inner city and urban sprawl after 1988. Urban sprawl was 
defined as a rapid expansion of the built-up area into suburbs in a discontinuous low-
density form. 
 
When applied to the temporal urban growth pattern of Wuhan, Wu's model needs the 
following adaptation. First, it should be noted that China’s development policies have a 
strong geo-political dimension, so that the coastal regions such as Guangzhou benefited 
from preferential policies for investment and resource allocation (Han, 2000) and were 
targeted with investment and reform programmes slightly earlier than non-coastal cities. 
For instance the commercialisation of housing was implemented in Guangzhou in 1984 and 
only four years later in Wuhan. The same happened with the land market, which was 
introduced in Guangzhou in 1988 and again four years later in Wuhan. Guangzhou had 
already become an open city in 1978 but Wuhan was declared an open city only in 1992. 
Therefore, the specific urban development stages vary among Chinese cities. In the case of 
Wuhan, a reasonable division into four stages is: 1952-1965, 1966-1983, 1984-1992 and 
after 1993. The relevant urban development policies and spatial processes determine this 
division. 
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Second, Wu's model, to some extent, does not fully reflect the spatial process of urban 
growth of Wuhan city. A major deviation is that the first stage (1952-65) was also 
characterised by the rapid urban sprawl of large-scale industrial areas in Wuhan. Multiple 
independent industrial centres started to appear. The growth rates of the information 
dimension D (urban expansion) in table 3.6 is relatively similar between the first (1955-
1965) and the last period (1993-2000). Figure 3.3 shows a discontinuous pattern of urban  
expansion into rural areas before 1955 and 1965. Table 3.3 indicates a low-density spread, as 
gross population density drastically decreased from 312 to 179 persons/ha in this period. 

Figure 3.13  Temporal urban growth of Guangzhou (after Wu, 1998b) 
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Qualitatively, both the first and the last stage had a similar pattern of urban sprawl but with 
different economic components. During the first period, traditional manufacturing was 
dominant; during the last period modern manufacturing and tertiary activities were the prime 
driving force. The Chinese city of the 1949-1976 era sprawled outwards rather than upwards. 
The construction of large numbers of high-rise buildings in the 1980s and 1990s, particularly 
in the commercial sector, has come to symbolise the transformation of China’s cities 
(Gaubatz, 1999).  
 
Zhang (2000a) made a comparative study of urban sprawl between the USA and China and 
contended that the Chinese version after 1987 is characterised by a disproportionate 
expansion of the urbanised area and scattered development in the urban fringe. Unlike in 
the USA, low density and commercial strip developments are not characteristics of Chinese 
urban sprawl. Victor and Yang (1997) noted that the spatial pattern of urban growth in the 
Pearl River Delta, China, during 1979-1993 may be best described as "relatively 
concentrated dispersal". The determinants of such a spatial pattern are the preferential 
policies of local governments in the delta under the macro strategy of "Opening and 
Reform". 
 
3.5.2  Data 
 
Spatial and temporal urban growth requires multiple data sources with high spatial and 
temporal resolution. This research found that temporal resolution is a major issue in 
evaluating temporal urban growth. The data sources available are not consistent with the 
social and economic processes of urban growth. For example, the urbanisation stage in 
China is divided into 1949/60, 1961/77, 1978/1987 and 1988/present. However, spatial data 
sources at these specific watershed periods are non-existent. This seriously affects the 
linkage of spatial analysis of patterns and processes with policies and actors. 
 
The primary data sources include remotely sensed imagery and traditional aerial 
photographs of different scales. This results in the requirement to integrate data of different 
resolutions, scales and themes. Data integration is the prerequisite to create spatial layers 
consistent in time, space and content. Apart from the necessary spatial and image 
processing, visual interpretation is very important to guarantee the accuracy and 
consistence of data by applying exact and identical technical specifications.  
 
3.5.3  Structural and functional modelling 
 
The findings of this chapter show that integration of multiple spatial indicators can improve 
the capacity of interpretation. The spatial indicators used here focus on structural and 
functional complexity, targeting quantification of the spatial distribution of land cover/uses, 
road networks, centres/sub-centres and master plans. Fractal modelling for calculating 
information dimension can reveal the spatial heterogeneity of urban growth and road 
networks. Landscape metrics can explain the fragmentation process and the diversity of 
urban land use. Morphology analysis based on development axes can compare the 
directional trend of temporal urban growth. The major characteristics found in this case 
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study are fourfold. First, figure 3.4 implies that the morphology of Wuhan city has 
significantly shifted from multiple industrial concentrations to multiple sub-centres. This is 
a result of the spatial agglomeration of traditional industries and the modern new 
development zones respectively. The two waves of urban expansion were temporally 
influenced by national policies of urban development in those periods. Second, urban 
growth processes were dominated by the increase in small-scale industrial projects, and 
characterised by spatial fragmentation and diversification. Third, the physical factors 
shaping the temporal morphology are the rivers, railway lines and major roads taking 
temporally varied roles in affecting urban growth (figure 3.7). Construction of road 
infrastructure was enlarged in scale, with more homogeneous spatial distribution. Finally, 
the role of master planning in controlling urban expansion is diminishing.  
 
However, urban growth is a dynamic process involving multiple actors and complex 
behaviour. This process is highly impacted by numerous clear and hidden factors related to 
political, economic and social activities. For example, the major policies during the last 50 
years can be stratified into three levels. The transition from capitalism to socialism in 1949, 
the economic reform in 1978 and the land reform in 1987 are in the top level. The first 
brought about the rapid industrialisation stage that led the first development wave from 
1953 to 1965. At this stage, central government was the major investor. The second spurred 
a new economic structure that allowed the coexistence of various types of economic 
entities. The third allowed the transfer of paid land use rights. The last two created new 
sources of investment, including foreign, domestic, central/local government and 
collective/individuals, which are the driving forces of the second development wave in 
Wuhan. These major political/economic reforms were followed by a series of changes in 
investment structure and industrial structure, which form the middle level. The change in 
investment structure influences the intensity and speed of urban development and 
determines the land demands of various social economic activities. These policies create the 
potentials and possibilities of urban development. The final level is housing, land use policy 
and master planning. This level transforms the possibilities and potentials for urban 
development stimulated by investment and industrial structure change into reality.  
 
Driven by these macro policies, various actors changed their roles in impacting on the 
process of urban growth. For example, state and work units were the main urban developers 
before 1978 and urban planning principally contributed to the site selection of industrial 
projects. After 1987, the urban development process became much more complex, and is 
characterised by more actors, more types of behaviour, and a larger variety of actors.  
 
As summarised in figure 2.2 of chapter 2, understanding the urban growth system involves 
five levels, from policies and actors to behaviour, pattern and process. The last three are the 
major concern of spatial and temporal modelling. The complexity in the spatial and 
temporal dimensions and the decision-making process requires a more systematic 
modelling method, which should integrate all significant factors into a model spatially and 
temporally. The quantitative methods proposed in this chapter helps to evaluate and 
compare the spatial indicators from different perspectives such as fractal and landscape 
metrics. They are the first step to systematically modelling dynamic processes, such as 
stimulating possible hypotheses. Here, temporally systematic modelling refers to 
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integrating temporal urban growth into a unified framework, which is the purpose of 
chapter 4. Spatially systematic modelling includes understanding spatial and temporal 
patterns and processes, which are the major objectives of chapters 5 and 6.  
 
 



Chapter 4*       
 
Comparative Measurement of Temporal Urban 
Growth 
 
 
Abstract 
 
Urban growth has become a severe problem not only in the developing world but also in 
developed countries. Urban sprawl has been criticised for its inefficient use of land 
resources and energy and large-scale encroachment on agricultural land. With modern 
remote sensing techniques, extensive data sources of satellite imagery with various 
resolutions are becoming available and less expensive. This has greatly enhanced the 
possibilities for monitoring urban growth at various spatial and temporal scales. However, 
sustainable urban growth management and development planning need to take account of 
the dynamic process of temporal urban change. This results in a requirement for the 
comparative measurement of temporal urban growth. Dedicated measurement of urban 
form can provide a more systematic analysis of the relationships between urban form and 
process. This chapter presents an innovative method for such a measurement, which 
integrates the physical aspect of urban growth with the socio-economic information of 
built-up areas based on the concept of relative space. The method comprises temporal 
mapping, data dis-aggregation of socio-economic activities, integration of spatial gravity, 
and global evaluation. The method is tested in a case study of Wuhan city, P.R China, with 
the land use/cover series for the periods 1955-1965 and 1993-2000. High-resolution aerial 
photographs and SPOT images are the primary data sources for monitoring and mapping 
temporal urban sprawl.  
 
Key words: urban growth, comparative measurement, relative space, aerial photographs and 
SPOT 
 
 
 
 
 
 
 
 
 
 
 

                                                 
*  Based on Cheng et al. (2002) and Cheng et al. (2003d). 
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4.1  Introduction 
 
Urban sprawl has become a severe problem not only in the developing world but also in 
developed countries. Urban expansion is a current topic of debate among both academics 
and politicians. In the USA, urban sprawl is now at the top of the political agenda 
(Dieleman et al., 2002). Urban sprawl has been criticised for its inefficient use of land 
resources and energy and large-scale encroachment on agricultural land. These impacts 
threaten the principle of sustainable development. With modern remote sensing techniques, 
extensive data sources of satellite imagery with various resolutions are becoming available 
and less expensive (Masser, 2001). This has greatly enhanced the possibilities for 
monitoring urban growth at various spatial and temporal scales. However, sustainable urban 
growth management and development planning need to take account of the dynamic 
process of temporal urban change. This results in a further requirement for the comparative 
measurement of temporal urban growth. The measurement of urban form can provide a 
more systematic analysis of the relationships between urban form and process (Yeh and Li, 
2001b). 
 
Fractal-based models (Batty and Longley, 1994; Makse et al., 1998; Frankhauser, 2000; 
Shen, 2002a) describe, measure and analyse spatial phenomena and structures characterised 
by irregularity, scale-independence and self-similarity and  provide us with a very different 
perspective on urban spatial patterns. Batty and Longley (1994) first systematically explain 
how the structure of cities evolves in ways which at first sight may appear irregular, but 
when understood in terms of fractals reveal a complex and diverse underlying order. 
However, it should be noted that fractal measures of spatial complexity still lack the 
interpretative capability because the same value of a fractal dimension may represent 
different forms or structures. Comparisons of the fractal dimension are valid only for the 
same scale of development; for example the same size of urban areas (Yeh and Li, 2001a). 
They do not offer any capacity for identifying and comparing the relative degree of 
temporal urban growth. 
 
I-Shian (1998) measures the degree of sprawl based on the physical aspects of residential 
development patterns, which is represented as a function of residential development 
density, residential lot size, the scattering of residential development, residential land use 
composition, and residential land use configuration. This research applies cluster, factor 
and regression analysis based on parcel-level data. It identifies three types of sprawl: low 
density, scattered and leapfrog.  
 
Shou (2000) defines urban sprawl as the spatial discontinuity in urban land use. According 
to this definition, he develops two sets of new urban sprawl statistics: the primitive and the 
normalised statistics. These new measures take the shape, size, boundaries and intensity 
effects of urban land use patches into account. 
 
The entropy method developed by Yeh and Li (2001b) is based on the direct measurement 
of the land development density of buffer zones in relation to geographical features such as 
city centres or road networks. The method is effective for the comparison of various types 
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of urban sprawl in the same period. However, this measurement can not be used to analyse 
temporal urban growth as the absolute space concept may lose its comparative effect when 
applied for a longer period, e.g. 50 years. 
 
Torrens and Alberti (2000) explore several approaches to measuring sprawl in an empirical 
manner, which use surfaces, gradients, fractal measurements, architectural primitives, 
image processing, geometrical measurements, ecological approaches and accessibility 
calculations. These measurements share a common drawback: the pure geometry 
perspective, which separates new growth from existing urban built-up areas and also 
ignores the linkages with social and economic activities. 
 
Galston et al. (2001, p.681) devise a measure of sprawl that is based on “eight distinct 
dimensions of land use patterns: density, continuity, concentration, clustering, centrality, 
nuclearity, mixed uses, and proximity.” They apply this method to 13 metropolitan areas 
and find New York to be the most sprawling and Atlanta the least sprawling metropolis. 
 
In summary, previous studies regarding the measurement of urban growth only took 
physical aspects into account. They ignored the fact that the urban system is a complex 
mixture of physical, social and economic systems. Absolute distance-based measurement 
cannot accurately interpret the social and economic implication of various types of urban 
growth. In particular, it will become less effective when the temporal dimension is 
incorporated. Given these considerations, this chapter proposes a new method for the 
comparative measurement of temporal urban growth, based on the integration of remotely 
sensed imagery and socio-economic data. Following the introduction, section 2 presents the 
method, which principally comprises four steps: temporal mapping, data disaggregation, 
activities integration and global evaluation. Section 3 will test this method by a case study, 
the city of Wuhan, P.R. China, in the periods 1993-2000 and 1955-1965. Section 4 ends 
with further discussion and conclusions. 
 
 
4.2  Methodology 
 
4.2.1  Urban growth  
 
Urban growth is a broad and vague concept that can be subdivided into various types such 
as sprawling or compact, dispersed (scattered) or clustered, continuous or leapfrog, 
spontaneous or self-organising, planned or organic. It may comprise physical growth, 
population growth, economic growth and environmental change (decline), although there is 
often a focus on the physical aspect in the domains of remote sensing and GIS. These 
different classification systems vary according to the demands of applications and evoke 
numerous debates not only in academic circles but also in the urban planning profession.  
 
Wu (2000c) identifies two classes of urban growth: spontaneous and self-organising. The 
former is characterised by small-scale and scattered development and contains random 
components. The latter is dominated by large-scale and high-density development, which 
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can be easily simulated by bottom-up models such as cellular automata. The appearance of 
a circular configuration is actually a phenomenon of self-organisation (Benati, 1997). This 
classification is based on the pattern, particularly the spatial agglomeration of new 
development units. 
 
In Batty and Longley (1994), urban growth is generally classified as organic (or natural) or 
planned (or artificial) growth. The distinction between the two is multifold and often 
blurred. Basically, planned growth appears to be more man-made, in that the patterns 
produced are more regular, reflecting more control over the building process. Most cities 
and towns provide a blend of both, usually containing elements of the planned against a 
backcloth of organic growth. The irregularity and fill-in effects of new urban growth can be 
quantified through fractal geometry.  
 
Clarke and Gaydos (1998) classify urban growth pattern into five types: spontaneous, 
organic, spread, road-influenced and diffusive. This can be simulated and controlled by five 
coefficients (diffusion, breed, spread, slope and roads) in a cellular automata environment. 
One of the major deficiencies of this approach lies in the fact that there is not a sharp 
boundary between them, or rather they spatially overlap to some extent. 
 
The classifications mentioned above primarily focus on the spatial patterns (form, density 
and distribution) of physical growth and the spatial impacts (planned or self-organised) of 
human activities. In some sense, they are interrelated. For example, planned and self-
organised patterns are quite similar to clustered growth. Spontaneous and dispersed patterns 
are more or less the same as organic growth. The advantage of these classification systems 
is the close linkage with spatial patterns, which is one of the major concerns of GIS and 
modern urban modelling approaches such as fractal and cellular automata. However, their 
deficiency is the ignorance of the interactions between the new development units and the 
urban social and economic activities that derive urban growth. Due to their weak 
explanatory power, they can only provide partial information for decision-making in the 
context of urban growth management. 
 
The classification of compact development or sprawl will be more attractive and useful to 
urban activists, planners and politicians as the impacts of sprawl or compact development 
can be evaluated from social, economic and environmental perspectives. However, what is 
urban sprawl? What is the explicit distinction between compact development and a pattern 
of sprawl? Urban planners and other academic researchers have attempted to define urban 
sprawl, but few of the definitions have gained general acceptance as they all have a 
different focus, depending on the interests of user groups. 
 
Describing and explaining urban sprawl has proved difficult for two reasons. First, we have 
no consistent definition of what counts as sprawl as urban spatial change is a phenomenon 
with significant temporal and regional variations (Ottens, 2002). Second, sprawl is both a 
macro- and micro-spatial phenomenon. At the macro level, sprawl may reflect growing 
population, interregional migration, increasing income, and changes in transportation 
technology that facilitate extensive commuting. At the more micro level, differences in 
climate, geography, actor behaviour and local public policy may all impact on the way in 
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which expanding cities develop. Thus, to properly study sprawl we need, on the one hand, 
data where sprawl is clearly and measurably defined and, on the other hand, data that 
provide sufficiently detailed information to capture the micro-spatial determinants of 
sprawl. Moreover, these data should have exhaustive coverage to also allow the study of 
macro-spatial determinants. 
 
Urban economists usually link urban sprawl with decentralisation and evaluate its effects 
from the perspectives of costs and benefits, in particular in North America (Ewing, 1997; 
Gordon and Richardson, 1997). Consumer and business location preferences and economic 
efficiency are given prime attention (Ottens, 2002). This approach leads to a negative 
assessment of current urban sprawl as it is much more costly than compact development. 
From the perspective of geography, this definition lacks effective spatial measures as cost 
and benefit indicators need a large quantity of social and economic data on micro scale.  
 
Ewing (1994, 1997), an urban planner, takes a very deliberate approach to conceptualising 
urban sprawl. He surveyed 15 academic articles on the subject, written between 1957 and 
1992, and found that the terms low-density, strip or ribbon, scattered, or leapfrog 
development are often used to characterise urban sprawl. In particular, urban activists have 
labelled urban sprawl as decentralised, low-density, non-clustered housing, leapfrog, too 
much strip, and the separation of uses. This definition is fuzzy as "low" density, "too much" 
and "non-clustered" are difficult to operationalise in quantitative terms. 
 
To summarise the commonality of various definitions, the key phenomena defining urban 
sprawl are the spatial distribution of new units, the intensity of social and economic 
activities such as population and employment, and the spatial relationship between the new 
units and existing urban built-up areas. An analysis of spatial relationships is able to judge 
continuous or leapfrog development patterns. An analysis of the spatial agglomeration of 
new units is able to identify clustered or scattered patterns. Measuring the intensity of social 
and economic activities enables the density of new growth to be quantified. Hereby, to 
some extent, the concept "sprawl" is the mixture of various classifications. 
 
4.2.2  Relative space  
 
The measurement of geographical phenomena involves two perspectives of space: absolute 
and relative. The absolute representation of space dominated the scientific world until the 
beginning of this century when the theory of relativity was formulated in Einstein's work 
(Marceau, 1999). The relative view of space focuses on objects as the subject matter, and 
space is measured as relationships between objects. In this view, the impact of space is 
perceptible in the location strategies of activities seeking sites that are accessible from 
everywhere within the metropolitan region. Sprawl is associated with a decline in the 
importance of absolute space. We argue that urban sprawl should be measured in relative 
space, i.e. the spatial relationship between new growth and urban socio-economic activities. 
This relationship represents the global and local spatial impacts of socio-economic 
activities.  
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The simplest measure of sprawl, and one used many times by urban economists and others, 
is the average density of the metropolitan area. Measures of population density capture the 
low-density aspect of sprawl pattern, but fail to account for the leapfrogging and non-
contiguous development that may be associated with sprawl. 
 
The gradient of density is frequently utilised for quantifying the urban growth in various 
periods (Torrens and Alberti, 2000). It is based on concentric rings around the urban central 
business district (CBD). This method has been shown to be highly sensitive to the arbitrary 
choice of ring width (Muth, 1969) and the location of the city centre. Consequently, when 
the physical size of a city is quite different between points in time (as shown in figure 4.1), 
the number of zones for calculating the gradient of density will vary temporally. This may 
result in the incomparability of the density gradient values computed. Moreover, in most 
large cities, the centre structure underwent a certain degree of change and a shift from 
mono-centre to multi-centre.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As illustrated in figure 4.1, the extent of the urban built-up area at time tl and t2 ( t2 > tl ) is 
significantly different. In this case, absolute distance cannot solely represent the relative 
pattern of urban sprawl as the same distance may represent a different interpretation of the 
social-economic situation, particularly when the period to be modelled is very long. For 
example, the urban built-up area of Wuhan city in 2000 was five times larger than that in 
1955 (chapter 3). So the 500 m sprawl in 1955-1965 cannot be compared with the 500 m 
sprawl (may be 2000 m) in 1993-2000. Meanwhile, its urban structure has changed 
dramatically from a monocentric to a multi-nuclear city region. As a consequence, absolute 
space is not adequate for temporal measurement. 
 
A major barrier to implementing an urban sprawl definition in practice is the difficulty of 
quantifying it. The quantification should be comparable in both the spatial and temporal 
dimensions. As an antonym of sprawl, compactness is also not easy to define. One city's 
sprawl may be another city's compact development, under different social and economic 

Figure 4.1  Illustration of relative space in temporal urban growth

Rl 
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circumstances. One period's sprawl may be another period's compact development. As a 
consequence, we need to set up referencing points in the spatial and/or temporal 
dimensions; in this way, quantification can be based on the measurements relative to these 
referencing points. Sprawl is just a matter of degree, not an absolute phenomenon. Given 
this consideration, the measurement of relative sprawl should integrate the distance, the 
spatial distribution and the density. Form and density aspects of urban de-concentration are 
at the heart of urban consumption (Ottens, 2002). How to quantify relative sprawl will be 
elaborated next. 
 
Obviously, the relative intensity of growth is equivalent to gravity in physics, which 
depends on the scale of urban social-economic activities and the distance between both. 
This idea results in a new methodology for comparatively measuring temporal urban 
sprawl, as displayed in figure 4.2. This methodology primarily comprises temporal 
mapping, dis-aggregation to pixel level, integration with urban activities and global 
evaluation. Socio-economic processes are the primary drivers for land use and land cover 
change, which in turn determines the structure, function and dynamics of most landscapes. 
The pattern and intensity of urban growth are essentially influenced and determined by 
human activities. Measuring urban sprawl, towards understanding the complex system, 
should be integrated with socio-economic activities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Disaggregate to pixel level 
• Spatial units 
• Data registration 
• Data interpolation /disaggregation 

Integrate with urban activities  
• Spatial gravity model 
• Combination 

Global evaluation 
• Diversity 
• Spatial patterns 

Temporal mapping 
• Urban growth 
• Land use 

Figure 4.2  Flowchart of the methodology 
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4.2.3  Temporal mapping 
 
Temporal mapping here includes time series urban sprawl and land use. SPOT PAN/XS 
data are an ideal source to produce land cover maps at the urban-rural fringe (Jensen, 1996). 
However, the use of aerial photographs for land use survey and urban analysis has been 
well established since the 1940s (Kivell, 1993). Conventional aerial photographs are likely 
to remain the primary source of remotely sensed information for the foreseeable future at 
the land parcel level (i.e. 1:2500–1:500 scales), which is the basic building block of the 
databases used by those involved in urban planning and land administration (Masser, 2001). 
 
Many researchers have initiated automatic solutions for land use classification based on 
digital imagery, but there are many aspects that remain unsolved, such as image 
understanding and pattern recognition. Therefore visual interpretation is still a reliable 
solution and is applied in this study for the creation of land use/cover maps, especially 
when aerial photographs and images are used together for temporal change detection.  
 
4.2.4  Disaggregating to pixel level 
 
The spatial heterogeneity inherent in urban social and economic activities requires a more 
detailed analysis on a micro scale. Zone-based spatial models do not take account of 
topological relationships and ignore the fact that socio-economic activities and their 
environmental impacts are continuous in space (Wegener, 2001). This step is to 
disaggregate or spatially interpolate zonal data (e.g. population and employment) registered 
for spatial statistical units (e.g. census tract, block) to pixel level. The spatial disaggregation 
of zonal data consists of two steps: the generation of a raster representation of land use, and 
the allocation of the data to raster cells (Wegener, 2001). Various weight values are 
assigned to each land use. According to the principles of spatial statistics/econometrics, the 
weight parameters should be varied locally (Fotheringham and Rogerson, 1994). We 
suppose that m denotes the number of urban land use classes, n denotes the number of 
homogeneous spatial units, wij means the weight value of urban land use i in unit j, and nij 
the number of pixels of land use i (1≤ i ≤ m) in unit j (1 ≤ j ≤ n). Then, based on the 
population census, we are able to compute the population value of each pixel, which varies 
with j and i (see equation 1). Assuming that the total population in spatial unit j is TPj, the 
population value of the pixel with land use i and in unit j can be computed as Pij (equation 
1). 
 

Pij =  wij *TPj / Σ wij  * nij 
 
 
When spatial statistical units are not clearly defined or census data are not available, we can 
make approximate estimations according to a gradient of density such as a negative 
exponential function (or an inverse power function) ( Clark, 1951; Wang, 2001; Wu and 
Yeh, 1997). For example, employment data are not available at the lower level of spatial 
units in most cities of China. Under this condition, the distance-decay of variable y 
(population or employment) can be expressed as follows (equation 2). 

(1) 
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Yj  = a0* exp(-λ * rj) = wij *TPj / Σ wij  * nij 
 
 
where λ is the gradient of density and rj is the distance in relation to dominant geographical 
features such as centres and major road networks, and Yj the population in buffering zone j 
between rj and rj+1. wij refers to the weight value of urban land use i in buffering zone j, nij 
the number of pixels. In contrast to equation 1, equation 2 is computed based on theoretical 
assumption, and not on observational data. The selection of a0 and λ should have sufficient 
evidence from other cities with similar social and economic backgrounds.  
 
4.2.5  Integrating urban activities  
 
We argue that the index of spatial gravity between urban activities and new development 
units can better represent the relative impacts of urban activities on sprawl than absolute 
distance. The concept of interaction is referred to as isolation or exposure. Generally 
speaking, the interactions can be integrated as follows (equation 3): 
 
 

Zij = Σ wk  * lki  / dij α 
 
 
Where Zij indicates the spatial gravity of pixel j (urban sprawl from time tl to t0 ) from pixel 
i (in urban built-up area at time t0). dij is the Euclidean distance between pixel i and j. In 
practice, a threshold value ϕ needs to be set, when dij > ϕ, pixel i is not calculated. α 
indicates the intensity of interaction or the relative importance of distance, α=2 corresponds 
to the normal gravity model. wk is the weight value of urban activity k, which is illustrated 
by population, employment or economic output. lki is the standardised value of pixel i in 
relation to activity k.  
 

Tj = Σ Zij 
 
 
Tj is the integrated impacts of urban activities on pixel j. We argue that the spatial pattern 
and intensity of Tj can better define and compare urban sprawl. The greater Tj is, the more 
centripetal pixel j is. In contrast to absolute distance measurement, Tj integrates physical 
and socio-economic information. However, Tj does not contain information on the density 
of urban growth. This will be implemented by global evaluation of its pattern. The relative 
degree of sprawl is based on the statistic of Tj .  
 
 
 
 
 
 

(2) 

(3) 

(4) 
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4.2.6  Global evaluation 
 
As described before, the measurement of urban sprawl may have a varied focus. It results in 
a demand for multiple indicators for different perspectives.  
 
(1)  Diversity 
 
Shannon's entropy (Hn) can be used to measure the degree of spatial concentration or 
dispersion of a geographical variable (Tj in equation 4) among n zones. Its formula is 
defined as follows (equation 5) 
 
 

                    Hn = Σ pj  log(1/ pj )/log(n) 
 
 
Here, n is the number of classes designed by user. When used for temporal comparison, 
classification should be uniform for all periods. pj (= Tj /Σ Tj ) is the proportion of pixels in 
class j of the total. Principally, entropy represents the diversity of the phenomena to be 
modelled, not exactly the degree of spatial cluster (Yeh and Li, 2001b). As real urban 
sprawl is the mixture of multiple types, the entropy value can quantify the degree of the 
mixture. Entropy provides an index for measuring land use heterogeneity and quantifying 
the degree of mixing across land use categories. 
 
(2)  Spatial pattern 
 
The most common interpretation of spatial auto-correlation is in terms of trends, gradients or 
patterns across a map. Moran’s I statistic is one of the most common and powerful (equation 
6). Here, Ti , Tj indicates the integrated value (from equation 4) at locations i and j 
respectively. u is the average of all n pixels. W is the spatial weights matrix; its element wij 
indicates the potential spatial interaction between locations i and j. Wij is defined as binary 
(0/1) by using critical distance thresholds. Any two pixels are considered as neighbours and 
assigned value 1 in W if the distance separating them is smaller than the selected thresholds. 
The influences of W can be graphically displayed by the Moran’I correlogram, a function 
relating the spatial auto-correlation I with distance. The correlogram is calculated with 
various lags, normally specified as equal distance bands. 
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Figure 4.3   Urban growth (1993-2000) and land use (1993) 

Figure 4.4  Urban growth (1955-1965) and land use (1955) 
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4.3  Case Study  
 
During the last five decades, Wuhan underwent rapid urban growth, from 3,000 ha of built-
up area in 1949 to 27,515 ha in 2000, in two waves of development: 1955-1965 and 1993-
2000 (table 3.3 in chapter 3). Qualitatively, these two waves had a similar pattern of urban 
sprawl but with different economic components (section 3.5.1 in chapter 3). Therefore, we 
need to quantitatively compare the relative degree of urban sprawl in the two periods. 
 
4.3.1  Temporal mapping 
 
The imagery employed here includes SPOT PAN/XS of 2000 (November) and aerial 
photographs of 1955 (B/W, scale 1:25,000) and 1965 (B/W, scale 1:8000). The image 
processing was implemented using the ERDAS IMAGINE 8.4 package (section 3.4.2 in 
chapter 3). Here, land cover is classified as urban built-up, agricultural, water body and 
protected area (green, sands, special uses), which are principally extracted for 1965 and 
2000. The land use map of 1993 is available directly in digital format from the local 
planning organisation. Its major urban land use classes include Residential, Industrial, 
Warehouse and Public Facility (commercial, institutional etc.). This classification is also 
utilised for the visual interpretation of land use of 1955 from aerial photographs. As 
interpretation of either image or photo is subjective, the whole operation was carried out by 
one person to guarantee temporal comparability. Urban sprawl and land use in 1993-2000 
and 1955-1965 are displayed in figures 4.3 and 4.4 respectively. 
 
4.3.2  Spatial statistical units  
 
The design of spatial statistical units is the prerequisite for socio-economic data integration 
and spatial structure analysis. For example, in the USA the hierarchy of statistical units is 
census blocks, block groups, tracts, city boundaries, and county boundaries. Various socio-
economic data such as employment, tax and population are spatially organised into a 
standard data format, based on these units. The TIGER format is supported by GIS software 
packages such as ArcView and is free to access (Census TIGER Data published on ArcData 
Online at http://www.esri.com/). However, in China the issue of spatial statistical units has 
not been fully recognised to date. Most socio-economic data are not available at the detailed 
levels (e.g. block) crucial for urban planning. The most usable items come from the 
population census, which is carried out nearly every 10 years (1954, 1963, 1982, 1990 and 
2000). The present units are only based on limited levels of administrative boundary (Cheng 
and Turkstra, 1997). The administrative units for survey are stratified as municipality, 
district, sub-district and neighbourhood. Their administrative relationships are represented as 
figure 4.5.  
 
Here, the urban area (shi qu) is not a real administrative unit, but it is the watershed of urban 
and rural population. The sub-district, organised by a street committee, has much denser 
population and more urban activities. The town is a settlement meeting a minimum non-
agricultural population, employment, industry output values and other criteria. These are 
subject to changes due to rapid urbanisation. A township is a smaller settlement with fewer 
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urban components than a town. When a township develops up to a certain level, it can be 
approved and upgraded to a town. A farm is an a-typical unit that originated from the large-
scale agricultural production in the period of the Great Leap Forward (1953-1957). Farms 
are located in the rural areas but form an urban population according to the Hukou system (to 
control the immigration from rural to urban areas). The neighbourhood administered by a 
residential committee (ju wei hui) is the lowest spatial unit for registration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5   Administrative structure of Wuhan municipality 

Neighbourhood (ju wei hui) Village (cun)

Subdistrict (jie) Town (zhen) Township (xiang) Farm (nong chang) 

Urban district (cheng qu) Suburban district (jiao qu) 

Urban area (shi qu) County (xian) 

Municipality (shi) 

Figure 4.6  Illustration of spatial statistical units 
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One example showing the spatial hierarchy between district, sub-district and neighbourhood 
can be seen in figure 4.6, which corresponds to Wuhan city in 1993. Its urban area then 
included seven urban districts (Qiaokou, Jianhan, Jiangan, Hanyang, Wuchang, Hongshan 
and Qiangshan). The district Qiaokou comprised 13 sub-districts and one township (figure 
4.6). Their size varies with the distance to the city centre. The maximum is 1,723 ha for the 
furthest township and the minimum is 25 ha.  
 
Of the 13 sub-districts, Baoqing contains 19 neighbourhoods of varying size (figure 4.6). A 
1: m relationship between these three units provides a simple spatial framework for data 
aggregation and disaggregation. For example, census data can be disaggregated from 
district to sub-district level in this research. It should be noted that these units were subject 
to partial changes of spatial extent in the past five decades, such as splits, merges and the 
removal of sub-districts or neighbourhoods. For instance, Wuhan municipality comprised 
five urban districts and four suburban districts in 1952. A series of expansion, re-merging 
and re-splitting continuously occurred in 1955, 1956, 1957, 1958, 1959, 1964, 1976, 1983 
and 1986 respectively (ECWLR, 1996). It comprised seven urban districts, two suburban 
districts and two counties in 2002. This often creates  problems. The most obvious is that it 
prevents long-term comparisons. A less well documented but equally important problem is 
that it prevents many earlier censuses being accurately mapped as the boundaries of the 
units used to publish them are not available. The traditional response to both of these 
problems has been to aggregate the data into larger units with stable boundaries. This 
strategy not only sacrifices spatial detail to increase temporal extent but also increases the 
problems associated with MAUP (modifiable areal unit problem) to such an extent that 
many forms of analysis must be considered  suspect (Gregory, 2002). 
 
4.3.3  Registration of socio-economic data 
 
The registration of socio-economic data is divided into two types: a census survey every 10 
years and a yearly statistical report based on a 1% sampling. The neighbourhood is the basic 
unit for the population census. The census database is developed in the local municipal 
bureau of statistics for official uses, and the public publication of the population census is 
aggregated to the sub-district level. In contrast, the population yearbook, which is published 
once a year, is only at district level. The former undoubtedly has more detailed information 
and a much higher resolution than the latter. The number of census items is also increasing 
gradually in response to the changing demands of social and economic statistical analysis. 
The census survey of 2000 started to include tax, ownership of buildings, and many other 
items. The item "total population" is split into agricultural and non-agricultural sections, 
which are affected by the specific Hukou system. The non-agricultural section should be the 
major representative of urban social and economic activities, which is the main item of this 
research. Although the neighbourhood (even sub-neighbourhood) is the lowest statistical unit 
for census registration, it is not a practical one for data disaggregation as the boundary of 
neighbourhoods covering whole urban districts is subject to change and is difficult to map. 
Hence the sub-district units (including town, township and farm) are frequently utilised for 
data disaggregation from the district. A uniform formula can be defined to integrate both 
census and yearly statistical data (equation 7) when a linear trend (interpolation) is assumed. 
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Where t is the year for data disaggregation and t0 is the nearest base year of the census 
survey. Pij (t) is the non-agricultural population at sub-district j of district i in year t, Pij (t0) 
in base year t0. Pi (t) is the non-agricultural population in district i in year t, Pi (t0) in base 
year t0. For instance, in this research, when t =1993, t0 = 1990. In 1990, Wuhan had seven 
urban districts with 78 sub-districts, 2 towns, 13 townships and one farm in the study area. 
They are the best possible statistical units for the disaggregation of population data as the 
boundary map of neighbourhoods is not available. The same procedure can be applied for 
the disaggregation of other census items. 
 
4.3.4  Disaggregation to pixel level  
 
(1)   1993 
 
For urban sprawl in 1993-2000, the spatial statistical units selected are the urban district 
and sub-district. The census data in 1990 were disaggregated from district to sub-district 
level in 1993. Major land use classes include residential area (R), industrial area (I) and 
public facility (P). Here, the "public facility" includes institutional, commercial, and other 
public uses. This classification is related to the data source of 1:10,000 topographic maps of 
1993. It is also the footprint of the social command system during that period in China as 
work units were also undertaking house construction for their employees (Wang and Murie, 
1999; Wu, 1996, 2001; Zhang, 2000b).  
 
After statistical tests, we can determine the weight values of two land uses (residential and 
public facility) evidentially: WR=3 and WP=1.Therefore, the population of each pixel can be 
computed according to equation 8, where PR,j, PP,j mean the population value of a pixel with 
land use R or P respectively in sub-district j; TPj represents the total population in unit j 
(from equation 1); and nR,j and nP,j represent the number of pixels with land use I or P in 
unit j. The ArcView package is used for implementing the computational procedures above. 
The results are displayed in figure 4.7. 
 
 
 
 
(2)   1955 
 
With regard to urban sprawl in 1955-1965, as the census data and the map of sub-district 
boundaries are not available for this period, a theoretical assumption (negative exponential 
gradient of population density) is adopted here for approximate disaggregation to pixel 
level. Local planners argue that the urban development of Wuhan was dominated by 
outward expansion along the two rivers (the Yangtze and Han rivers) before 1955 (see 
chapter 3). From this, we can suppose that the urban built-up area in 1955 followed a 

(7) Pij (t) =  Pi (t) * Pij (t0) /  Pi (t0 )  

PR,j = 3 *TPj / ( nR,j + nP,j) ,    PP,j = TPj / ( nR,j + nP,j)      (8) 
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negative exponential growth in relation to these rivers. From the statistical report 
(WBUPLA, 1995) of Wuhan municipality, the total non-agricultural population was 
1,594,000 residents in 1955. In equation 2, the parameters a0 and λ need comparative 
evidence to quantify. Here, we subjectively define three weight values (Wi) as equation 9 
for different ranges of buffering zones (xi) according to the principle of density gradient.                               
 
 
 
 
 
 
With the same value as the former period (WR=3 and WP=1), we are able to disaggregate the 
total population to pixel level (Pi,j ) in terms of equation 10, where j=R or P, and i refers to 
the three zones defined above. ni,j  represents the total number of pixels in zones i and with 
land use j. The result of disaggregation is displayed in figure 4.8.           
 
 
 
 
 
4.3.5  Spatial gravity model 

 
The spatial gravity model is based on the extensive computation of pair-pixels between 
urban land use and urban growth, as indicated in equations 3 and 4. This is very time 
consuming when pixel size is very small or the spatial resolution is high.  
 
In this research, the disaggregation of population data is based on a 10 × 10 m2 pixel size, 
but interaction computation is based on a 50 × 50 m2  pixel size, which results in a 1220 × 
800 grid. Here, the threshold value ϕ is set as 5 km and α=2 (equation 3). The results of 
spatial interaction between urban growth (1993-2000) and urban land use (residential and 
public facility in 1993) is displayed in figure 4.7, where colours indicate the relative 
compactness of urban growth, and the grey-scale the disaggregated population value at the 
pixel level. The classification is based on an equal interval. The same procedure is applied 
for the period 1955-1965, as shown in figure 4.8.The greater the interaction, the more 
compact the urban growth; conversely, the greater the sprawl. Compared with absolute 
space-based measurement, this methodology offers a comparative perspective. If we 
classify the interactions into five classes and compare the relative degree of urban sprawl in 
the two periods as listed in table 4.1, we can conclude that urban growth in 1993-2000 
exhibited a more compact and less scattered pattern than that of 1955-1965, as the latter is 
stronger in the first three classes and weaker in the last two classes.  
 
This difference can be easily explained by both the availability of developable land and the 
land lease system initiated in 1987. In the period 1955-1965, large-scale developable land  
 
 

Pi,j =Wi,j  * 1594000 / Σ Σ Wi,j  * ni,j        (10) 

   xi <1000 m,                                 Wi =10 
1000 <= xi <= 2000 m,                 Wi =3 

 xi  >= 2000 m,                               Wi = 1 
(9) 
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Figure 4.7  Disaggregation and integration for 1993-2000 

Figure 4.8  Disaggregation and integration for 1955-1965 
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was available without any charge. However, after 1987, constrained by poor physical 
topography such as water bodies, large-scale developable land was very scarce and costly.  
 

Table 4.1  Statistics for the two periods 

Interaction 1955-1965 (%) 
(a) 

1993-2000 (%) 
(b) 

Difference 
(b-a) 

< 50 30.8 26.6 - 
50-100 20.1 18.9 - 
100-150 14.8  8.5 - 
150-200 6.8             8 + 

> 200             27.6           30 + 
Total            100         100  
Pixels 31,682 24,402  

 
 
 4.3.6  Global evaluation 
 
(1)  Diversity 
 
According to the statistical distributions of interaction values, here we make 15 classes with 
equal interval values (=40), i.e. class 1=[1~40]. The entropy value of urban sprawl is 0.868 
for 1993-2000 and 0.798 for 1955-1965 in terms of equation 5. This indicates that the urban 
growth in the later period exhibits a mixture of more diverse growth.  
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Figure 4.9   Correlograms of urban sprawl in 1993-2000 and 1955-1965 
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(2)  Spatial patterns 
 
The Moran 'I index reflects the relative degree of spatial agglomeration of the phenomena 
to be studied. In this case, the Moran 'I index can quantify the relative roles of spatial 
interactions on a clustered pattern. A positive coefficient means that the spatial cluster 
results from the spatial interactions. Thus, in a relative sense, it reveals a more reasonable 
and compact development pattern. Our experimental study shows that urban sprawl is more 
clustered in 1993-2000 than in 1955-1965 as the Moran 'I index of the former (0.75~0.57 
when W: 200m~1000m) is much higher than that of the latter (0.57~0.41 when W: 
200m~1000m) (see figure 4.9). 
 
 
 4.4  Discussion and Conclusions 
 
This chapter provides preliminary results to illustrate a methodology based on the concept 
of relative space. It consists of several steps involving data, spatial analysis and 
understanding. In the progress towards any successful applications, there is still a need to 
discuss some practical issues and GIS analytical techniques. 
 
4.4.1  The spatial interaction model 
 
The methodology proposed is advantageous in integrating physical and social-economic 
data. As an example, this chapter only employs population data as it is, constrained by the 
availability of other census data. Temporal urban sprawl is interpreted from the perspective 
of population density. In principle, other variables such as employment and industrial 
output, which can be spatially linked with public facility (P) and industry (I) and can 
represent more urban activities, should be incorporated in the spatial interaction model 
(equation 3). This could offer the methodology stronger interpretative capacities. We can 
explain the relative degree of sprawl from the perspectives of population, employment and 
economic output value. 
 
To some extent, the weight values of various activities (Wk in equation 3) could be utilised 
for simulating the scenarios of urban development planning. For instance, adjustable and 
subjective weight values based on AHP (analytical hierarchy process) (Wu and Webster, 
1998) are an ideal instrument to test both the intentions of local planners and the impacts of 
urban sprawl. This direction should be explored in the future. 
 
As with traditional spatial interaction models, the validation of parameters such as the 
distance function (inverse power or negative exponential function), density gradient and 
weight value is still a bottleneck. If the same set of parameters are used for the two periods, 
the final results should be concrete. Here we test this sensitivity to parameters by assigning 
α=1 (linear distance); its corresponding outcome is listed in table 4.2. Compared with table 
4.1, this table shows the differences between the two periods, which are indicated by "--" 
and "++". As such, a decrease of α would improve the discriminative capacity of the 
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difference. As shown by the entropy value, there is no significant change in the evaluation 
of two spatial patterns of urban sprawl. 

 
          Table 4.2  Sensitivity analysis to parameters of interaction model (α=1) 

Classification 1955-1965 (%) 
(a) 

1993-2000 (%) 
(b) 

Difference 
(b-a) 

3,500 - 7,000 26.8           0.6 - - 
 7,000-10,500 31.2         23 - 

  10,500-14,000            18         21 + 
14,000-17,500            10.2         13.5 + 
17,500-50,000            13.8         41.8 + + 

Total           100%       100%  
Total (pixels) 31,682 24,402  

Entropy 0.81 0.862  
 
 
The dij in equation 3 is the absolute distance between two pixels. In reality, some decisions 
involved in urban growth is conducted completely according to relative distance, such as 
the shortest path in network analysis or the structural distance in space syntax (Jiang et al., 
1999), which are measured by the perception of the human being or measured in a 
systematic way. However, numerous empirical studies have shown that relative distance 
can better quantify spatial structure and that absolute distance can better represent spatial 
morphology. Urban sprawl is more related to the latter and urban real estate development 
could be more relevant to the former. Spatial morphology should be measured by proximity 
rather than accessibility, which is a major spatial indicator of spatial structure. Physical 
distance or its economic surrogates still provides the basic logic for locating some activities 
in time and space. The intuitive spatial decision-making is generally based on the 
understanding of the direct spatial relationships among spatial entities, such as the distance 
between city centre and residential location.  
 
4.4.2  Data disaggregation 
 
Data aggregation and disaggregation have been attracting attention in the fields of GIS and 
relevant social and economic applications. The methodology developed in Wegener (2001) 
is suitable for raster-based modelling; however, no further research is reported regarding 
the way of determining the weight values of various urban land uses. Martin (Martin, 1996, 
1998; Martin and Bracken, 1991) developed surface modelling techniques in the area of 
census geography based on British practices. His approach is limited to point events, which 
need rich data sources. No matter what approach can be applied, the crucial point is the 
spatial and temporal resolution of statistical units, as urban activities are characterised by 
remarkable spatial and temporal heterogeneity. Spatial resolution is defined by the size and 
standard deviation among the selected level of spatial statistical units. Temporal resolution 
is determined by the temporal interval of two consecutive census surveys. In the case of 
China, it is nearly 10 years, which is too coarse for population data interpolation as in 
equation 11. The higher the resolution is, the higher the accuracy of the disaggregation is. 
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In this research, among 78 sub-districts the maximum size of a sub-district is 3406 ha, the 
minimum size is 9.65 ha and the average size is 374 ha. At the level of the neighbourhood, 
taking Baoqing sub-district as an example (figure 4.6), the maximum size is 5.1 ha, the 
minimum size is 0.9 ha and the average size is 2.37 ha among 19 neighbourhoods. As a 
consequence, the method for locating census survey on more detailed scales needs further 
study.  
 
Given recent developments that make spatially and/or temporally referenced data more 
available at the individual level, the spatial analysis of human behaviour at the individual 
level will become more possible in the near future (Kwan, 2000). The parcel will be the 
most ideal unit to register social and economic activities with higher spatial and temporal 
resolutions.  
 
However, data disaggregation involves complex spatial processes that are impacted by 
heterogeneous social and economic activities, which are represented by land uses. These 
spatial processes vary locally beyond the boundaries of statistical units, as determined by 
numerous factors such as the distance to city centre, distance to road networks, and land 
development intensity. This spatial locality is indicated by localised weight values, which 
are spatially effective in a varying size of neighbourhood. How to accurately determine 
these weight values becomes the key issue for data disaggregation. It involves a complex 
process of modelling beyond currently available GIS techniques, which should be the 
subject of more research in the future, such as Monte Carlo micro simulation. This chapter 
skips this complex procedure where weight values are treated as uniform in whole space. 
 
4.4.3  Data completeness and consistency 
 
The methodology in this chapter is based on the spatial integration of socio-economic and 
physical data on a micro scale. Social and economic data are needed for a starting year, 
such as 1955 or 1993. Land use data are needed for the starting year and urban sprawl data 
for the change period to be modelled. Remotely sensed imagery has proved an ideal source 
for land use and land cover change detection. Social and economic data have proved to be a 
barrier to GIS applications in social sciences such as urban planning and management. This 
phenomenon is even worse in the developing world as data collection is usually very costly. 
Consequently, the implementation of this methodology needs the adequate institutional 
support in the favour of a local information infrastructure, such as a census surveys on more 
detailed scales. In this research, the local spatial information infrastructure is not consistent 
with the census surveys. Population registration can be detailed to a neighbourhood level; 
however, the spatial data framework is not available at neighbourhood level. Geo-
referencing various social and economic activities relevant to urban sprawl should be a 
topic for further research. 
 
In temporal sprawl measurement, adequate attention should also be paid to the 
completeness and consistency of data, which may influence the accuracy of measurement. 
Completeness includes a diversity of social and economic activities involved in impacts on 
urban growth, spatial extent covered, and the availability of multi-resolution temporal data. 
In this research, the census data around 1955 are not available, which results in a lower 
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accuracy for data disaggregation for this period. The map of sub-district boundaries in 1993 
does not cover the entire study area. Consistency refers to spatial resolution, spatial 
statistical units, data registration, and the terms used. The administrative structure of 
Wuhan municipality underwent major changes in the period modelled. The same district 
may have different boundaries in any two periods. Hence, the population data of this 
district are not compatible in the two periods. The concept "non-agricultural population" 
has a different meaning in the past five decades as urban development policies underwent 
major modification.  
 
4.4.4  Temporal complexity in urban growth 
 
Temporal complexity in this chapter results from the incomparable measurement of a series 
of urban sprawl patterns. Temporal comparability is actually a subjective theme. In urban 
growth, the evaluation of urban growth depends on the purpose of the analysis. For 
example, each country or city has its own economic, cultural, ecological or even political 
situation. By using the concept of relative space, the temporal complexity can be 
transformed into spatial complexity, which is indicated by the complex spatial interactions 
between urban sprawl and urban social and economic systems. The methodology proposed 
attempts to interpret the macro patterns of urban sprawl from micro urban activities, as the 
global pattern originates from the self-organising processes of local activities. Relatively, 
activities can be more comparable and interpretative than spatial patterns as activities are 
directly linked with actors and their behaviour. As a result, this research shows that pattern, 
process and behaviour must be integrated into a whole towards understanding the 
complexity in urban growth. 
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Modelling  Urban  Growth  Patterns 

 
 
Abstract 
 
Urban development is a complex dynamic process involving various actors with different 
patterns of behaviour. Modelling urban development patterns is a prerequisite to 
understanding the process. This chapter presents a preliminary multi-scale perspective for 
such modelling based on spatial hierarchical theory and uses it for the analysis of a rapidly 
developing city. This framework starts with a conceptual model, which aims at linking 
planning hierarchy, analysis hierarchy and data hierarchy. Analysis hierarchy is the focus of 
this chapter. It is divided into three scales: probability of change (macro), density of change 
(meso) and intensity of change (micro). The multi-scale analysis seeks to distinguish spatial 
determinants at each of the three scales, which are able to provide deeper insights into 
urban growth patterns shaped by spontaneous and self-organised spatial processes. A 
methodology is also presented to implement the framework, based on exploratory data 
analysis and spatial logistic regression. The combination of both is proved to have a strong 
capacity for interpretation. This framework is tested by a case study of Wuhan city, P.R. 
China. The scale-dependent and scale-independent determinants are found significantly at 
two scales.  
 
Key words: pattern, hierarchy, multi-scale, exploratory data analysis, spatial logistic 
regression 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
∗ Based on (Cheng and Masser, 2003c) and (Cheng and Masser, 2003a) 
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5.1  Introduction 
 
During the last five decades, a series of political events has occurred in China (such as the 
establishment of a new government in 1949, economic reform in 1978 and land reform in 
1987). These have brought about unparalleled changes in the urban development of Chinese 
cities. The outcome of these changes resulted in a rapid urban growth during the period of 
industrialisation before 1978 and large-scale urban new development and redevelopment 
under the market economy, especially after 1987 (Gaubatz, 1999; Wu, 1998b). The 
exploration of an urban development process that spans so long a period is crucial to 
decision-making for sustainable land management and future urban developmental 
planning. Previous studies of Chinese urbanisation have paid less attention to spatial and 
temporal dimensions due to the lack of available data. Presently, however, new 
opportunities are emerging with the development of new technologies. 
  
As a result of the rapid development of remote sensing (RS) and geographical information 
sciences (GIS) and techniques, increasingly large-scale studies of urban development have 
been facilitated (Masser, 2001). Modern satellite imagery, together with traditional aerial 
photographs, provides rich multiple resolution and scales of data sources for monitoring 
urban development processes. By using GIS, it is technically possible to integrate large 
quantities of data for further spatial analysis related to urban development. However, it has 
become common knowledge that urban development is a complex dynamic process, which 
involves various physical, social and economic factors. The complexity arises from the 
unknown number of factors, multi-scale and cross-scale interactions among factors, and 
their unpredictable dynamics. Pattern and process are reciprocally related like "chicken and 
egg", and both they and their relationships are also scale-dependent. The identification of 
determinant factors on varied scales is the first step to understanding the dynamic process.  
 
Facing the challenges, we need to develop innovative methodological frameworks for 
understanding the interaction between spatial patterns and processes. Urban development is 
divided into urban growth and redevelopment, which are typically projected on to different 
scales of land cover and land use change respectively (Stanilov, 1998). Spatially explicit 
modelling of land use changes is an important way of describing processes of change in 
quantitative terms and of testing our understanding of these processes. Consequently, the 
modelling of land cover and land use change is increasingly applied in the areas of 
agricultural, environmental and ecological systems (Schneider and Gil Pontius, 2001; 
Walsh and Crawford, 2001). It is also crucial to understand the importance of the urban 
development process. Initially it was assumed that the patterns of urban growth have 
distinct degrees of spatial and temporal heterogeneity across varied scales. This means that 
spatial and temporal patterns are determined by various locational and socio-economic 
factors. 
 
Urban growth can be divided into spontaneous and self-organisational processes (Wu, 
2000c). The former results in a spatially homogeneous and sparse pattern, which contains 
more random components, whereas the latter results in spatial agglomeration, which is 
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impacted by more self-organised socio-economic activities. To understand spatial processes 
and patterns, we must take both types into account. 
 
Wu and Yeh (1997) applied logistic regression methods for modelling land development 
patterns in two periods (1979-1987 and 1987-1992), based on parcel data extracted from 
aerial photographs. They found that the major determinants of land development have 
changed: from distance to the city centre to closeness to the city centre; from proximity to 
inter-city highways to proximity to city streets; and from more related to less related to the 
physical condition of the sites. To some extent, this is an example of spatial pattern 
modelling on various temporal scales. It shows that various factors are changing their roles 
in the process of land development. However, it only takes development probability or 
stochastic processes into account. It does not accommodate the details of spatial pattern 
such as density and intensity that represent the self-organising process of urban growth. 
 
With these considerations in mind, this chapter puts forward a new spatial analysis 
perspective for modelling urban growth patterns, which is centred on seeking the varied 
determinants on various scales. Following the introduction, section 2 presents a hierarchical 
multi-scale framework, which is distinct from traditional multi-scale and multi-level 
methods. Section 3 describes the methodology for testing the proposed framework, which 
includes both exploratory and confirmatory data analysis approaches. A case study is 
introduced; next, a relevant database is developed based on remotely sensed data sources 
and GIS. The fourth section analyses some findings. This chapter ends with further 
discussion of relevant issues and possible directions for future research. 
 
 
5.2  A Conceptual Model 
 
5.2.1  Hierarchy theory and the scale issue 

 
Complexity frequently takes the form of hierarchy (Kronert et al., 2001). Hierarchy theory 
was developed by general systems theorists, notably Koestler and Simon, to deal with 
complex and multi-scaled systems (O'Neill, 1988). Hierarchy theory applies hierarchy to 
organise concepts and interpret various complexities. In essence, a hierarchy is an ordered 
ranking, which is a basic property of any system from the angle of general systems theory. 
A hierarchy is often called a multi-level system, i.e. A contains B and B contains C. A 
fundamental point is that a component in a larger system (higher level) is also a system. 
Higher levels set constraints or boundary conditions for lower levels. Larger scales operate 
much too rapidly to be of interest and can be ignored (O'Neill, 1988). The theory examines 
closely the issues of scale, levels of organisation, levels of observation, and levels of 
explanation in a complex system characterised by hierarchical structures and interactions 
across levels.  
 
The key to understanding hierarchical structure is scale. Scale is a form of hierarchy. The 
importance of scale has been recognised in the sciences concerned with the spatial 
organisation of human activities and physical processes on the Earth's surface for more than 
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four decades (Marceau, 1999). It can function as a sort of container in space or time for 
heterogeneous phenomena and processes that have form and dynamics. Much of the 
difficulty in the treatment of "scale" is the great variability in the interpretation and 
meaning of "scale" (Withers and Meentemeyer, 1999), such as absolute size, relative size, 
resolution, granularity, extent and detail. Cartographic scales represent the ratio of a 
distance on a map to the corresponding distance on the ground. This usage is often qualified 
as "metric scale". In spatial analysis, the scope of scale can be threefold: spatial, temporal 
and decision-making. 
 
Spatial scale is linked with the terms “resolution” and “extent”. Resolution is the precision 
of measurement, usually defined by specifying the grain size, which determines the lowest 
or smallest visible level in a hierarchy or minimum sampling unit. In the case of raster or 
image data, resolution is the size of a rectangular pixel. Extent represents the boundary of 
the study area under consideration, and appears unambiguous. Extent and resolution define 
the upper and lower limits of resolution of a study. Pereira (2002) argued that the 
definitions of both resolution and extent become complementary rather than contradictory. 
 
Temporal scale is related to the terms “time step” and “duration”. The time step is the 
smallest temporal unit of analysis in a model, while duration refers to the length of time that 
the model is applied.  
 
Decision-making scale can be described in similar terms: “agent” and “domain”. Agent 
refers to the human actor or actors in the model who are making decisions. The individual 
human is the smallest single decision-making agent; other agents can include a household, 
neighbourhood, county, state, province or nation. Domain, on the other hand, refers to the 
broadest social organisation incorporated in the model. While the agent captures the 
concept of who makes decisions, the domain describes the specific institutional and 
geographical context in which the agent acts. Institutionally, agents may overlap spatially. 
 
The multi-scale issue has received considerable attention in the spatial analysis of various 
fields, including the ecological fallacy (Robinson, 1950) and the MAUP (modifiable areal 
unit problem) (Openshaw, 1977, 1984). Numerous empirical studies have shown the 
significant effects of scale on statistical inferences and models. The first step in the analysis 
of the scale problem was the development of appropriate quantitative methods for detecting 
scales or discrete levels at which regular and irregular patterns occur in the landscape 
(Marceau, 1999).  
 
5.2.2  Multi-scale in urban growth 
 
Scale issues are inherent in studies examining the physical and human forces driving land 
use and land cover changes (Currit, 2000). The multi-scale issue in urban growth has 
distinguishing spatial, temporal and decision-making dimensions. As remotely sensed 
imagery is a primary data source for monitoring urban growth, its temporal dimension is 
impacted by the requirements of temporal pattern analysis and the availability of time-
series imagery. For example, Wu's models of land development patterns (Wu and Yeh, 
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1997) for two different periods (1979-1987 and 1987-1992) indicate a varied temporal 
scale.  
 
Spatial patterns of urban growth first can be differentiated with varied spatial resolutions. 
This multi-resolution analysis principally explores the details of information extracted, 
which is utilised to test the sensitivity or stability of the models. Numerous experimental 
studies in various areas such as the agricultural, ecological and environmental sciences have 
reached consensus that resolution is an influential factor (Kok and Veldkamp, 2001; Page et 
al., 2001; Stein et al., 2001; Walsh and Crawford, 2001). Data collected at a gross scale 
(coarser resolution) are considered less reliable in aiding the interpretation of events 
operating at fine scales (finer resolution) (Goodchild, 2000). However, multi-resolution 
analysis is implemented under a definite spatial extent as the latter largely affects the 
availability of data sources. For instance, 1 m resolution IKONOS images are too costly to 
cover a whole mega-city, especially in developing countries, but they are reasonable 
sources for one district. 
 
The second multi-scale pattern analysis is from the perspective of spatial extent. Relatively, 
not enough attention has been paid to this analysis. A question is coming up: How can 
spatial extent be effectively defined, in particular for the purpose of interpreting 
corresponding spatial processes? In most studies, spatial extent is limited to the hierarchy of 
administrative boundaries from the national to the regional to municipal levels. Such 
definitions based on administrative boundaries are consistent with land administration; 
moreover, more socio-economic information such as census data can be integrated into 
modelling. Hence, the model can be closely linked with the socio-economic and political 
processes of urban growth. For instance, Kok and Veldkamp(2001) modelled land use 
change based on six Central American countries. They found that the effect of changing the 
spatial extent on the set of land use determining factors is substantial, with a strong increase 
in explanatory power when reducing the extent from regional to national. This implies that 
urban growth pattern analysis should be based at its highest level, such as the municipal 
level. 
 
If focusing on the spatial process, however, urban growth is not physically inhibited by 
administrative boundaries, in particular at the lower level, as these boundaries are 
expanding and changing, especially over a long development period such as 10 years in fast 
developing countries such as China. Moreover, urban growth frequently occurred before the 
formation of a new urban administration unit as it was located in the fringe. For instance, in 
China, a new administration unit is transformed from rural to urban (e.g. from a rural 
village to an urban sub-district) only when new development in this area reaches a certain 
scale. From the perspective of the spatial process, such hierarchies can only represent the 
discrete process rather than the continuous process. They can less effectively reflect spatial 
heterogeneity of urban growth. 
 
Therefore, we argue that a relative spatial hierarchy can be defined to satisfy the specific 
purposes of spatial analysis, e.g. for explaining spatial processes. In this context, the term 
"relative" means subjective instead of objective boundaries. To some extent, this definition 
is more ambiguous than the former but it can better represent continuous spatial processes, 
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as they are natural not artificial classifications and in essence are continuous not discrete, 
fuzzy not crisp. In a later section, a new relative spatial hierarchy will be described in detail 
towards linking with the decision-making scale.  
 
At the decision-making scale, it is supposed that urban growth is strictly controlled (or 
highly impacted) by urban development planning; the hierarchy (or details) of urban growth 
management and planning indicates the scale of decision-making. In the case of Chinese 
cities, the urban development planning system ranges from general land use planning or 
strategic planning, to master planning or structural district planning, down to detailed zone 
planning. Each level has its own specific objective, information requirements and 
institutional organisation, which will be explained in the next section. The higher level 
spatially and conceptually defines constraints for the lower level. When projected on to the 
land system, each level of planning needs specific information support on certain spatial 
and temporal scales. In this sense, the decision-making scale is conceptually the highest, 
which determines the required spatial and temporal scales. For example, from general land 
use planning down to zone planning, their spatial extent is decreasing and their temporal 
resolution is increasing significantly. General land use planning covers the whole 
municipality and can be valid for 20 years or longer. Conversely, zone planning focuses on 
a much smaller area and suffers from more frequent revision in response to the dynamic 
environment. 
 
From the perspective of planning, what are the information requirements at various 
decision-making scales that might be provided by the domain of geographical (spatial) 
information science? A fundamental research question is: What should be modelled in 
spatial patterns of urban growth? This chapter conceptualises three points, as illustrated in 
figure 5.1. The question can be divided into three sub-questions:  
 
• Where should change take place?  
• How much should the change be?  
• How strong should the change be?  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Where to change?    
(Probability of change)

No-change 

Change

b) How much change?    
(Density of change)   

Small 

Large

c) How strong change? 
(Intensity of change) 

Low-rise 

High-rise 

Figure 5.1  Research questions for urban growth patterns 
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From the perspective of modelling, they can be conceptually transferred to the probability 
of change, the density of change and the intensity of change respectively, which are defined 
as follows: 
 
• "Probability" is defined as the possibility of land cover transited from non-urban area 

to urban use in any pixel; 
• "Density" is defined as the possibility of land cover change agglomerated in any pixel; 
• "Intensity" is defined as the possibility of high-density land cover change intensified in 

any pixel. 
 
Obviously, the three concepts represent three different probabilistic events, which are 
becoming the main concerns of urban development planning systems. The detailed 
calculation procedures can be seen in a later section.  
 
For example, in the case of Chinese cities, general land use planning needs information 
support regarding the major determinants of change probability patterns, which can be 
utilised for guiding sustainable land management. Master or structural planning needs 
information such as the principal determinants influencing change density and change type 
and different scale constructions, which can facilitate the decision-making in site selection 
for major projects. The lowest level of control planning needs more detailed information of 
the spatial factors affecting the intensity of change, which is indicated by different floors of 
high-rise buildings. These can be utilised for the control of plot ratio etc. 
 
The next question is: How are the three concepts spatially defined? According to their 
definitions, they can be definitely stratified as follows: 
 
• The probability of change is spatially defined in the whole study area; 
• The density of change is only defined in the extent of land cover change from non-

urban to urban; 
• The intensity of change is spatially limited to the extent with higher density of change. 
 
The definition exactly determines a relative hierarchy of spatial extent. Here, the 
probability of change defines a binary spatial system A (A1: change, A0: non-change). Its 
component A1 (spatial extent of change density) also defines another binary system B (B1: 
high density, B0: low density). Again system B's component B1 (spatial extent of change 
intensity) defines a third binary system C (C1: high intensity, C0: low intensity). "Relative" 
is indicated by the spatial definition of the change density and intensity, which aims to 
identify the relative degree of development density and intensity. As a consequence, the 
urban growth pattern can be analysed from a simple three-level hierarchy, which defines a 
three-scale spatial extent.  
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Summing up, urban growth patterns involve three interrelated hierarchies (figure 5.2) 
through the concepts or planning, analysis and data hierarchies. Being planning-oriented, 
the conceptual hierarchy determines the decision-making scales and information 
requirements for the analysis hierarchy. The data hierarchy not only provides required 
resolutions (spatial and temporal) as input into the analysis hierarchy but also seriously 
affects its results. For example, the probability of change needs a sample of land cover 
pixels with and without change, which can be directly extracted from SPOT images. The 
density of change needs another sample of land cover change with high and low density. 
The intensity of change further needs three-dimensional data, i.e. floor number in high-
density change area., This chapter focuses on the analysis hierarchy, the core of the three 
hierarchies that bridges the conceptual and data hierarchies. This hierarchy defines a new 
multi-scale spatial extent: macro (probability of change), meso (density of change) and 
micro (intensity of change). The division from macro to micro is consistent with 
corresponding levels of development planning but not identical to the hierarchy of 
administrative boundary. 
 
This new multi-scale perspective links up with decision-making scales and also explicit 
spatial processes. The scale of change probability principally reflects more stochastic 
processes, change density for more self-organised processes, and change intensity for more 
spatial behaviour, as more actors are involved in the decision-making of development 
intensity. This chapter will focus on testing their effects on urban growth patterns, an area 
that has not received much attention. As limited by data availability, the test is implemented 
on only two scales: probability of change and density of change. 
 
 
 
 
 

Figure 5.2   A relative spatial hierarchy for a new multi-scale perspective 

Planning hierarchy 

Analysis hierarchy 

Data hierarchy 

Urban development planning system

Change probability 
pattern 
(macro) 

Change density 
pattern 
(meso) 

Change intensity 
pattern 
(micro) 

Multi-scale perspective

Multi-resolution of data 
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5.3  Methodology and Data 
 
Multi-level modelling has recently started to receive attention (Jones and Bullen, 1993; 
Jones and Duncan, 1996; Huang and Clark, 2002) as a cross-scale statistical analysis 
approach due to its advantages in dealing with a number of issues such as heterogeneity, 
intra-unit correlation, the small-number problem, the MAUP, aggregation bias, and the 
ecological and atomistic fallacies (Jones and Duncan, 1996). However, the application of 
multi-level modelling relies on a priori definition of a discrete set of spatial units at each 
level of the hierarchy. Imposing a discrete set of boundaries on most spatial processes is 
unrealistic (Fotheringham et al., 2000). Published applications mostly focus on social and 
economic processes rather than on spatial processes. Due to the current lack of cross-scale 
methods, scale-specific methods should be preferred (Kronert et al., 2001), in particular for 
spatial pattern and process modelling. 
 
When focused on spatial processes and patterns, the main objective is to seek and compare 
determinants of urban growth patterns on multi-scales; hence the causal-effect 
interpretation capacity of modelling techniques is of vital importance. The major 
methodology developed here consists of exploratory and confirmatory data analysis. 
 
5.3.1  Exploratory data analysis  
 
The real power of GIS resides in their display facilities but they still lack the facility to 
visually explore relationships between multivariate data. Graphical representation of spatial 
relationships is generally more easily interpreted than numerical output. Towards this 
direction, exploratory spatial data analysis (ESDA) techniques are used to detect spatial 
patterns in data, and to suggest hypotheses, which may be tested in a later confirmatory 
stage (pre-modelling exploration). In modelling patterns, ESDA is receiving more and more 
attention (Bell et al., 2000; Brunsdon, 2001; Goodchild, 2000).  
 
In urban theories, a widely accepted assumption is the negative exponential decrease in 
density of development units such as buildings, people and resources, illustrated in equation 
1, where x is the radial distance from the central business district (CBD) situated at the 
core, and λ is the density gradient.  
 

 
 
 
The density gradient quantifies the extent of the urban spread around the central core. 
Urban models based on economic theory (Muth, 1969), discrete choice theory (Anas, 1982) 
and other approaches such as entropy maximisation (Wilson, 1970) have made widespread 
use of the negative exponential function. Here, we extend the CBD to other development 
factors such as major roads, minor roads and developed areas, and also extend density to 
both the probability of change and the density of change. We assume here that the 
probability and density of change are characterised with exponential increase or decrease in 

(1)    f(x)=β e-λx          
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relation to each development factor. In two cases, function f(x) could be transferred to p(x) 
(probability) and d(x) (density) respectively through discretisation (equations 2 and 3).                              

                                           

 

 
Where p(x) is the change probability function and d(x) the change density function. ∆p 
indicates the probability of change in the scope (x, x+ ∆x), ∆d for the density of change in 
(x, x+ ∆x). When ∆x is very small, p(x) and d(x) could be approximately equal to ∆p and ∆d 
respectively. ∆x is a radial distance interval, which should be as small as possible. The ch∆x 
counts the total amount of land cover change located in the scope (x, x+ ∆x), Σ ch∆x is the 
total land cover change in the whole study area. nch∆x means the total amount of 
developable land in the scope (x, x+ ∆x). ∆x is the actual buffering distance interval. After a 
logarithmic transformation, we can calculate the density gradient λ1 and λ2 (equations 4 and 
5) respectively, which exhibit the spatial influence of each factor on growth.           
 
                                                
                                           Log (∆p)=log (β1) + λ1x 
 
                                          Log (∆d)=log (β2) + λ2x 
 
 
The slopes λ1 and λ2 indicate the degree of spatial influences; λ>0 (λ1, λ2) means a positive 
influence; λ<0 indicates a negative effect. The correlation coefficient R indicates its 
accuracy or reliability. 
 
From the standpoint of probability theory, ∆p and ∆d represent two types of probability 
value respectively, which are limited in the same scope ∆x. Let A denote the event of land 
cover change, and B/A the event of high-density change when A occurs (conditional 
probability), theoretically, ∆p = p(A), ∆d = p(B/A). Hence, p(AB)=p(A)*p(B/A)=∆p * ∆d 
(AB means the event of high-density change). Based on the two formulas (equations 4 and 
5), we are able to calculate the probability value (i.e. ∆p * ∆d) of high-density change. 
 
The distance-decay effect of each factor can be visualised for pattern detection and 
hypothesis formation by displaying the scatter plots (log(∆p) & log(∆d), x). Spatial outliers 
can be detected for detailed data checking. When a curve has multiple peaks, it may result 
from an unreasonable definition of the spatial indicator. In this case, the indicator should be 
split or merged (see a later section). Slopes λ1 and λ2 indicate the growth patterns in 
relation to its development factor at two levels. A steeper slope may imply a more compact 
pattern, otherwise a more dispersed or scattered pattern. Intercept b represents the initial 
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value of probability. Systematic comparisons of λ1, λ2 and b1, b2 can offer deep insights into 
the spatial influences. The key feature of multi-scale models is that they specify the 
potentially different intercepts and slopes for each space as coming from a distribution at a 
high level. 
 
5.3.2  Spatial logistic regression 
 
Traditional statistical analysis techniques such as multiple regression and logistic regression 
are still widely used in pattern modelling. For example, Lopez et al. (2001) employed linear 
regression for exploring the relationship between urban growth and population growth. Wu 
and Yeh (1997) and Wu (2000b) applied logistic regression methods for explaining land 
development pattern and industrial firm location respectively. The techniques have proved 
effective in seeking some determining variables for the occurrence of certain spatial 
phenomena like urban development.  
 

 Table 5.1  Comparison of multi-regression, log-linear and logistic regression 

Type of 
regression 

Dependent 
variable 

Independent 
variable 

Computation 
method 

Normality 
assumption Relationship 

Multivariate 
regression Continuous Only continuous OLS Yes Linear 

Log-linear  
regression Categorical Only categorical GLS No Non-linear 

Logistic 
regression 

Binary 
Categorical Mixture GLS No Non-linear 

  (GLS: Generalised Least Square, OLS: Ordinary Least Square) 
 
Compared with multiple regression and log-linear regression (see Table 5.1), logistic 
regression is advantageous in its dependent variable, explanatory variable and normality 
assumption. As a complex socio-economic system, the urban growth phenomenon does not 
usually follow normal assumptions. Its influential factors are mostly a mixture of 
continuous and categorical variables.  
 
The general form of logistic regression is described as follows: 
 

y  = a + b1 x1+ b2 x2+...+bm xm 

 

(7) 
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Where x1, x2, x3,..., xm  are explanatory variables. y is a linear combination function of the 
explanatory variables representing a linear relationship (equation 6). The parameters b1, 
b2,..., bm are the regression coefficients to be estimated. The p means the probability of 
occurrence of a new unit, i.e. the transition from rural to urban. Function y is represented as 
logit(p), i.e. the log (to base e) of the odds or likelihood ratio that the dependent variable is 
1 (equation 7). In logistic regression, the probability value can be a non-linear function of 
the explanatory variables (equation 8). This is a strictly increasing function; the probability 
p will increase with value y. The regression coefficients b1, b2,..., bm imply the contribution 
of each explanatory variable in probability value p. A positive sign means that the 
explanatory variable will help to increase the probability of change and a negative sign 
means the opposite effect. The statistical technique is a multivariate estimation method in 
examining the relative strength and significance of the factors (explanatory variables).  
 
However, as the primary data sources regarding urban growth come from remotely sensed 
imagery, spatial heterogeneity is the main concern. Logistic regression has to consider 
spatial statistics such as spatial dependence and spatial sampling. Ignoring these issues will 
lead to unreliable parameter estimation or inefficient estimates and false conclusions 
regarding hypothesis tests (Irwin and Geoghegan, 2001; Pa´ez et al., 2001). This chapter 
will design a spatial sampling scheme to reduce spatial dependence phenomena on two 
scales. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3   Urban growth from 1993 to 2000 
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 Figure 5.5  Spatial distribution of railway lines, bridges and industrial centres 

Figure 5.4   Spatial distribution of road networks and centres 
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5.3.3  Variables and GIS data analysis 

 
In this research, Wuhan is taken as a case study (section 3.4.1 in chapter 3) for testing this 
methodology. The main information requirements available for the model comprise land 
cover in 1993, land cover change 1993-2000 (figure 5.3), physical factors (road network, 
railway network, city centres/sub-centres, industrial centres, bridges, rivers) (figures 5.4 
and 5.6), physical constraints (water bodies and protected areas) and institutional factors 
(administration, master planning) (figure 5.7), which are extracted and processed from 
primary and secondary sources (see section 3.4.2 in chapter 3). Land cover is here classified 
as water body, agricultural, urban built-up area and protected area (including green and 
sands). In this research, in order to reduce the uncertainty in classification, only two classes 
(major and minor) are used to identify their impacts on urban development. It is the same 

Figure 5.6  Spatial distribution of other explanatory variables (a): Agricultural land; (b):
Water bodies; (c): Industrial sites; (d): Master plan; (e): Administration 
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for the definition of city centres/sub-centres. The determination of major roads and major 
city centres are principally based on the local knowledge available from master and 
transportation planning schemes and tourist maps. Some interviews with local planners are 
also necessary for further confirmation.  
 
Table 5.2  Varibles and descriptions 

Variables Descriptive 
Dependent Variable 
         CHANGE               
         CH_DENSITY   

 
Binary variable, 1-change from non-urban to urban; 0-no-change. 
Binary variable, 1-  high density; 0 – low density. 
 

Proximity Variable 
 
DIST_RAIL 
DIST_INDUC 
DIST_CENT 
DIST_MCEN 
DIST_OCEN 
DIST_MRD 
DIST_ORD 
DIST_RIVER 
DIST_YZ 
DIST_HAN 
DIST_PBRID 
DIST_CBRID 
DIST_CBRI1 
DIST_CBRI2 

 
 
Countinuous variable, distance to railway lines; 
Countinuous variable, distance to industrial centers; 
Countinuous variable, distance to city center/sub-centers; 
Countinuous variable, distance to major centers; 
Countinuous variable, distance to minor centers; 
Countinuous variable, distance to major roads; 
Countinuous variable, distance to minor roads; 
Countinuous variable, distance to the Yangtze/Han rivers; 
Countinuous variable, distance to the Yangtze river; 
Countinuous variable, distance to the Han river; 
Countinuous variable, distance to planned bridges; 
Countinuous variable, distance to constructed bridges. 
Countinuous variable, distance to the No:1 bridge;. 
Countinuous variable, distance to the No:2 bridge. 
 

Neighbourhood Variable
 
DENS_WATER 
DENS_DEVE 
DENS_INDU 
DENS_AVAIL 

 
Countinuous variable, density of neighbouring waters; 
Countinuous variable, density of neighbouring areas developed; 
Countinuous variable, density of neighbouring industrial areas; 
Countinuous variable, density of neighbouring developable areas; 
 

Categorical Variable 
 
PLAN_NO 
STREET_NO 
 

 
 
Binary variable, 1-planned as built-up area; 0-not; 
Binary variable, 1-sub-district; 0-not (town, township and farm); 
 

 
 
From the viewpoint of the temporal dimension, a few layers have a certain degree of 
fuzziness in their definitions, especially when the study area is large and the period is long. 
For instance, the construction of roads may occur in a different phase of the period to be 
modelled. Their construction time should be taken into account. In this research, a major 
road (linking with the Third Bridge over the Yangtze River) was completed in early 2000. 
It can be clearly seen in the SPOT images of 2000. This major road should not be included 
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in the Major Road layer as it did not create any practical impact on urban development in 
the period 1993-2000. This judgement is also confirmed by very sparse land cover change 
surrounding the road. Other layers are spatially defined by following a similar regulation. 
This treatment is able to maintain the temporal consistence within each layer. 
 
Wuhan city can be treated as flat landscape, except for a few hills of higher elevation. 
Hence, slope is not an influential factor. Physical constraints principally comprise water 
bodies, which will be analysed in the next section. The master planning scheme was 
approved by the central government in 1996 and will be valid till 2020. This scheme map 
includes detailed land use classification. 
 
Being focused on methodology, this chapter only describes the spatial indicators that can be 
measured from available data. All the variables are listed in table 5.2. They are created via 
the spatial analyst module in Arcview 3.2a and based on a 10 × 10 m2 pixel size, which 
results in a 6100 × 4000 grid for data analysis. 
 
Dependent variables: on the macro scale, the dependent variable CHANGE is binary. The 
value “1” represents land cover change from non-urban to urban, whereas the value “0” 
remains non-urban. Theoretically, water bodies should be completely excluded from land 
cover change. However, in this special case study (Jiang cheng), 18% of the land cover 
change in the period 1993-2000 comes from water bodies, which include ponds and lakes. 
They are mostly small-scale water bodies or on the fringe of large lakes. A general 
procedure can be designed for defining this specific layer:  
     
• Extracting water body layer from land cover layer; 
• Neighbourhood statistics (based on a circular neighbourhood with a 200 m radius); 
• Selecting sum > 800 (if totally neighbouring 800 cells are also water). 
 
The layer created is named "excluded", which is utilised as a physical constraint from the 
water bodies. Another physical constraint comprises protected areas, which include green 
space, sands and riverbanks from the topographic maps of 1993. 
 
On the meso scale, the dependent variable CH_DENSITY measures the spatial 
agglomeration of new urban development; the value “1” represents high density of change, 
whereas the value “0” indicates a low density of change. Figure 5.3 shows that the urban 
growth in 1993-2000 was characterised by a large scale of spatial agglomeration. There are 
four new development zones (see Figure 5.3. 1: Guandong and Guannan industrial parks; 
2: Nanhu and Changhong industrial parks; 3: Zuankou Car Manufacturing Base; 4: 
Taiwanese Economic Development Zones). The calculation of change density is completed 
using the neighbourhood statistics method. A circular neighbourhood with a 500 m radius is 
defined to summarise the quantity of land cover change surrounding each pixel (based on 
SUM neighbourhood statistics). With this neighbourhood, we are able to gain a normal 
distribution for CH_DENSITY. A median value is utilised to identify high and low density. 
Here when SUM > 3000, it is classified as high density, otherwise low density. 
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Explanatory variables: First, proximity is a prime cause of urban expansion; transport and 
communication changes represent a major explanatory variable in helping to account for 
the continuing demand for urban land (Kivell, 1993). As the focus is on land use change 
modelling, physical variables such as road networks are considered exogenous in this 
chapter because the construction of roads is part of the urban growth process. Here, the 
proximity variables measure the direct access to city centres/sub-centres (DIST_CENT, 
DIST_MCEN, DIST_OCEN), industrial centres (DIST_INDUC), major roads 
(DIST_MRD), minor roads (DIST_ORD), railway lines (DIST_RAIL), the Yangtze/Han 
rivers (DIST_RIVER, DIST_YZ, DIST_HAN), constructed bridges over the Yangtze River 
(DIST_CBRID) and planned bridges on the Yangtze River (DIST_PBRID) respectively. 
The constructed bridges are No:1 (in 1957) (DIST_CBR1) and No:2 (in 1994) bridge 
(DIST_CBR2) over the Yangtze River. The planned ones are Baishazhou (lower reach) and 
Tianxinzhou (upper reach). The spatial distribution of the explanatory variables can be seen 
from figures 5.4 and 5.5. The physical indicators equip any site with necessary 
development potential. Its spatial analysis is implemented through the "Find Distance" sub-
menu in ArcView 3.2a.  
 
Second, urban growth patterns, for instance, are largely a function of the availability of 
usable sites. The likelihood that a specific site will be developed varies according to its own 
availability for development, but also according to the availability of other sites located at 
different distances from various activity centres or generators of demand for development. 
A neighbourhood variable quantifies the spatial effect of neighbouring cells. From the 
aspect of urban development, the spatial influence (promotion or constraint) principally 
comes from the spatial agglomeration of the developed areas (DENS_DEVE), industrial 
sites (DENS_INDU), agricultural land (DENS_AVAIL), and water constraints 
(DENS_WATER). They are density-oriented/based indicators. Its spatial measure is based 
on the neighbourhood statistics technique. The type and size of selected window 
(neighbourhood) reflect the distance-decaying mechanism of various factors. A circular 
neighbourhood with a 500 m radius is chosen to calculate the density value towards a 
normal distribution. 
 
Third, the social and economic activities are the main driving forces of urban development. 
These indicators include land value, employment opportunity, population pressure etc. 
However, they are not the major concern of this chapter as they are limited by poor data 
infrastructure in Chinese cities. 
 
Finally, urban development is under the control of the master planning and municipal 
administration management, which are generalised as macro policy variables. Whether a 
site is planned as built-up (1) or non-urban area (0) (PLAN_NO) will essentially decide its 
change possibility. Whether a site is within the administrative boundary of a sub-district or 
others such as town, township and farms (STREET_NO) will also influence its 
development scale and speed in a specific period. The spatial distribution of two variables 
(STREET_NO, PLAN_NO ) can be seen from figure 5.6.  
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5.4   Findings  
 

5.4.1  Exploratory data analysis 
 
In equations 2 and 3, ch∆x and nch∆x in each ∆x are processed by using "Tabulate areas" 
between the layers (land cover change and buffering theme) in the ArcView package. Here 
∆x = 100 m is defined for proximity variables and ∆x = 2% for neighbourhood variables. 
The table file created is exported into the software STATISTICA for calculating ∆p and ∆d 
from equations 4 and 5 in section 5.3.1. The scatter plots (log(∆p) & log(∆d), x) explore in 
detail the spatial influences of each variable on two scales (see figure 5.7). The significance 
of slope λ, intercept B and correlation coefficients R are shown in table 5.3. L will be 
explained in section 5.5. 
 
Table 5.3  Exploratory data analysis on two scales 

Probability of Change Density of Change   
Variables 

λ1 b1 R1 P1 λ2 b2 R2 P2 
 
DIST_RAIL 
DIST_INDUC 
DIST_CENT 
DIST_OCEN 
DIST_MCEN 
DIST_MRD 
DIST_ORD 
DIST_RIVER 
DIST_HAN 
DIST_YZ 
DIST_PBRID 
DIST_CBRID 
DIST_CBRI1 
DIST_CBRI2 
DENS_WATER 
DENS_DEVE 
DENS_INDU 
DENS_AVAIL 
 

 
-0.00027 
-0.00013 
-0.000272 
-0.000275 
-0.000225 
-0.00076 
-0.0012 
-0.00003 
-0.00009 
-0.00005 
 
-0.000178 
-0.00019 
-0.00013 
1.46 
0.465 
 
-1.1 

 
-1.57 
-1.56 
-0.61 
-0.57 
-0.17 
-1.05 
-2.06 
-2.43 
-1.42 
-2.14 
 
-0.35 
0.01 
-0.48 
-2.84 
1.01 
 
-1.51 

 
-0.84 
-0.65 
-0.85 
-0.85 
-0.85 
-0.96 
-0.83 
-0.19 
-0.55 
-0.31 
* 
-0.84 
-0.86 
-0.93 
0.77 
0.88 
* 
-0.74 

 
-0.73 
-0.78 
-0.79 
-0.78 
-0.69 
-0.9 
-0.84 
* 
-0.21 
* 
* 
-0.75 
-0.74 
-0.86 
0.54 
0.97 
* 
-0.52 

 
-0.00046 
-0.00016 
-0.00027 
-0.00027 
-0.00009 
-0.00086 
-0.00175 
-0.00018 
-0.00008 
-0.00011 
 
-0.00003 
-0.00004 
-0.00001 
-4.11 
-0.182 
-10.2 
3.19 

 
-2.98 
-4.22 
-3.53 
-3.53 
-4.8 
-2.59 
-2.71 
-4.26 
-4.7 
-4.5 
 
-5.29 
-5.5 
-5.7 
-2.59 
-0.37 
-1.73 
-6.0 

 
-0.92 
-0.69 
-0.80 
-0.80 
-0.37 
-0.76 
-0.87 
-0.65 
-0.54 
-0.59 
* 
* 
-0.21 
* 
-0.97 
-0.91 
-0.96 
0.85 

 
-0.77 
-0.42 
-0.57 
-0.57 
* 
-0.91 
-0.92 
-0.44 
-0.18 
-0.23 
* 
* 
* 
0.2 
-0.92 
-0.8 
-0.86 
0.96 
 

*: not significant (p>0.01); R: correlation coefficients; λ: slope; B: intercept; P: inverse power 
function 
 
 
From figure 5.7 and table 5.3, it can clearly be seen that most variables have a statistically 
significant linear trend (negative exponential function), except for five variables ("#" in R1 
and R2 in table 5.3) on two scales. In particular, the distance to major roads and to the 
second bridge over the Yangtze river show over 90% accuracy on the scale of change 
probability, together with the distance to rail lines and the density of neighbouring water 
bodies, developed areas and industrial areas on the scale of change density. Spatial outliers 
exist in some variables but they are not removable because urban growth itself is so 
complex, inevitably creating a certain degree of stochasticity. Not only R but also the slope 
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λ and intercept B show much spatial variation among variables. However, in this chapter, 
the difference of intercept B is meaningless for comparing the probability and density of 
change due to incomparable formulas. Slope is a major indicator for exploring varied 
probability and density on two scales. A steeper slope indicates more compact urban 
expansion in relation to the physical factor considered. Also, the variable DIST_RIVER has 
two peaks, which results in a lower R. It indicates that two rivers may have a different 
distance range of spatial influence. So it needs to be divided into two variables, each with 
one river.  
 
Surely two variables, DIST_YZ and DIST_HAN, especially the latter, exhibit a better 
trend. Following this principle, we create DIST_MCEN, DIST_OCEN from DIST_CENT, 
and DIST_CBRI1, DIST_CBRI2 from DIST_CBRID. Such division is able to seek more 
accurate spatial determinants. For instance (in terms of slope), we are able to make the 
following conclusions for proximity variables: 
 
• Minor road networks, major road networks, minor city centres, rail line networks, the 

No:1 bridge, industrial centres and rivers show a ranked order from high to low value 
in negatively affecting the probability of change (the nearer, the clearer); 

• In the density of change, the slope of some variables (minor and major road networks, 
railways, industrial centres, rivers) show a certain degree of increase, others (minor 
centres, constructed bridges) a degree of decrease, compared with the probability of 
change. 

 
For the neighbourhood variables, the findings are as follows: 
• Density of neighbouring water bodies and developed areas shows statistically 

significant positive impacts on the probability of change (the greater, the clearer); 
• In the density of change, only the density of available land is statistically highly 

positive. 
 
These results clearly show some significant differences on two scales, which enable us to 
make a hypothesis that road infrastructure is still playing a crucial role in urban growth but 
the relative importance of these variables is undergoing some change. A major difference is 
also indicated in neighbourhood variables. 
 
The other two categorical variables (STREET_NO, PLAN_NO) are further confirmed by 
using a T-test (continuous type) and Chi-square test (categorical). STREET_NO is 
statistically significant in change density and PLAN_NO for change probability. 
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Figure 5.7  Scatter plot of spatial influences from explanatory variables 
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Figure 5.7   Continued 
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Figure 5.7  Continued 
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5.4.2  Logistic regression modelling 
 
Traditional logistic regression does not take spatial dependence into account (see e.g. Tang 
and Choy, 2000; Wu, 2000b; Wu and Yeh, 1997). There are few selective alternatives to 
considering spatial dependence. One is to build a more complex model incorporating an 
autogressive structure (Gumpertz et al., 2000). Another is to design a spatial sampling 
scheme to expand the distance interval between the sampled sites. The latter results in a 
much smaller size of sample, which will lose certain information. However, the maximum 
likelihood method, upon which logistic regression is based, relies on a large sample of 
asymptotic normality, which means that the result may not be reliable when the sample size 
is small. Consequently, a conflict occurs in applying logistic regression: the removal of 
spatial dependence and the large size of the sample. A reasonable design of a spatial 
sampling scheme is becoming a crucial point of spatial statistics. This has attracted more 
and more researchers in various areas (Stehman and Overton, 1996). Frequently adopted 
schemes in logistic regression modelling are either stratified random sampling (Atkinson 
and Massari, 1998; Dhakal et al., 2000; Gobin et al., 2001) or systematic sampling (Sikder, 
2000). Their advantages and drawbacks were reviewed and compared by Stehman and 
Overton (1996). 
 
Unlike the spatial prediction purpose in the area of geo-statistics, the population studied 
here is completely known. Spatial sampling aims to reduce the size of samples (here the 
study area has around 6100 × 4000 pixels, which is beyond the capacity of most statistical 
software) and remove spatial auto-correlation. Systematic sampling is effective to reduce 
spatial dependence but may lose some important information, such as relatively isolated 
sites, when population is spatially not homogeneous. In particular, its ability to represent 
the population may decrease when the distance interval increases significantly. Conversely, 
random sampling is efficient in representing population but less so in reducing spatial 
dependence, especially local spatial dependence. Following this idea, we argue that the 
integration of both systematic and random sampling is better able to balance sample size 
and spatial dependence.  
 
On the scale of change probability, first a systematic sampling scheme is implemented for 
the whole population. When a 20th order lag (20 pixels or 200 m in east-west and north-south 
directions) is reached, Moran’s I index (to quantify the degree of linear spatial association 
between observed locations and a weighted average of the corresponding neighbouring sites) 
is significantly reduced for all continuous variables. After the systematic sampling, the ratio 
between the size of samples with values 1 and 0 becomes 1:11. To gain unbiased parameter 
estimation, we continue to randomly select another 10% from sample 0. This random 
sampling creates nearly a 1:1 ratio for the final sample. Its total size is 3002 pixels. 
Systematic and random sampling is implemented under the spatial module of ArcInfo 8.0. 

 
On the scale of change density, we first implement a fourth-order (40 m) systematic 
sampling for value 0, and a 10th order (100 m) systematic sampling for value 1, which 
results in a reduced size of samples; next, we apply a 7% random sampling for both 0 and 
1. This random sampling creates nearly a 1:1 ratio for the final sample. Its total size is 
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2945. After sampling, Moran’s I index significantly decreases for all continuous 
independent variables.  
 
Regarding multi-collinearity, of all pairs of variables with a correlation over 0.80, one 
variable is omitted. Of all pairs of variables with a correlation over 0.50, only one variable 
is allowed to enter a regression equation (Kok and Veldkamp, 2001). The use of a stepwise 
regression procedure solves the remaining multi-collinearity problems. A forward stepwise 
variable selection is employed via the SPSS 10.0 package. After steps 8 and 10, the results 
were calculated separately, as listed in table 5.4. 
 
Table 5.4  Logistic regression modelling on the two scales 

Variables Probability of Change Density of Change 
Steps of regression 
Sample size 
 
Co-efficients 
 
DIST_RAIL 
DIST_INDUC 
DIST_CENT 
DIST_OCEN 
DIST_MCEN 
DIST_MRD 
DIST_ORD 
DIST_RIVER 
DIST_HAN 
DIST_YZ 
DIST_PBRID 
DIST_CBRID 
DIST_CBRI1 
DIST_CBRI2 
DENS_WATER 
DENS_DEVE 
DENS_INDU 
DENS_AVAIL 
STREET_NO (1) 
PLAN_NO  (1) 
CONSTANT 
Tests 
-2 LL 
Cox & Snell R 2 
Nagelkerke R 2 

PCP (%) 

8 
3,002 
 
B                SE             Wald  
 
-b 
2.71           0.5              29.6 
-b 
-6.75         0.79             72.1 
** 
-7.2            0.51             203 
-49.8         4.0               155 
-b 
2.425        0.6                16.1 
** 
-b 
-b 
-2.84         0.58            23.8 
-b 
-0.85         0.29             8.9 
** 
-b 
** 
** 
-0.85         0.12          54.1 
12.4          0.55          510 
 
2362 
0.451 
0.601 
83.2 

10 
2,945 
 
B                   SE           Wald  
 
-1.34            0.42            10.3 
-b 

6.977           2.95              5.6 
-10.4            2.87            10.1 
** 
-4.31            0.4            113.6 
-2.92            0.32              83.3 
** 
** 
-2.1              0.32             44.6 
-b 

-b 

-b 

-b 

1.133          0.31              13.4 
2.52            0.58             18.8 
-b 
8.56             0.55             239 
0.67             0.14              22.3 
** 
2.55            0.77              10.9 
 
2923 
0.325 
0.434 
75.6 

**: Non-statistically significant (p>0.01), -b:  Not selected , -2LL refers to the 2 times log likelihood. 
PCP: percentage correctly predicted, S.E.: Standard Error 
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5.4.3  Interpretation of the multi-scale issue 
 
The logistic regression model is estimated by the maximum likelihood algorithm. There are 
various ways to assess the goodness-of-fit of logistic regression. One way is to cross-
tabulate prediction with observation and to calculate the percentage of correctly predicted 
(PCP). Table 5.4 shows the estimated logistic regression models. The two models are 
significant at the 1% level. The overall percentage of correctness is about 83% for the 
probability of change and 76% for the density of change. The lower accuracy of the latter 
might be related to reduced spatial extent.  
 
On the scale of the change probability: in order, the major determinants (with strong 
negative effect) are the distance to minor road, the distance to major road, distance to minor 
centre, the distance to No:2 bridge (the nearer, the clearer). There are no statistically and 
practically significant determinants with strong positive effects. Some factors are 
statistically significant but practically not significant (e.g. master planning, the distance to 
the Han River, distance to industrial centres and density of neighbouring water body). 
 
On the scale of the change density: in order, the major determinants (with strong negative 
effect) are distance to minor centre, distance to major road, distance to minor road, distance 
to the Yangtze River and distance to the railway line (the nearer, the clearer). The major 
determinants with strong positive effects are, in order, the density of agricultural land areas, 
developed areas and water bodies (the greater the density value is, the greater the 
probability value is), and sub-district administration. The others are either not statistically 
significant or practically not significant. 
 
Comparing the spatial determinants on two scales, major differences are indicated in four 
aspects. The first difference is the statistical significance of neighbourhood variables, which 
are dominated by the density of agricultural land, developed urban area and water body. 
The variables are only influential for change density. This strongly shows that large-scale 
new developments are either very close to the urban built-up area or far away in the rural 
area and some were converted from water bodies. The second is the significance of sub-
district administration, which only exerted certain influences on the density of change. The 
third is the differences of few proximity variables. The distance to railway and the distance 
to the Yangtze River are only effective for density of change. Finally, the three key 
proximity variables (distance to minor and major roads and to minor centres) are all 
influential on two scales but their relative importance values vary with scale. In particular, 
the minor road networks are the most influential factor for the probability of change, and 
density of change is mostly dependent on minor sub-centres and the major road networks. 
 
The comparison made above implies that relatively speaking, proximity variables are more 
scale-independent than neighbourhood variables and others. Urban infrastructure is the 
crucial factor impacting on the occurrence of urban growth and also on the spatial 
agglomeration of social and economic activities. However, old city centres have become 
less important than suburban centres in attracting large-scale development. This indicates a 
changing urban spatial structure. 
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From the perspective of the spatial process, the probability and density of change may 
represent the spontaneous and self-organisational processes of urban growth respectively. 
When urban growth is solely a spontaneous process, only the probability of change is able 
to explore its spatial pattern, or we can say all determinants might be scale-independent on 
the two scales. However, when urban growth is the mixture of spontaneous and self-
organisation processes, the probability of change is not sufficient in itself to explore its 
spatial pattern, or we can say some determinants could be scale-dependent on the two 
scales. The number of scale-dependent determinants may be affected by the degree of self-
organisation process. Hereby, the multi-scale method is able to compare and uncover the 
processes through analysing their spatial patterns.  
 
The multi-scale of the pattern is also able to explain the temporal process of urban 
development planning. For example, the temporal process at least includes two stages: site 
selection and local growth (details see chapter 6). At the stage of site selection, change 
density is the major concern for locating various scales of land development project, when 
the distance to sub-centres, the distance to major road networks, and the density of 
agricultural land are the principal criteria. However, at the next stage of local growth, 
change probability is becoming the major concern when local factors such as the distance to 
minor road networks takes the dominant role. 
 
In terms of Harken's theory of synergetics, the order parameter of a self-organising system 
is principally controlled by slow variables rather than by quick variables (Haken, 1993). In 
this sense, we can infer that the determinants on the scale of change density represent slow 
variables, and the determinants on the scale of change probability represent quick variables. 
Slow variables mainly include minor centres, major roads, agricultural land and developed 
areas. Quick variables are dominated by minor roads. In reality, slow variables are actually 
working on the macro scale and have longer-term and broader-scope spatial influence than 
quick ones on the meso scale. For example minor centres and major roads, as the order 
parameter of self-organising urban growth may determine the spatial morphology of a city. 
Conversely, minor roads only affect local growth. As a consequence, such multi-scale 
analysis is helpful in understanding the complex patterns of spatial systems. 
 
 
5.5   Discussion and Conclusions 

 
This chapter has shown that hierarchical theory can provide a conceptual and logical 
framework for the spatial analysis of complex spatial patterns of urban growth. The partial 
results on only two scales have shown that a scale-dependent property exists in urban 
growth patterns, although quite a number of other explanatory variables are not yet 
included in the model due to limited data availability. This multi-scale property 
theoretically is able to strengthen deeper insights into urban development processes and 
guide urban planning.  
 
To complete the proposed multi-scale framework, we still need to explore another micro 
scale − intensity of change. Intensity of change has distinct spatial, temporal and decision-
making dimensions. In the spatial dimension, it requires more disaggregated data as 
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detailed as parcel and building level, which are able to provide such information as floor 
number, ownership, land value, and even actors. In the temporal dimension, it undergoes 
relatively quicker change or it is more unpredictable. In decision-making, more actors are 
involved. For example in China, local government, work units (employers), investors, real 
estate developers and households have different roles in locational decision-making. It 
involves a more complex social, economic and even political processes. As a result, this 
scale will exhibit more complex spatial patterns, which should be based on a new data 
framework. The data framework should be able to incorporate more spatial behaviour of 
actors and socio-economic factors into pattern modelling. At present, it is theoretically 
promising but practically lacks a rich data infrastructure, in particular in the developing 
world.  
 
From the angle of remote sensing, SPOT imagery is not an appropriate source to satisfy the 
information requirement on the micro scale. However, with the 1 m resolution of IKONOS 
satellite images, we are able to identify high-rise and low-rise buildings for defining the 
binary variable (1: high intensity; 0: low intensity), which will be input into a pattern model 
like the logistic regression equation. The outcome on this scale can be utilised for 
systematic comparisons with the others. Such comparisons can uncover the complex spatial 
processes of urban growth on various scales, which can assist in decision-making at each 
level of urban development planning. In the future, the multi-scale framework is expected 
to link with multi-scale process modelling, such as cellular automata (CA), multi-agent 
(MA) and random utility models for exploring the interaction between pattern and process.  
 
To implement the multi-scale framework, logistic regression is not the only method of 
spatial pattern analysis. As a focus on the capacity for interpretation, simple exploratory 
data analysis and spatial logistic regression is an effective means to distinguish the 
determinants on two scales. However, the methodology itself still has some issues which 
need further research in the future. The measurement of neighbourhood variables like 
DENS_DEVE largely depends on the type and especially the size of the neighbourhood 
chosen. Over- or under-defined neighbourhoods will lead to a highly skewed histogram, 
which makes the results unreliable. As a simpler way, a number of tests with different 
choices have to be made for comparison, but it is very time-consuming and laborious. In 
consequence, it is necessary to develop an algorithm for automatically seeking an optimal 
neighbourhood, which is able to create approximately normal distribution.  
 
The spatial analysis of this research is based on the 10 × 10 m2 pixel size. The selection 
corresponds to the resolution of SPOT PAN images and also has more powerful 
interpretation. However, other resolutions from 20 × 20 to 100 × 100 m2 need to be 
comparatively checked for the sensitivity analysis of logistic regression modelling results. 
The exploratory data analysis is based on the radial distance interval of 100 m; tests with 
200 m and 300 m further confirm the stability of the analysis, especially that the slope of 
each variable remains the same. This research is actually based on the minimum spatial 
resolution (10 m from SPOT PAN) and maximum spatial extent (municipal level). From 
published literature, such a strategy can provide more convincing results. 
 
Unlike natural science, urban development like other social sciences is in essence not a 
completely random or stochastic process. The proximity and neighbourhood variables are 
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created according to spatial dependence or we can say that spatial proximity is one form of 
spatial dependence. Consequently, the complete removal of spatial dependence is 
impossible. As Jacquez (1999) argued, spatial auto-correlation is almost always present and 
its strength varies considerably from one kind of variable to another. A feasible way is to 
compare various sampling schemes for a compromise alternative according to current 
development and techniques of spatial statistics. Apparently, the scale of change density 
has a stronger spatial dependence as its spatial extent shrinks. It results in a decrease of 
logistic regression modelling (table 5.4). A new approach based on a polygon format such 
as parcel is also worth exploring in the future.  
 
In urban theories, the inverse power function, is also frequently applied for density gradient 
modelling (Makse et al., 1998). When compared with the negative exponential function, 
equations 1 and 4 are correspondingly modified as follows (equations 9 and 10): 

 
   f(x)=β x-λ                                                         

 
Log (∆p)=log (β1) + λ1 log(x) 

 
 
The linear correlation coefficients P of both the proximity and neighbourhood variables are 
also computed and listed in table 5.3. They clearly indicate that generally the negative 
exponential function has a higher accuracy than the inverse power function. As a 
consequence, this research suggests that urban growth obeys the law of negative 
exponential function in terms of the probability and density of change. 
 
The results from logistic regression modelling are basically consistent with those of the 
exploratory data analysis (see table 5.2). However, the latter to some extent confirms the 
accuracy or reliability of the former and is also able to model the relative importance of 
each independent variable in a systematic way.  
 
This research also found that logistic regression analysis is very sensitive in multi-stages 
such as data transformation and spatial sampling. The logarithmic data transformation Ln(y 
+β) (β is to be determined by experiments) and various combinations of sampling type and 
size may significantly influence parameter estimation and model accuracy. Here, the 
proximity-based variables sampled are transformed by using Ln(y+1). Then, all continuous 
variables are standardised according to the formula: (y-min)/(max-min). So all the 
independent variables are universally transformed into the range from 0 to 1 for further 
logistic regression modelling. The selection or design of reasonable data transformation and 
spatial sampling schemes still needs further systematic research for spatial logistic 
regression. Spatial exploratory data analysis, like the simple approach proposed in this 
chapter, can facilitate testing the detected patterns with the outcome of logistic regression. 
Exploratory spatial data analysis is able to discover the influence of each continuous 
variable but does not provide a systematic ranking. Logistic regression is efficient in 
systematically evaluating their relative contribution. Consequently, the integration of both 
is a feasible way for hypothesis formation, and the test of model accuracy.  

(10) 

(9) 
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Understanding Spatial and Temporal Processes of 
Urban Growth 

 
 

 
Abstract 
 
Understanding the dynamic process of urban growth is a prerequisite to the prediction of 
land cover change and the support of urban development planning and sustainable growth 
management. The spatial and temporal complexity inherent in urban growth requires the 
development of a new simulation approach, which should be process-oriented and have 
stronger capacities for interpretation. This chapter presents an innovative methodology for 
understanding spatial processes and their temporal dynamics on two interrelated scales 
(municipality and project), by means of a multi-stage framework and a dynamic weighting 
concept. The multi-stage framework aims to model local spatial processes and global 
temporal dynamics by incorporating explicit decision-making processes. It is divided into 
four stages: project planning, site selection, local growth and temporal control. These four 
steps represent the interactions between the top-down and bottom-up decision-making 
involved in land development for large-scale projects. Project-based cellular automata 
modelling is developed for interpreting the spatial and temporal logic between various 
projects forming the whole urban growth. Dynamic weighting attempts to model local 
temporal dynamics at the project level as an extension of the local growth stage. As a non-
linear function of temporal land development, dynamic weighting is able to link spatial 
processes and temporal patterns. The methodology is tested with reference to the urban 
growth of a fast growing city, Wuhan in the P.R.China from 1993 to 2000. The findings 
from this research suggest that this methodology can interpret and visualise the dynamic 
process of urban growth more temporally and transparently, globally and locally.  
 
Key words: urban growth, spatial and temporal processes, cellular automata, multi-stage, 
dynamic weighting. 
 
 
 
 
 
 
 

                                                 
∗  Based on (Cheng and Masser, 2002) and (Cheng and Masser, 2003b) 
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6.1  Introduction 
 
Understanding the urban development processes is highly crucial in urban development 
planning and sustainable growth management. The urban development process involves 
multi-actors, multi-behaviours and various policies, which results in its spatial and temporal 
complexity. The non-linear dynamics inherent in these growth processes opens up the 
possibility for emergencies (sudden changes) that are difficult or impossible to predict. Due 
to the hidden complexity of reality, our science has become less orientated to prediction but 
more an aid to understanding and structuring debate (Batty and Torrens, 2001). Orjan 
(1999) argued that without a proper understanding of the recent past we are in no position 
to comprehend − let alone predict − emerging patterns and processes. Couclelis (1997) first 
put forward the idea of a spatial understanding support system (SUSS). Horita (2000) 
reported a new SUSS for representing community disputes. Limited by existing sciences 
and techniques, understanding-oriented modelling is oriented to more practicability than to 
prediction, or, rather, a proper understanding of the complex system is the prerequisite to its 
prediction. Towards reasonable understanding, we need reliable information sources and 
models. Successful models should have a strong capacity for interpretation and an 
interactive environment to simulate 'what-if' scenarios. Consequently, an innovative 
simulation approach is required. The first step to aid such decision-making is to identify the 
process of decision-making. This is the same as the area of information management, where 
we need to recognise the data flow chart and data model before establishing any operational 
information system. 
 
Remote sensing and geographical information science (GIS) have proved an effective 
means for extracting and processing varied resolutions of spatial information for monitoring 
urban growth (Masser, 2001). However, they are still not adequate for process-oriented 
modelling as they lack social and economic attributes, in particular at detailed scale. In 
developing countries, socio-economic data acquisition and integration still have a long way 
to go. On this occasion, local knowledge (expert opinions, historical documents), albeit 
only qualitative or semi-quantitative, can be very valuable in assisting process 
understanding such as urban growth patterns, driving forces and the major actors involved. 
Hence, local knowledge should be incorporated into simulation modelling at certain stages 
and in certain ways. 
 
Cellular automata (CA), a technique developed recently, has been receiving more and more 
attention in urban and GIS modelling due to its simplicity, transparency, strong capacities 
for dynamic spatial simulation, and innovative bottom-up approach. When applied to real 
urban systems, CA models have to be modified by including multi-states of cell, relaxing 
the size of neighbourhood with distance-decay effects, probabilistic rules, and link with 
complexity theory. In fact, many − if not all − urban CA bear little resemblance to the 
formal CA model (Torrens and O'Sullivan, 2001). Considerable literature in the field of 
urban CA modelling includes at least two classes of successful applications on various 
spatial and temporal scales. One concentrates on artificial cities to test the theories of 
complexity and urban studies (Couclelis, 1997; Benati, 1997; Batty, 1998; Wu, 1998a). The 
other is focused on real cities to aid decision support of urban planning at the regional, 
municipal and town levels (Besussi et al., 1998; Clarke and Gaydos, 1998; Ward et al., 
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2000a; White and Engelen, 2000; Yeh and Li, 2001a; Silva and Clarke, 2002; Wu, 2002). 
These studies have revealed that urban CA-like models are effective in simulating the 
complexity of urban systems and their sub systems from emergence, feedback and self-
organisation. Nevertheless, the interpretation of transition rules, which is highly important 
for urban planners, still receives little attention in urban CA modelling, particularly in 
linking to the process of urban planning.   
 
Most previous studies of urban CA models ignore the fact that urban growth is a dynamic 
process rather than a static pattern. For example, the urban growth model of Clarke and 
Gaydos ( 1998) has attracted a lot of attention in urban growth prediction (e.g. Silva and 
Clarke, 2002). Their CA model controls the evolution of city growth by five coefficients 
(diffusion, breed, spread, slope and roads). The diffusion factor determines the overall 
outward dispersive nature of the distribution. The breed coefficient specifies how likely a 
newly generated detached settlement is to begin its own growth cycle. The spread 
coefficient controls how much diffusion expansion occurs from existing settlements. The 
slope resistance factor influences the likelihood of settlement extending up steeper slopes. 
The road gravity factor attracts new settlements towards and along roads. This is a 
successful simulation model of patterns, which principally focuses on spontaneous, organic, 
spread, road-influenced and diffusive patterns. It still lacks the capacity to interpret causal 
factors in a complete process model, because similar patterns from the final outputs of CA 
simulation do not indicate similar processes. Thus, the transition rules validated are not 
evidential to explain the complex spatial behaviours behind the process. Therefore, process-
oriented rather than pattern-oriented simulation should be the main concern of urban 
growth CA modelling. This point has been supported and recognised recently in some 
journals (Torrens and O'Sullivan, 2001). Dragicevic et al. (2001) apply fuzzy spatio-
temporal interpolation to simulate changes that occurred between snapshots registered in a 
GIS database. The main advantage of this research lies in its flexibility to create various 
temporal scenarios of urbanisation processes and to choose the desired temporal resolution. 
The authors also declared that the approach does not explicitly provide causal factors; thus 
it is not an explanatory model. 
 
Wu (1998c) developed an AHP-driven CA model to simulate the spatial decision-making 
process of land conversion. AHP refers to the analytical hierarchy process originated by 
Saaty (1980). The AHP uses pair-wise comparisons to reveal the preferences of decision 
makers. The AHP is an ideal means for calculating weight values from the qualitative 
knowledge of local experts. This CA model is in essence a dynamic multi-criteria 
evaluation (MCE) as a dynamic neighbourhood (updated during model runs) is treated as an 
independent variable. This model is successful in linking explicit decision-making 
processes with CA. The adjustment of factor weights is able to generate distinctive 
scenarios. Hence, this model has a stronger capacity for interpretation. However, the AHP-
driven decision-making process is not spatially and temporally explicit as the weight values 
are fixed for the whole study area and for the whole period of modelling. They are not able 
to model processes, especially temporal dynamics. The incorporation of spatially and 
temporally explicit decision-making processes into a CA model has not been reported so 
far. 
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With this in mind, we need to develop a new methodology based on present urban CA, 
which is able to model and interpret spatial process and temporal dynamics, and also 
incorporates local knowledge for interpreting these processes. With this in mind, this 
chapter is organised into four sections. Following the introduction, the next section 
introduces the concepts regarding urban growth understanding: process, dynamics, global 
and local; and the second discusses in detail a proposed methodology, which mainly 
comprises a multi-stage framework and dynamic weighting concept. The former 
incorporates explicit decision-making processes into the modelling of local spatial 
processes and global temporal dynamics. The latter continues to model local temporal 
dynamics by representing the dynamic interaction between pattern and process at a lower 
level. CA-based simulation is developed to support and implement each method. Their 
mathematical foundations are described step by step. Section three focuses on the 
implementation of the methodology in a case study of Wuhan City, P.R China. Section four 
ends with some further discussion and conclusions. 
 
 
6.2  Methodology 
 
6.2.1  Complex processes and dynamics 
 
Urban growth can be defined as a system resulting from the complex interactions between 
urban social and economic activities, physical ecological units in regional areas and future 
urban development plans. This interaction is an open, non-linear, dynamic and local 
process, which leads to the emergence of global growth patterns. The urban growth process 
is a self-organised system (Allen, 1997b). 
 
Process generally refers to the sequence of changes in space and time; the former is called a 
spatial process, the latter a temporal process. It should be noted that strictly speaking the 
spatial and temporal processes cannot be precisely separated, as any geographical 
phenomena are bound to have a spatial and a temporal dimension. Understanding change 
through both time and space should, theoretically, lead to an improved understanding of 
change and of the processes driving change (Gregory, 2002). However, the spatial process 
is much more than a sequence of changes. It implies a logical sequence of changes being 
carried on in some definite manner, which lead to a recognisable result (Getis and Boots, 
1978). Summing up, the key components of process are change and logical sequence. The 
former is defined by a series of patterns and the latter implies an understanding of process. 
In contrast to pattern, process contains a dynamic component. 
 
An urban growth system consists of a large number of new projects on varied scales. Large-
scale projects are characterised by dominant functions, heavy investment, long-term 
construction and numerous actors involved. Examples include airports, industrial parks, and 
universities. In contrast, small-scale projects are characterised by a single function, rapid 
construction, light investment and few actors. Examples can be a private house and a small 
shop. The project, as the basic unit of urban development, is the physical carrier of complex 
social and economic activities. The spatial and temporal heterogeneity of social and 
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economic activities creates massive flows of matter, people, energy and information 
between new projects and also between the projects and the other systems (developable, 
developed and planned). They are the sources of the complex interactions inherent in urban 
growth. As such, the urban growth process is the spatial and temporal logic between varied 
scales of land development projects. The spatial and temporal organisation of projects is the 
key to understanding these processes and dynamics. This understanding can be based on 
two scales: municipality (global) and project (local). For instance, on the global scale, in 
space, projects can be organised into clustered or dispersed patterns; the former implies a 
self-organised process, the latter a stochastic process. In time, projects can be organised 
into quick or slow patterns. The local process refers to spatial growth at the project level. 
Global dynamics means the temporal logic between the projects forming the whole urban 
growth, local dynamics only the temporal logic between the spatial factors or elements 
within a project. This research has two specific objectives towards systematically 
understanding the spatial and temporal process of urban growth: 
 
• To understand the local spatial process at the project level and the global temporal 

dynamics, based on a multi-stage framework; 
• To understand local temporal dynamics at the project level, based on the dynamic 

weighting concept. 
 
6.2.2  A conceptual model for global dynamics 
 
The complexity of the urban growth process can be intuitively projected onto decision-
making processes, and their spatial/temporal dimensions. The former involves multiple 
actors and behaviours. The latter involves various spatial and temporal heterogeneities. Or 
we can say, the former is a cause, the latter the effect and projection. In consequence, we 
must start with the decision-making process in order to understand the spatial and temporal 
processes of urban growth. 
 
Decision-making in urban growth is related to plans, policies and projects. Projects are 
special land use or development proposals initiated usually by various types of actors such 
as investors, planners, developers, land owners and work units. They evolve in the context 
of various levels of policy and plans. The project development process is a dynamic 
spatially nested hierarchy of multiple decision-making procedures, from the municipal to 
the building level and vice versa. The global dynamics of urban growth results from the 
interactions between the top-down and bottom-up processes of decision-making. Top-down 
decision-making includes financial resources allocation, master planning and the time 
schedule of projects; bottom-up decision-making contains building style, building density 
and plot ratio. 
 
Global patterns can be described as a cumulative and aggregate order that results from 
numerous locally made decisions involving a large number of intelligent and adaptive 
agents. At the municipal scale, its decision-making process can fall into four stages: project 
planning, site selection, local growth and temporal control (as illustrated in figure 6.1). 
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The first stage (project planning) answers the questions: How many large-scale projects 
were  planned in the past periods? and how much area was constructed in each project? 
This stage is a typical top-down decision-making process based on the systematic 
consideration of physical and socio-economic systems. Municipalities need to plan land 
consumption according to their social-economic development demand. When land 
consumption is projected onto the physical land cover system, it results in different scales 
of new projects. Land development projects can be divided into spontaneous and self-
organisational types (Wu, 2000c). The former corresponds to small-scale or sparse 
development, which may contain more stochastic disturbance and involve lower-level 
actors such as individuals or organisations. The latter represents larger-scale projects with a 
dominant land use and a higher level of actors. They are the main concern of this project 
planning stage. The project here can be called an 'agent', which is a spatial entity linking 
with distinct actors and spatial and temporal behaviours. In this sense, the project-based 
approach proposed here is also a kind of agent-like modelling. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Project 1
Project 2
Project 3

Slow 
t1

Quick 
 t3

Normal 
t2 

Figure 6.1  A conceptual model of the decision-making process: (a) project 
planning; (b) site selection; (c) local growth and (d) temporal control 

(a) (b)

(c) (d)
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The first stage belongs to non-spatial modelling, resulting in proposals for development 
projects. These new developments will be projected in their spatial and temporal 
dimensions. Spatial complexity can be considered from two aspects: the location of the site 
and the spatial interactions among sites. The former is the issue of spatial site selection or 
location, which becomes the second stage. The latter is the issue of local growth or the 
control of development density and pattern, the third stage of the framework. Temporal 
complexity, which is typically indicated by temporal heterogeneity or the timing of local 
growth, will be described in the fourth stage. 
 
The second stage (site selection) deals with the question: Where were the various scales of 
projects located?  This stage is a typical spatial decision process involving municipal 
decision-makers. This aims to systematically optimise and balance the spatial distributions 
of socio-economic activities as each project has specific socio-economic functions planned. 
This stage is the static projection of the projects planned at the first stage. The rules of site 
selection are represented by multiple physical, socio-economic and institutional factors, 
incorporating various global and local constraints. Rules are differentiated between planned 
projects in terms of influential factors, weights and constraints. To some extent, the stage 
provides growth boundaries and seeds for the next stage (local growth). This site selection 
stage results in a number of potential spatial sub-systems through the top-down process. 
 
The third stage (local growth) copes with the question: How did each project grow locally? 
This question includes development density, intensity and the spatial organisation of 
development units. After its spatial location was agreed, each project was developed based 
on more local decision-making from land owners, investors and individuals. This results in 
different spatial processes. The outcomes of these local growth processes can be concentric, 
diffusive, road-influenced and leapfrog. They are affected by numerous factors, which 
change their influential roles spatially and temporally. Spatial heterogeneity (heterogeneity 
in a spatial context means that the parameters describing the data vary from place to place) 
suggests that spatial processes are locally varied. In spatial statistics, global analysis is 
being complemented by local area analysis such as local indicators of spatial association 
(LISA) (Anselin, 1995) and geographically weighted regression (GWR) (Fotheringham and 
Rogerson, 1994). As for understanding local urban growth, its spatial process mostly 
depends on the local conditions such as physical constraints and the socio-economic 
circumstances. Based on CA, we are able to explore the dominant causal factors locally. 
The stage is dominated by the bottom-up approach.  
 
The last stage (temporal control) answers the question: How fast did each project grow 
temporally? This stage shifts to manage the local growth speed from a global perspective. 
The image of the whole urban growth process comprises the temporal sequences of all 
projects. For example, we can define such patterns as quick, basic or normal, and slow local 
growth, representing three identifiable timing modes. The rate of local growth is governed 
by numerous factors resulting from top-down and bottom-up decision-making. For 
example, the former includes financial resources allocation from higher-level organisations 
and master and land use planning control. The latter include man-power allocation and 
facility supply. The temporal land demand amount decided at this stage should be input as a 
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guide or constraint to the local growth stage. Hence, the stage is primarily a top-town 
procedure for controlling local temporal patterns and conditioned by a bottom-up one. 
 
It should be noted that each stage described above involves the interactions between top-
down and bottom-up decision-making. For example, although the land demand of each 
project is planned by municipal organisations, actual consumption is influenced by a 
number of local constraints. The whole process of urban growth should contain numerous 
feedback loops between both on various spatial and temporal scales. To provide a focus, 
top-down socio-economic modelling at certain stages is treated as exogenous variables in 
this research. 
 
This framework is primarily designed for understanding the dynamic processes of urban 
growth. When used for planning support, the first question will become: "how many large-
scale projects will be planned in the coming years ?" The socio-economic model for 
determining land consumption of projects should be included at this stage in this case. The 
other questions at various stages will follow similar modification. Such a multi-stage 
framework can offer a transparent and friendly environment for constructing various 
scenarios of plans.  
 
6.2.3  Land transition models 
 
The multi-stage framework discussed above has conceptually transformed the global 
dynamics of the whole urban growth process into the local land conversion processes of 
large-scale projects. These local processes have complex spatial and temporal interactions, 
which can be simulated by the urban CA approach. The identification of large-scale 
projects and their functions is of importance for understanding the spatial behaviour of 
relevant actors. 'Large-scale' has two meanings, from the spatial and socio-economic 
perspectives respectively. One refers to a certain scale of spatial clustering new 
development units. A project defined in this way may have no definite socio-economic 
implications as it was not planned as a complete spatial entity. This is a relative spatial 
division. Another refers to larger-area land development with special socio-economic 
functions such as a car manufacturing centre. A project defined in this way may have no 
ideal spatial agglomeration as it may be low in building density. To focus on interpretation, 
the latter is highlighted in this research as it is linked to the underlying socio-economic 
activities. However, it should be noted that the former is also significant and necessary in 
some spatial process modelling. Small-scale projects with mixed functions are conceptually 
merged into one class. Historical documents and interviews with local planning 
organisations are a necessary means for identifying large-scale projects. As the process of 
CA modelling is identical for each project, as an example, we only refer to project d in the 
following description; the other projects follow the same procedures. 
 
(1)  Project planning  
 
      
 

L(t)|t=n =Ld            (1) 
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Here, Ld  is the actual (or planned) area of land development project d (from stage 1) in the 
whole period [t=1∼n]. Ld in principle should result from traditional top-down socio-
economic models (e.g. White and Engelen, 2000). Here it is assumed to be an exogenous 
variable (known value from the urban growth analysis of past years); for example, a 
shopping centre occupied 5 ha from 1993 to 2000, i.e. Ld=5 (ha). L(t) is the simulated area 
of land development project d till time t; L(1996) means the simulated land transition 
amount from 1993 to 1996. L(t) will be calculated from the section (4).  
 
(2)  Constraint-based site selection model 

 
 
 

 
 
Here, the site selection of projects includes a central point and its surrounding area or 
neighbourhood. The location of the centre is determined by various critical constraints. 
Like other research (Ward et al., 2000a; Yeh and Li, 2001a), constraints operate at the 
local, regional and global levels. Global constraints taking account of the whole study area 
include physical (e.g. ecological protection zone, accessibility to transport infrastructure 
and city centres/sub-centres), the economic (e.g. investment, land value), social (population 
density) and the institutional (master planning) aspects. Regional constraints are defined by 
the availability of developable or developed land and its density in a neighbourhood. It 
should be noted that the regional level has a varied spatial extent as the size of 
neighbourhood varies from project to project. In some cases, we have to define multi-level 
regions (e.g. Batty et al., 1999b). Local constraints refer to the physical conditions of a site 
or pixel such as slope, soil quality and geological condition. All the criteria at the three 
levels vary from project to project, and from case to case, as they should be able to interpret 
the specific spatial behaviours of the actors involved in each project. For example, slope 
does not take effect in a flat city. Equation 2 is based on the assumption that site selection 
depends on a limited number of equally weighting constraints as in practice the decision-
making process is primarily qualitative and simple among decision-makers. This stage is 
implemented by GIS analysis based on spatial operation (e.g. 'find distance', 
'neighbourhood statistics', and 'map calculation') and by heuristic rules operation (e.g. if 
rule 1 and rule 2 ... then do) based on visual programming. GIS visual functions can help 
modellers test their systematic thinking, i.e. whether this rule can create ideal sites for a 
planned project.  
 
(3)   Local growth model 
 
This model seeks major spatial determinants for interpreting local spatial processes based 
on bottom-up CA simulation. CA are dynamic discrete space and time systems. A CA 
system consists of a regular grid of cells, each of which can be in one of a finite number of 
possible states, updated synchronously in discrete time steps according to a local, identical 
interaction rule. In this model, the cell state is binary (1 – land cover transition from non-
urban to urban, 0 – not), limited in the cellular space of each project. CA simulation is 
carried out by the dynamic evaluation and updating of the development probabilities at each 

∏
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cell in the cellular space. The cells selected in each iteration will be changed from 0 to 1. 
The development potential of each cell j at time t is defined as: 
 
 
 
 
 
 
Where Pj(t) refers to the development potential of cell j at time t. It is assumed that a total 
of m constraints (1≤ i ≤ m) are considered, comprising k non-restrictive and m-k restrictive 
constraints – when k+1≤ i ≤ m, ωi is a binary variable (0 or 1) representing restrictive 
constraints from local, regional and global levels (equation 3). ωi =0 means that a cell is 
absolutely restricted from transition into urban use in relation to constraint i, e.g. the centre 
of a large lake.  
 
When 1≤ i ≤ k, they are non-restrictive constraints or named factors in order to be 
distinguished from restrictive constraints. These factors complementarily contribute to the 
development potential of a cell. The potential for transition depends on a linear weighted 
additive sum of development factors. Wi(t) is the relative weight value of factor i to be 
calibrated from data. Largely, Wi(t) interpret the causal-effects of the local growth process. 
In the case of global temporal dynamics, Wi(t) is treated temporally as a constant Wi . The 
functions Wi(t) will be discussed in detail in the next section on local temporal dynamics. 
Vij(t) is the standardised score (within the range 0~1) of factor i at cell j at time t according 
to equation 4. In equation 4, Xij(t) is the value of factor i at cell j at time t; min and max are 
the minimum and maximum of Xij(t)  among the cells to be evaluated in relation to factor i. 
In urban growth, the frequently considered factors include transport accessibility, urban 
centres/sub-centres accessibility, suitability, planning input and dynamic neighbourhood 
(e.g. White et al., 1997; Clarke and Gaydos, 1998; Wu, 1998c; Ward et al., 2000a).  
 
Suitability analysis has been implemented at the stage of site selection. The other four 
factors are selected for evaluating Pj(t) at this stage. The quantification of master planning 
will be explained in the section on implementation. Accessibility measurement, such as the 
accessibility to a major road, is a very active field in GIS and modelling. Numerous 
methods have been published (e.g. Miller, 1999). In this study, a negative exponential 
function is employed to quantify the distance-decay effect (equation 5). Urban models 
based on economic theory (Muth, 1969) and discrete choice theory (Anas, 1982) made 
widespread use of the negative exponential function. Previous research for the same case 
study (Cheng and Masser, 2003) confirmed its effectiveness, although the inverse power 
function has also frequently been successfully employed for quantifying the distance-decay 
effect (Batty and Kim, 1992). 
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Where dij is the distance from cell j to any spatial element defined in factor I, such as to a 
major road network. φ is a parameter controlling the decay effect of distance. Usually, 
0<φ<1, and φ varies with factor i. A higher value of φ means that the influence on land 
transition will decrease more rapidly. The parameter φ can be determined by a global 
exploratory data analysis of the urban growth patterns (Cheng and Masser, 2003), where φ 
is a slope value of the log-linear relationship between probability of transition and distance 
dij. Equation 5 calculates the potential for land conversion contributed by any proximity 
factor. In this study, accessibility factors are fixed or static during the modelling period as 
the spatial factors (e.g. road networks) are not updated temporally, so Vij(t)=Vij. 
 
In our model, neighbourhood size is not globally universal but locally parameterised, and 
varies with different projects as each project has distinguishing social and economic 
functions. The neighbourhood effect (action-at-distance) is represented as a non-restrictive 
factor in equation 3, which indicates the spatial influences of developed cells on land 
conversion in surrounding sites. Developed cells come from the previously transited cells or 
the old urban area. Strictly speaking, the former reflects the local spatial self-organisation 
of land conversion in each project as a dynamic variable that is updated in each iteration, 
i.e. Vij(t)≠Vij. The latter depends on existing global urban activities as a fixed spatial factor. 
They are treated as two independent factors in this research. 
 
In practice, restrictive and non-restrictive constraints are a relative classification. They are 
temporally varied. For example, ponds may be a restrictive constraint in 1950 but become 
non-restrictive in 2000 as no large quantity of developable land is available in the later 
period. 
 
 
  
        
 
 
Principally, land conversion is allocated according to the highest score of the potential; 
however, practically, this is subject to stochastic disturbance and imperfect information. To 
generate the patterns that are closer to reality, a stochastic disturbance is introduced as 
(1+ln(ξ)α) (Li and Yeh, 2001a). ξ is a random variable within the range [0∼1]. α is a 
parameter controlling the size or strength of the stochastic perturbation. Like other CA 
applications (White et al., 1997; Wu and Webster, 1998; Ward et al., 2000a), Pj'(t) in 
equation 6 represents the probability of land transition in cell j at time t, which is the major 
driving force of local growth. 
 
Whether a cell is to be transited or not from time t-1 to t depends on the probability Pj'(t) at 
each iteration. Selection will start from the maximum of {Pj'(t)} until it reaches the required 
number of cells, i.e.∆L(t), for the iteration between time t-1 and t. The demand of land 
consumption ∆L(t) in equation 7 will be calculated from the stage of temporal control as 
L(t) is the accumulative amount of land development until time t.   
 

 Pj'(t) = (1+ln(§) a) Pj(t)           

∆L(t)=L(t)-L(t-1),   L(0)=0         

(6) 

(7) 
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(4)  Temporal control model 
 
Previous studies suggest that urban development process L(t) in equations 1 and 7 follows a 
logistic curve over time (Herbert and Thomas, 1997). For example, Sui and Hui (2001) 
simulated the expansion trend of the desakota regions between 1990 and 2010 by using a 
logistic equation, where the total number of converted urban pixels was a logistic function 
of the year. Here, the same principle is applied for the temporal control of each project. A 
standard logistic curve is illustrated in equation 8. 

 
 
Where a, b and c are unknown parameters, t (1~n) the time step and L(t) the amount of land 
development till time t. If it is assumed that L(0)=L0=a/(1+b)=1,  L(n)=Ln=a/(1+be-cn)=Ld, 
Here, n, Ld are the same definition as in equation 1;  equation 8 can be revised as in 
equations 9 and 10: 
 

 
z in equations 9 and 10 implies the long-term limit of L(t) behaviour. The shape of the 
logistic curve usually represents the speed of project development over time, which is 
controlled by the parameters c, n and Ld. Here, for simplicity, temporal control is classified 
as three types: slow growth, normal growth and quick growth, which indicates three 
distinguishing scenarios. If it is assumed that L(t) = Ld /λ when t = n/2, c = 2log [(Ld -λ)/(λ-
1)]/n. Further, L(t) can be the function of both time t and parameter λ when n and Ld are set. 
Consequently, the value of λ will determine the shape of the logistic curve. As such, we can 
define slow, normal and quick growth in equation 11 according to λ. Of course, we can 
define more classes such as 'very slow' and 'very quick' by assigning a different λ value.   
 
 
 
 
 
 
 
 
 

"Quick growth":     λ  = 4/3 
"Normal growth":   λ = 2              
"Slow growth":      λ  = 4             
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Figure 6.2 is an example of three modes, where Ld=500, n=30, and λ is equal to 4/3, 2 and 
4 respectively for the three patterns. However, iteration time t (1~n) in simulation is 
different from the real time: year y (1∼m) such as 1993 (y=0) and 2000 (y=7). If Li(y) 
denotes the total growth of project i until year y, a transition from Li(t) to Li(y) should be 
established as equation 12. 
 
 
 
 
In previous research on CA applications, a linear function is applied, i.e. t=∆*y. Here ∆ is 
assumed to be a constant, which means equal growth rate. For example, when y=5 years, 
t=20 iterations; in the case of a linear relationship, it can be defined as t = 4*y. So 
y(1)=∑L(t), 0<t<5. In reality, function h could be a non-linear function of iteration number 
t, which can be tested experimentally through qualitative understanding and visual 
exploration of the difference between actual and simulated processes.  
 
 6.2.4   A conceptual model for local temporal dynamics 
 
The multi-stage method can understand the global temporal dynamics of the whole study 
area rather than the local dynamics of each project. The latter requires a different 
perspective, focusing on more detailed spatial and temporal processes. 
 
Heterogeneity in a temporal context means that the parameters describing any geographical 
phenomena vary from phase to phase in the whole period studied. For example, Wu and 

Li(y)=h(Li(t) )   y=1, 2,...m;    t=1, 2, ...,n;  n>m         

Figure 6.2   An illustration of temporal development patterns 
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Yeh (1997) applied logistic regression methods for modelling land development patterns in 
two periods (1979-1987 and 1987-1992) based on parcel data extracted from aerial 
photographs. They found that the major determinants of land development have changed: 
from distance from the city centre to closeness to the city centre; from proximity to inter-
city highways to proximity to city streets; and are more related rather than less related to 
the physical condition of the sites. This suggests that various factors are changing their 
roles in the process of land development. Likewise, if we shrink the long period (1979-
1992) to a shorter period (such as 1993-2000) and zoom out the spatial extent from the 
whole city to a smaller part (such as a large-scale project), the same principle should apply 
as well. Therefore, temporal heterogeneity results in complex spatial and temporal 
processes, which need to be identified in modelling. As similar patterns can result from 
numerous different processes, understanding process is more important than understanding 
pattern. Pattern is only a phenomena but process is the essence.  
 
Figure 6.3 gives an example of spatial pattern and processes involved in urban growth. 
T1,T2,T3 indicate time series of land development. The grey level means the temporal order 
of land development; the darker the later. The same spatial pattern results from three (in 
reality, more) distinct spatial-temporal processes, which reflect the spatial and temporal 
interactions between road-influenced and centre-based local growth patterns. The arrows 
indicate the trend of temporal development, from which we can define them as three 
different processes (convergence, sequence and divergence).  
   
 
 
 
 
 
 
 
 
 
 
 
 
Table 6.1  Dynamics in local spatial-temporal processes 

Process T1 T2 T3 

Convergence Wr →1, Wc →0  
(if Lt  < Ll + Lu ) 

Wr →0, Wc →1  
(if Lt  > Ll + Lu) 

– 

Sequence Wr →1, Wc →0  
(if Lt < Ll) 

Wr →0, Wc →1  
(if Lt > Ll  & Lt < Ll + Lc) 

Wr →1, Wc →0  
(if Lt > Ll + Lc & Lt < L) 

Divergence Wr →0, Wc →1  
(if Lt < Lc) 

Wr →1, Wc →0  
(if Lt > Lc and Lt < L) – 

Note: symbol "→" means "approaching to or close to" 
 

Figure 6.3  Different spatial-temporal processes 
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The basic principle behind the phenomena is that various physical factors such as roads and 
centres take temporally varied roles in the course of local growth. In the first one 
(convergence), the road is more important than the centre at time T1, but less important at 
T2. This means that local growth occurs along the road first and then moves to the centre. 
The third one has an opposite effect. If we use L to denote the total amount of local growth, 
Ll for the lower part along road, Lu for the upper part along road, Lc for the centre part and 
Lt for the continuous development amount till time t, L = Ll +Lu + Lc . Wr and Wc represent 
the weight values of spatial factor ROAD and CENTER respectively. The rules detected are 
listed in table 6.1. The three cases imply that temporal dynamics can be represented and 
understood through the dynamic weighting concepts. Dynamic weighting means that factor 
weight is not a constant but a function of temporal development amount (equation 13). 
 
 
 
 
 
To some extent, this equation suggests a dynamic feedback between wi(t) and Lt, 
representing the complex interaction between pattern and process. Lt indicates the temporal 
pattern in amount, and the process is described by the changing roles of multiple factors 
wi(t); actually, Lt is also impacted by wi(t). In principle, the functions fi(Lt) should be 
continuous, which can be a step linear or more complicated non-linear function as wi(t) is 
not negatively or positively linear to Lt in most cases. For example, in the case of the 
sequence (table 6.1), Wr temporally experiences a  decrease from 1 to 0 and then an 
increase from 0 to 1 when t changes from T1 to T3. Apparently, Wr is a non-linear function 
of Lt. When fi(Lt) is constant in relation to t, wi is becoming the universe temporally, as 
applied in most CA applications. However, this treatment is effective for understanding 
global dynamics in equation 3 but not local dynamics at the project level (illustrated in 
figure 6.3). The design of function fi(Lt) is critical. Empirical study can be carried out based 
on a theoretical understanding of the interaction. Higher temporal resolution such as a 
series of the actual value Lt can be used to calibrate the temporal rules wi(t). For simplicity, 
the functions fi can be discretised. This implies that the whole period needs to be divided 
into a few phases t1 ~ tn, in which varied weight values are defined with the assistance of 
local knowledge or by calibration from data.  
 
 
6.3   Implementation 
 
6.3.1  Urban growth 
 
During the last five decades, Wuhan underwent rapid urban growth from 3,000 ha of built-
up area in 1949 to 27,515 ha in 2000 (chapter 3). As a result, Wuhan is a good case for 
understanding the dynamic processes of urban growth in a fast developing country. In this 
chapter, the urban growth of Wuhan in the period 1993-2000 will be modelled based on the 
methodology discussed in section 6.2. 
 

Wi (t) = fi (Lt)             i= c, r (13) 
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Operational CA models need access to real databases for better simulation performance (Li 
and Yeh, 2001a). The imagery employed here includes SPOT PAN/XS of 2000. The 
secondary sources include planning scheme maps, traffic/tourist maps, street boundary 
maps, and the population census and the statistical yearbook. These are used to create the 
required spatial factors (e.g. proximity and density variables) for CA modelling based on 
simple GIS operations such as overlay, buffering and neighbourhood statistics. The detailed 
procedures can be seen in chapter 3. 
 
Table 6.2  Land cover transition from 1993 to 2000 (unit of area: ha) 

Major types Water Town/ 
Village 

Agricultural 
land Others Total 

Area in 1993 30,258 8,669 51,585 – – 
Transited area   1,131 1,530   3,527 72 6,260 
Transition percent 18.1% 24.4% 56.3% 1.2% 100% 
Annual transition rate   0.5%   2.3%    0.9% – – 

 
 
The land cover transition from 1993 to 2000 shown in table2 is calculated based on a 10×10 
m2 cell size. This table shows that major land use/cover changes come from water, 
town/villages and agricultural land, which were physically or functionally transferred into 
the urban built-up area. Town/villages with the highest annual transition rate were only 
functionally transferred to urban administration due to the rapid expansion of Wuhan 
municipality. Agricultural land has the highest transition percentage. Here, the water body 
includes ponds and lakes. A higher percentage area is taken for transition from ponds than 
from lakes (see map of actual pattern in figure 6.6). The item 'Others' includes green areas, 
sands, and mis-classification from image processing etc, which is omitted for modelling. 
 
6.3.2  Project planning and site selection 
 
With the assistance of historical documents, local planners and fieldwork, four large-scale 
projects, planned before or around 1993 were identified (WBUPLA, 1995). All small-scale 
projects were merged into one class, which results in five projects (figure 6.6 and table 6.3) 
as follows:  
 
1) Zhuankou: car manufacturing plant (planned from 1988); 
2) Wujiashan: Taiwanese investment zone (planned from 1992); 
3) Guanshan: hi-tech development zone (planned from 1988); 
4) Changqing: large-scale residential zone (planned from 1994); 
5) The rest: small-scale development (commercial/institutional/residential). 
 
In a GIS environment (ArcView 3.2a), we create the required spatial layers (figure 6.5), 
including land cover of 1993, distance to road networks and city centres/sub-centres, and 
population density. These layers are exported into a computational program for testing 
different site selection rules for each project according to equation 2. As a result of a 
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sensitivity analysis conducted in a visual programming environment, the tested constraints 
at three levels for each project are listed in table 3. The total amount of development Ld 
(from the actual urban growth in figure 6.6) and the temporal control mode (from document 
and interviews) are also displayed in this table.  
 
Table 6.3  Site selection rules of five projects  

Project Zhuankou (1) Wujiashan (2) Guanshan (3) Changqing 
(4) The Rest(5) 

Cells -  Ld  1,390 314 514 160 3,710 

Functions Manufacturing Economic 
zone 

High-tech 
zone Residential Mixture 

 
Global 
constraint 

 
<300 m to 
 major road 

 
<300 m to 
major road 

 
<300 m to 

major road; 
 

<4.2 km to 
the university 

street 

 
<300 m to 

major road; 
<3.5 km to  
sub-centres; 

>560 
(person/ha) in 
net population 

density. 
 

 
Close to city 
centres/sub 

centres; 
 

Close to road 
network. 

 
Regional 
constraint 

 
Density of 

developable 
land 

 
>62% 

in a 4.5 × 4.5 
km2 square; 

& 
> 90% in a 2 

× 2 km2 

square 
 

 
Density of 

developable 
land 

 
>69% in a 1 × 
1 km2 square; 

 
Density of 
developed 

area 
 

>18.7% in a 2 
× 2 km2 
square. 

 

 
Density of 

developable 
land 

 
>68% 

in a 3 × 3 km2    

square 
 

 
Density of 

developable 
land  

 
>60% in a 1 × 
1 km2 square; 

 
Density of 
developed 

area  
 

>10% in a 2 × 
2 km2 square 

 
Higher 

density of 
developed 

areas 

 
Local 
constraint 

 
Agricultural, 

village 

 
Agricultural, 

village 

 
Agricultural, 
village, hill 

 
Agricultural, 

pond 

 
Agricultural, 
village, pond, 

lake 
 
Temporal 
control 

 
Quick 

 

 
Slow 

 
Quick 

 
Quick 

 
Normal 

 
 
After 1992, Wuhan entered a new wave of development characterised by more actors, 
diverse functions and a new industrial structure (Cheng and Masser, 2003). From this table, 
we are able to explain the spatial behaviour of the actors involved in each project. For 
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instance, the dominant actor in the Zhuankou, Wujiashan and Guanshan projects is Wuhan 
municipality, which obtained financial resources from the central government, foreign 
investors and local enterprises. Being the owner of the land, the actor did not need to 
consider the costs of land utilisation. Hence, for large-scale projects, the first rule is the 
availability of a certain amount of developable land. Being oriented towards manufacturing 
and tertiary industry, the second rule is accessibility to major road networks. Strictly 
speaking, the second one is not only true for large-scale but also for small-scale land 
development such as commercial use.  
 
Moreover, accessibility to developed areas is crucial for the economic development zone 
(Wujiashan) and the high-tech zone (Guanshan). Access to research resources, including 
nearly 20 universities is a prerequisite to locating a high-tech zone (Guanshan). In contrast, 
the major actors in the Changqing housing project are local real estate companies and 
relevant work units. Land value is becoming an important criterion, which weakens the role 
of accessibility to the city centres. The low-quality land cover such as ponds is much 
cheaper than agricultural land. Higher population density can guarantee better market 
demand as an influential factor for residential development. For small-scale projects, 
especially inside urban districts, more actors are involved in the decision-making, including 
local residents, investors, work units, planners and the lower levels of local government. 
This results in a more stochastic process of site selection as a result of which the constraints 
become more uncertain and fuzzy. However, generally speaking, accessibility to the city 
centre/sub-centre and road networks is the key factor. 
 
6.3.3  Local growth 
 
The cell size in this research is 100 × 100 m2, which results in a 640 × 410 grid. A smaller 
cell size (such as 10 × 10 m2) would cause an overload in terms of model computation. The 
state of cells is binary (1 - change, 0 - nonchange). The initial layer is the 1993 land cover. 
This includes Developed, Agricultural (A), Village/town (V), Pond (P), Lake (L), and 
Protected (Green, Park, and Sands). In figure 6.5a, P and L are merged into water bodies, 
and 'others' include protected. As described in 6.3.1, only four types A, V, P and L, 
underwent much change. The pattern model from another part of this research (Cheng and 
Masser, 2003), shown that the major spatial determinants of urban growth in 1993-2000 
included major road networks, minor road networks, centres/sub-centres and master 
planning (as displayed in figure 6.5). They are selected here as non-constrictive factors for 
evaluating the potential for land conversion. 
 
It should be noted that the classification of each layer is of great importance and modelling 
is sensitive to the classification, particularly when the study area is large and the period is 
long. For instance, the construction of roads may occur in different phases of the period to 
be modelled. Their construction time should be taken into account. In this research, a major 
road connection (linking with the Third Bridge over the Yangtze River) was completed in 
early 2000. This is clearly visible in the 2000 SPOT images. However, this major road is 
not included in the major road network layer because it had no practical impacts on urban 
development in the period 1993-2000. This judgement is also confirmed by very sparse and  
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limited land cover change surrounding the road. Other layers are spatially defined by the 
following similar rules.  
 
Wuhan city can be treated as a flat landscape as its elevation ranges between 22 and 27 m 
above sea level apart from a few hills. Hence, slope is not an influential factor. Physical 
constraints principally comprise water bodies (see figure 6.5a). Theoretically, water bodies 
should be completely excluded. However, in this case study, 18% of the land cover change 
comes from water bodies, which include ponds and lakes (see table 6.2). As this comes 
mostly from either small-scale ponds or the fringe of large lakes, a general procedure can 
be designed for defining a specific layer (exclusion layer):      
 
• Extracting a water body from the land cover layer of 1993; 
• Neighbourhood statistics (based on a circular neighbourhood with a 200 m radius); 
• Selecting sum > 4 (neighbouring 4 ha area is water) 
 
The layer will be utilised as physical constraint from the water body, defining excluded 
zones from transition. In the five CA models corresponding to the five projects, a circular 
neighbourhood is chosen because it does not have significant directional distortion. Its size 
varies with different projects, ranging from three to nine cells. The selection of 
neighbourhood size for each project relies on empirical study and sensitivity analysis (see a 
later section). The heterogeneity of spatial processes is indicated by the varied combination 
of influential factors, weight values and parameters, which imply distinguishing local 
spatial behaviour. 
 
Table 6.4  Influential degree of master planning on land cover transition 

Code Classification Zhuankou 
 Ci / Mi     Mi   

Guanshan 
   Ci / Mi       Mi  

The Rest 
   Ci / Mi     Mi  

R1 Low-rise residential 0.237 265 0.23   57 0.087 1082 
R3 Poorer environment - - - - 0.1333   149 
M Industry 0.318 508 0.24 172 0.049   419 
G1 Public green 0.27 137 - - 0.0916   416 
G2 Protected land 0.147   58 0.33 112 0.041   222 
G3 Ecological agriculture - - - - 0.0216     82 
C1 Administration/Offices 0.26   52 - - 0.0787     17 
C3 Cultural/Recreational 0.528   16 - - - - 
C4 Sports facility - - 0.3   44 0.035     89 
C5 Hospital/Health 0.742   33 - -, - - 
S1 Street - - - - 0.069   354 

 "-": Mi   <15 (omitted)  
 
Given that local growth is impacted by the master plan to be implemented in this period, we 
must incorporate the master plan for 1996-2020 as an influential factor (this scheme was 
initiated in 1990 and approved by the central government in 1996). Due to the rapid urban 
expansion in the fringe, some projects such as Changqing and Wujiashan had not even been 
planned until their construction. These will be excluded from the master planning analysis. 
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Only the projects covered by master planning are considered i.e. Guanshan, Zhuankou and 
The Rest. Each cell j is assigned a value Xj, representing the influential degree of the 
planned land use on its land cover transition in a project. If Mi denotes the total area of land 
use i in a specific project, Ci denotes the transited part of Mi,  Ci / Mi  generally indicates the 
influential degree of land use i. If a cell j was planned as land use i, Xj =Ci / Mi . Xj  needs to 
be standardised according to equation 4 (Xj-min) / (max-min) before it can be incorporated 
into the evaluation formula (equation 3). The Mi and  Ci / Mi   values of the major land uses 
are listed in table 6.4. The item 'Code' follows the National Urban Land Use Classification 
Standard (NULCS). Generally, table 6.4 reveals that the master plan was more successful in 
guiding large-scale projects in the fringe than small-scale ones in urban districts. In figure 
6.5d, "Residential" includes R1~R3, "Green" G1~G3, "Street" S1, and the rest (C1, C3, C4, C5) 
are all merged into "Others".  
 
The calibration of parameters has proved a difficult task in urban CA modelling (Clarke 
and Gaydos, 1998; Li and Yeh, 2001a), especially when there are many factors and 
parameters to be considered. The difficulty lies in the fact that most urban CA modelling 
takes the whole municipality into the calibration procedure, which results in intensive 
computation overload. In this research, project-based CA modelling has largely reduced the 
computational time of calibration as the spatial extent of the project is much smaller than 
the whole study area, as shown in table 6.5 and figure 6.6.  
 
The factors and parameters for model calibration include six spatial factors,  neighbourhood 
size and stochastic disturbance α. Other parameters (e.g. temporal pattern mode parameter 
λ, iteration time t) are utilised for sensitivity analysis in section 6.4.1. The six spatial factors 
are   "distance to minor road" (OR), "distance to major road" (MR), "distance to centre/sub-
centres" (CN), "density of neighbouring developed areas" (DD), "density of neighbouring 
new development" (DN), and "master planning". Their parameters φ (in equation 5) are 
taken from the global pattern model of logistic regression carried out in another part of this 
research (Cheng and Masser, 2003). Automatic search for the best-fit parameters is carried 
out by using a hierarchical means, i.e. to reduce step size for five loops corresponding to six 
factors at two stages. For example, the step size of loops in calculating the weight values is 
set as 0.05 first, i.e. from 0.05 to 1 step 0.05. When the parameter scope of the ideal 
accuracy is determined, e.g. from 0.2 to 0.25, we can set a second step size 0.005 for finer 
calibration, i.e. from 0.2 to 0.25 step 0.005.  
 
The validation accuracy depends on the approach used to compare simulated and actual 
patterns. This is traditionally measured by a coincidence matrix generated by a cell-cell 
comparison of two pattern maps. Some researchers argue that CA simulations should be 
assessed not just on the goodness of fit (a cell by cell basis) but also on their feasibility and 
plausibility as urban systems are rather complicated and their exact evolution is 
unpredictable (Wu and Webster, 1998; White and Engelen, 2000; Yeh and Li, 2001a). 
Some global measures that have been used for testing the validity of CA simulation include 
the fractal and Moran I index (Wu, 1998a), fractal analysis (Yeh and Li, 2001a), and 
landscape metrics (Soares-Filho et al., 2002). Wu (2002) emphasises the need to validate 
the model through both structural and cross-tabulation measures. Structural measures can 
only compare the pattern (outcome of process) not the spatial location (or process).   
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Table 6.5  CA Simulation of five projects 

Projects Zhuan
kou-1 

Zhuankou-2 Wujia 
shan 

Guan 
shan 

Chang
qing 

Rest 

Land demand Ld   1,390 1,390 314 514 160 3,710 
Accuracy CC 54% 54% 51.6% 53.2% 85% 55% 
Lee-Sallee index  0.37  0.37   0.35   0.36   0.74  0.38 
Neighbourhood size 6 6 5 8 3 7  
λ  4/3 4/3 4 4/3 4/3 2 
Dynamic weighting - <15% 15-55%     >55% - - - - 
Major road (MR) 0.2 -             0.5         0.05 0.325 - 0.1 0.3 
Minor road (OR) 0.3 -             0.1         0.15 0.1 0.35 0.55 0.15 
Centres (CE) - 0.7            -           0.5 - - - 0.2 
Neighbourhood-new  0.3 0.3         0.1          0.15 0.3 0.35 0.35 0.1 
Neighbourhood-old - -                 -           - 0.275 0.25 - 0.2 
Master planning 0.2 -             0.3         0.15 - 0.05 - 0.05 
Total  100% 100%     100%     100% 100% 100% 100% 100% 

Note: α=1%, n=50, φ for MR, OR and CN: 0.000765, 0.0012 and 0.000272 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6.5  Simulated (1994-2000 in order) and actual patterns (last map) 



Understanding spatial and temporal processes 

 

157

We consider that spatially location match is also of great importance for supporting 
planning decision-making despite the difficulties imposed by CA modelling. Another 
reason lies in the fact that local processes at the project level require more accurate cell-
based measures, as their morphology is less definite than that of processes at the global 
level. 
 
Clarke and Gaydos (1998) outline four ways to statistically test the degree of historical fit 
(three r-squared fits and one modified Lee-Sallee shape index). For the Lee-Sallee shape 
index (combining the actual and the simulated distributions as binary urban/non-urban, and 
computing the ratio of the intersection over the union), they reported that the practical 
accuracy is only 0.3. In this chapter, we use consistency coefficients (CC) (the percentage 
of the matched over the actual) and the Lee-Sallee index (LI) for the evaluation of goodness 
of fit. The total number of pixels is set the same for simulation as the actual pattern, i.e. Ld 
= Ln, LI=CC/(2-CC). For example, when CC=0.57, LI=0.4.  Following this formula, the 
Lee-Sallee index for five projects are computed and listed in table 6.5. The overall accuracy 
based on the weighted combination (Ld) of five projects is 0.554 in CC and 0.383 in LI, 
greater than those of Clarke. 
 
6.3.4  Temporal control 
 
With local knowledge, we are able to identify the patterns of temporal development of each 
project (see table 6.3). In 1993, Zhuankou was still completely rural. By 1995 it was nearly 
half constructed. There was not much change from 1997 and 2000. Therefore, its temporal 
growth pattern is defined as "Quick". The small-scale projects (the Rest) are a mixture of 
all three patterns. Some may be quick and others slow. On average, it is reasonable to 
classify them as "Normal". The number of iterations is defined as n=50 because the greater 
the number, the finer the discriminative capacity of the models.  
 
Figure 6.6 exhibits the trajectories of temporal development of the five projects 
respectively, according to the results of the validated CA simulation. As described in 
equation 12, the output of CA simulation is Li(t) (1~n), which is different from the yearly 
actual amount Li(y) (1~m) for each project i. We need a transition from Li(t) to Li(y). The 
transition function h in equation 12 should be based on an understanding of the actual 
temporal development process, which is determined by its socio-economic development. 
For the sake of simplicity, we use an equal time interval, i.e. a linear function: y = t/7. As t 
ranges from 1 to 50 (n=50) and y from 1 to 7 (m=7),  Li(y)= ΣLi(t), t from 7*(y-1)+1 to 7*y. 
A series of newly created layers for the whole study area,  corresponding to the seven-year 
urban growth (from 1993 to 2000, figure 6.6), have been imported into animation software 
(Animagic32) for dynamic visualisation. This animation is helpful for exploring and 
comparing the temporal dynamics of spatial processes. 
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Table 6.5 shows the spatial heterogeneity of the causal factors, which vary spatially in 
terms of their weight values. The neighbourhood effect is represented by neighbourhood 
size, and the weight values of new and old developed areas. This table suggests that there 
are some similarities and some dissimilarities between the five projects. The weight values 
of the major roads, minor roads, city centre/sub-centres and master planning also show 
some differences. Major roads play a greater role in "The Rest" and Wujiashan, and less 
important roles in Changqing and Guanshan. Conversely, minor roads play a greater role in 
the latter projects than in the former.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By linking the site selection rules shown in table 6.3, it can be seen that the road networks 
system actually takes varying roles during different phases of urban growth. The major road 
network is the key at the stage of site selection and remains important for some areas at the 
stage of local growth. However, the minor road network is only active at the stage of local 
growth. This is due to the fact that minor road networks are created after the stage of site 
selection, together with the new growth. Relatively, city centres/sub-centres are influential 
only for "The Rest" as the others are located in the urban fringe. Master planning is less 
influential than others. The spatial heterogeneity described above suggests that the causal 
effects of urban growth vary from place to place. Local process modelling can offer deeper 
insights into urban growth processes. 
 
 

Figure 6.6  Temporal control patterns of five projects
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6.3.5  Local temporal dynamics 
 
Local temporal dynamics are focused on each project and are indicated by the following 
examples: 
• Compared with the major road network, minor roads, especially in new zones that are 

also new development units, may occur temporally at different phases of the period 
studied, i.e. between T0 and Tn, but not immediately from T0; 

• The spatial impacts of various factors such as roads and centres are not simultaneous in 
temporally affecting local growth;  

• Neighbourhood effects may suffer from temporal variation; for example, it may be 
stronger at T0 than at Tn, or vice versa. 

 
These examples qualitatively show the complex pattern and process interaction as 
explained in section 6.2.4. Two models of Zhuankou in table 6.5 have similar model 
accuracy and similar patterns. However, their spatial-temporal processes are quite different, 
as quantitatively shown in figure 6.8. Model 1 exhibits a more random process. Model 2 
shows a more self-organised process. Model 2 is based on the assumption that new 
development in Zhuankou first occurred in the centre, then along the major road, and finally 
spread from the centre. The assumption corresponds to a temporal dynamics that is spatially 
controlled by three sets of weight values (table 6.5). To calibrate this process-oriented CA 
model, manual tests based on the modeller's understanding of local growth processes and 
the visual exploration of model outputs (temporal patterns) are very important for reducing  
parameter ranges and making rough estimates of dynamic weight values. Limited automatic 
search can be followed for the best ideal combination of parameters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7  Local temporal dynamics (Zhuankou-1 and -2 in table 6.5) 



Chapter 6 

 

160

To some extent, the dynamic weighting implies the temporal lag of the spatial influences of 
locational factors on urban growth. This example suggests that local temporal dynamics can 
enable us to better understand the organised local growth. If we explore the changes in 
weight values, it can be found that the major changes are indicated in major roads and 
centres. As explained in equation 13, the weight values should be non-linear functions of 
temporal land development demand. Table 6.5 also shows the functions are highly complex 
in reality. They are frequently phased. Model 2 is actually based on local knowledge. Other 
projects can be calibrated temporally by the same procedures as in the Zhuankou project. 
 
 
6.4  Discussion and Conclusions 
 
6.4.1  Model calibration and validation 
 
Li and Yeh (2001a) report a calibration procedure of CA modelling by using an artificial 
neural network. In their method, the neural network is utilised to obtain the optimal 
parameter values automatically based on training empirical data, and then the parameter 
values calibrated are used to carry out CA simulation for new data. In CA models of this 
kind, the transition rules represented by the neural network structure are not transparent to 
users. Consequently, this method can be used for prediction by using the same set of rules, 
but it is not ideal for interpreting the logic of land conversion or spatial-temporal processes 
as it is a black box (Wu, 2002). 
 
It has been found in this research that visual tests offer a quick and useful way of 
calibrating and verifying a CA model (Clarke et al., 1997; Ward et al., 2000a), particularly 
with respect to sensitivity analysis. In this project-based CA modelling, calibration has 
proved not to be a severe problem in computation time. However, the optimal combination 
of parameters from automatic search may not give the best results as socio-economic 
systems essentially produce no best solution. Consequently, the calibrated results need 
further confirmation according to the interpretation and plausibility of their spatial and 
temporal processes. In table 6, the Wujiashan project is taken as an example to illustrate 
this issue. When neighbourhood size is set as 5, the optimal parameters with 52.8% 
accuracy are calculated by automatic search (step of weight value is 0.005), together with 
the other combination of parameters. However, the spatial processes produced by the 
weight values (0.2, 0.1, 0.45, 0.25) are not the same as the real temporal pattern based on 
visual comparison. Conversely, another combination (0.325, 0.1, 0.3, 0.275) can create 
more satisfactory temporal patterns, although its model accuracy (51.6% in CC) is lower. 
Consequently, visual tests are still a necessary means for process rather than pattern 
modelling.  
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Table 6.6  Calibration of CA modelling and sensitivity analysis (Wujiashan project) 
Accuracy 
CC(%) 52.8 51.6 51.3 50.8 29.5 46 49.7 50 50.8  
Neighbourhood 
size 5 5 5 5 5 8 6 4 5 

λ=4.5 
Major road 
(MR) 0.2 0.325 0.325 0.225 0.375 0.1 0.325 0.325 0.325 
Minor road 
(OR) 0.1 0.1 0.05 0.25 0.3 0.3 0.1 0.1 0.1 
Neighbourhood 
(new) 0.45 0.3 0.35 0.15 0.3 0.4 0.3 0.3 0.3 
Neighbourhood 
(old) 0.25 0.275 0.275 0.375 0.025 0.2 0.275 0.275 0.275 
Total  (%) 100 100 100 100 100 100 100 100 100 

Note: α=1%, n=50, λ=4, φ for MR, OR and CN: 0.000765, 0.0012 and 0.000272 
 
 
Another part of calibration is sensitivity analysis, as the results of CA simulation are very 
sensitive to the parameter values (e.g. neighbourhood size, weight values, λ and n). This is 
the issue of uncertainty existing in CA simulation that has not been given enough attention 
in most applications. For the Wujiashan project, before accepting (0.325, 0.1, 0.3, 0.275), 
we need to test its stability by slightly or greatly adjusting the weight values and the other 
parameters such as neighbourhood size as listed in table 6.6. The changes (slight or great) 
in validation accuracy that are identical to those in parameters assure the reliability of this 
set.  
 
6.4.2  Visualisation of processes 
 
To implement site selection and CA modelling, a loose coupling strategy is frequently 
adopted for various applications (Clarke and Gaydos, 1998; Bell et al., 2000). Loose 
coupling means that a data transfer procedure is frequently implemented between a CA 
model, GIS, and an animation module. This loose coupling strategy sacrifices the friendly 
interface but improves the computation efficiency of CA simulation. Here the site selection 
rules and the CA model is programmed in object-oriented programming language. Spatial 
data analysis and visual exploration tasks are implemented within a GIS environment − 
ArcView platform. Each layer produced is exported as an ASCII raster file. A sub-
procedure is programmed to read and write the ASCII raster files between CA and 
ArcView. The major parameters include the weight values, the temporal pattern control λ, 
the neighbourhood size and the stochastic perturbation α. The validation results are stored 
in a text file and an ASCII raster file.  A validated urban growth layer (1993-2000) from the 
simulation is separated into a series of maps, each corresponding to one year. The layers 
created are exported as a JPG or any other type of image file. These are inserted as an 
individual frame into the animation file for visual check of the spatial process. However, a 
major deficiency of this strategy is that it is not a very friendly environment for the 
immediate visualisation of spatial-temporal processes, although it is effective for model 
calibration. In the future, CA modelling tightly coupled with GIS and animation should be 
further studied to enhance its visualisation of spatial-temporal processes. 



Chapter 6 

 

162

6.4.3  Process modelling 
 
To some extent, the accuracy of a simulation model depends on the complexity and 
stochasticity of the real city and also on the availability of more detailed information. 
Although the overall accuracy of five CA models is only 55% based on a cell by cell basis, 
the methodology proposed in this chapter illustrates the potential for understanding spatial 
processes and their temporal dynamics at the two levels based on the methodology. The 
spatial clustering of land development projects indicates a self-organising process. The 
timing schedule of various projects exhibits global temporal dynamics. Dynamic weighting 
is an important concept for simulating process rather than pattern. Spatial classification 
based on the project concept is subjective but transparent to urban planners. The spatial-
temporal processes explored by project-based modelling can easily be interpreted with 
reference to socio-economic and decision-making processes. To be a true process model, 
CA modelling as suggested in this research should incorporate dynamic weighting methods, 
although there is still much difficulty in systematically defining these functions in practice. 
 
From the local spatial modelling point of view, a possible direction lies in applying a 
moving window or kernel in defining a project for each cell, so that generalised local 
process modelling can be repeatedly applied for each cell. This is a similar principle to that 
applied in geographically weighted regression (GWR) modelling. This idea can result in 
universally localised process modelling. The parameters for understanding local processes 
vary with the cell. Users can redefine interesting projects for further interpretation by 
focusing on some hot spots.   
 
From the perspective of spatial data analysis, the methodology can be utilised to discover 
the hidden processes from the required integrated spatial database regarding temporal urban 
growth. This has been one of the major concerns in the field of spatial data mining or 
knowledge discovery. When socio-economic data at detailed levels become available, 
project-based CA modelling can be further linked with micro-scale multi-agent and 
economic modelling. Such integration can explore the spatial and economic behaviour of 
various actors at the micro scale.  
 
The major purpose of CA simulation is to generate alternative scenarios for decision 
support in a smart growth management. The methodology developed here can be extended 
in this direction. In this new case, stages 1 and 4 need to incorporate top-down socio-
economic models for predicting the demand for new land development in the future, i.e. Ld  
in equation 1. Stages 2 and 3 are subject to some modification in quantification. The 
construction of plan scenarios is based on soft systems thinking, which stresses the role of 
users' subjectivity. In this way local planners' intentions can be transformed into spatially 
and temporally explicit weight values and certain parameters (e.g. Wu, 1998c). With a user-
friendly visualisation environment, the framework tested in this research can facilitate 
decision-making of urban spatial development. 
 
We cannot ignore the fact that any advanced modelling technique including CA must be 
based on a proper understanding and abstraction of the systems studied. The better the 
understanding the more accurate it is likely to be. Planning will never be a hard science, for 
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it is built on humanistic assumptions, values and goals (Shmueli, 1998). Our understanding 
of the new urban reality will be ultimately based upon a combination of computers and 
human judgement (Sui, 1998). 
 
CA is only a simulation tool for testing a decision-maker's understanding. Limited by 
existing GIS theory and methods, the identification of various spatial and temporal 
heterogeneity cannot be completed without the assistance of local knowledge. This implies 
that local knowledge is an important ancillary data source for CA modelling especially 
within the framework presented in this chapter. During the process of the modelling, project 
planning, site selection and temporal control need more input from local experts. For 
dynamic weighting, due to the limited temporal resolution, local knowledge is an essential 
source of qualitative information. It has been emphasised in this research that a soft system 
methodology, stressing the roles of decision-makers and feedback both between modellers 
and users and between stages of the decision-making process, is helpful, especially when 
complete information resources are not guaranteed. 
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Chapter 7    
 
Conclusions  
 

 

7.1  Introduction 
 
This research centres on understanding rather than predicting complex spatial and temporal 
urban growth, in support of urban development planning and growth management. The 
study of urban growth processes as a complex system is inherently multidisciplinary and 
contributes to and benefits from other disciplines. Understanding-oriented modelling needs 
innovative concepts, reliable and diverse data, and feasible methods of analysis or 
modelling. This research has put forward a general methodology based on complexity 
theory and modelling methods, together with remote sensing (RS) and geographical 
information science (GIS). This methodology is tested with reference to a rapidly growing 
city, Wuhan, in a dramatically developing country, China. Based on the findings of 
previous chapters, there is an open general question that needs to be answered: What are the 
contributions of the new findings to the relevant scientific fields and planning practice? 
With this question in mind, this chapter falls into five sections. Following this introduction, 
section 2 focuses on the implications for planning practice in Wuhan city. Section 3 relates 
to GIS with respect to data and spatial analysis. Section 4 concentrates on modelling, while 
the final section discusses the findings in terms of complexity theories and methods. Each 
of these sections includes a discussion of the main findings of the research, as well as some 
conclusions and suggestions for future work related to its specific theme.  
 

7.2  Implications for Planning in Wuhan  
 
The findings of the case study described in this research have resulted in some significant 
understanding of the great physical and functional changes that have taken place in Wuhan 
city over the past five decades despite the existing poor data infrastructure. Chapter 3 gives 
a detailed evaluation based on some specific indicators. The findings of this chapter reveal 
that the spatial structure of Wuhan has shifted from a monocentric to a multicentric form, 
and from a linear pattern along the rivers to an outward spreading pattern along the major 
road network; moreover, the land development process has become more fragmented and 
more diverse. Increasing industrial land use and decreasing residential land use show the 
continuously dominant roles of industry in the economic development of Wuhan city even 
after the economic reform. The paid transfer of land use rights has led to a relatively more 
compact pattern of urban growth than that under the free land market before the land reform 
(chapter 4). The influence of master planning is decreasing over the land development 
process. Conversely, road infrastructure has played a crucial role in new development, and 
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this grew stronger in the second wave (1993-2000) (chapters 5 and 6). This indicates that 
Chinese urban growth is still in its early stages, stimulated or guided by physical 
infrastructure and facilities, and lacks land market legislation. It also suggests that the 
methods of master planning are not suitable for this new challenge, which needs to deal 
with rapidly changing environments.  
 
New methods should be based on an understanding of the dynamic processes of urban 
development. This research has developed a general methodology that falls into three 
stages: monitoring (chapter 3), modelling (evaluation, measurement, pattern and process, 
chapters 3 to 6) and planning support (chapter 6). Modelling in this study has produced 
significant quantitative evidence for comparison, evaluation and interpretation. 
Consequently, modelling spatial and temporal change should become an important theme in 
the studies of Chinese urban planning. Understanding-oriented models are able to simplify 
complicated problems and construct potential scenarios for planning. 
 
In the future, we will first continue to model the spatial patterns and processes in the period 
1955-1965 based on the methodology developed in chapters 5 and 6 respectively. These 
results are expected to be used for systematic comparisons between the two development 
waves occurring under two different political systems. This is the comparative study in the 
vertical direction. Second, the multi-stage method based on cellular automata as described 
in chapter 6 will be extended as a planning support tool for building future urban growth 
scenarios of Wuhan. Third, as a mega-city in a developing country, the findings of the 
Wuhan case study will be compared with similar studies in other Chinese cities, and even in 
other countries, in order to discover the universal and disparate characteristics of the urban 
growth process. This is the comparative study in the horizontal direction. It is worth noting 
that urban growth in Chinese cities is dominated by formal development and is quite 
different from the informal development in other developing countries such as India and 
Africa (Hall and Pfeiffer, 2000). 
 

7.3  Data and GIS 
 
Process-oriented planning rather than blueprint planning involves three general procedures: 
urban growth monitoring, process modelling and then scenario building. They involve 
remote sensing, GIS, modelling and PSS (planning support systems) respectively. The 
quantification of dynamic processes first requires a large quantity of data and a number of 
data analyses. Undoubtedly, the accuracy of both the data and the analysis will determine 
the final success of the modelling. The major findings regarding data and spatial analysis 
are summarised as follows. 

7.3.1  Data  
 
As described in chapter 2, urban growth G dynamically interacts with three systems P, N 
and U. Consequently, the data required for urban growth modelling must cover all four 
domains (G, P, N, U) at certain spatial and temporal resolutions. In this research, a wide 
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range of data sources is utilised, including remotely sensed imagery, topographic maps, 
plan schemes, socio-economic data and historical documents. The primary data sources 
come from timely, cheap and multi-resolution imagery (SPOT images and aerial 
photographs). SPOT imagery has proved an ideal source for mapping land cover in the 
fringe, as applied for the two years 1986 and 2000 (chapter 3). This imagery can produce 
land cover maps at the 1:50,000 scale. Aerial photography is still a means for extracting 
urban land use information, as used for the year 1955 (chapters 3 and 4). Although 
supervised classification of images improves the accuracy of land cover mapping, temporal 
data consistency in a series of changes requires human interpretation, especially when 
images and aerial photographs are employed together for change detection. When 
interpreting past urban land uses from imagery, detailed historical documents such as the 
historical records of urban planning and urban construction provide the valuable references 
to temporal events (chapter 3). In most cases, interviews with local planners and developers 
are also needed for further confirmation.  
 
However, in contrast to physical data (space attributes), functional data (activities 
attributes) have proved a major barrier to modelling in this research (chapter 4). This is due 
to the lack of local data infrastructures, particularly in the developing world. This also 
limits this research in the exploration of spatial pattern and process. Further exploration of 
spatial behaviour, temporal complexity and the decision-making process, particularly on a 
micro scale, will become possible only with improved data infrastructures. The new 
IKONOS imagery offers great potential for urban land cover and land use mapping at 
detailed levels.  

7.3.2  Data analysis 
 
GIS in urban growth modelling has three objectives: to provide an integrated spatial and 
temporal database, to develop spatial indicators, and to facilitate spatial analyses. The 
majority of urban growth models applied in this research are based on raster data structures 
directly from imagery. These have a number of limitations. First, image classification and 
visual interpretation unavoidably contain uncertainties such as the classification of low-
density or high-density residential areas that can be treated as fuzzy spatial objects. Second, 
a pixel is not an independent social and economic entity in spatial modelling. Consequently, 
raster-based modelling is weak in explaining social and economic activities. This leads to a 
requirement for a process-oriented temporal data model, which can represent dynamic 
spatial and temporal relationships between spatial objects (e.g. Cheng, 1999). New data 
models should be able to represent the events of spatial and temporal changes.  
 
Spatial analysis in this study includes both explanatory and exploratory data analysis. The 
basic objective in spatial analysis, particularly in large-scale modelling, is to quantify 
spatial or spatio-temporal indicators such as proximity, accessibility, density, intensity and 
entropy. These indicators can be measured from various perspectives, representing different 
understandings of physical and socio-economic processes. A typical example is an indicator 
of accessibility. Many methods have been developed to quantify accessibility to meet the 
demands of particular applications. An inappropriate indicator may affect the accuracy and 
effectiveness of modelling. Not enough attention seems to have been paid to this point in 
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GIS or in the application fields. On the other hand a great deal of effort is often devoted to 
developing new and advanced modelling methods such as spatial regression and local 
analysis. However, overly simple GIS operations such as buffering, overlay and 
neighbourhood statistics frequently fail to satisfy the requirements of modelling. These 
deficiencies in spatial data analysis can be seen in this research in the case of the proximity-
based and neighbourhood-based variables in chapters 5 and 6. For example, a proximity 
variable such as the distance to the road network is too simple to represent the economic 
influences of infrastructure. It must be recognised that the understanding of space and 
spatial relationships in current GIS is not rich enough in its semantics to represent complex 
spatial and temporal phenomena in various applications. The spatial concepts representing 
spatial relationships are limited to five types: distance, direction, topology, scale and 
similarity. The majority of spatial or spatio-temporal measurements are based on some of 
these combinations such as kernel density functions and spatial weight matrices in spatial 
regression. The temporal measurement based on the relative space concept that is described 
in chapter 4 is a significant development in this direction. Data disaggregation can improve 
the spatial measurement of the density index by integrating social and economic activities. 
Landscape metrics have been developed in the field of landscape ecology to quantify the 
structural and functional properties of landscape units, which can explain underlying 
ecological processes. These indicators have been extended to quantify urban functional 
features such as land uses, as shown in chapter 3 of this research.  
 
Spatial explanatory analysis incorporates spatial statistics into traditional statistical analysis 
in order to explain complex spatial cause-effect relationships. As spatial phenomena 
frequently violate the assumptions of traditional statistics, spatial sampling is a necessary 
step to remove or reduce spatial dependence, as shown in chapter 5. Spatial logistic 
regression has also proved effective in interpreting spatial patterns as a non-linear 
modelling method. 
 
Spatial exploratory data analysis aims to explore the spatial distribution of any indicator 
that can suggest a significant pattern for further modelling. Spatial auto-correlation is 
frequently used for pattern detection with respect to a spatial variable. This approach can 
compare and evaluate the sprawling pattern of urban growth, as implemented in chapter 4. 
In this study, the exploratory data analysis carried out in chapter 5 can detect spatial outliers 
for the redefinition of a spatial layer and can compare the spatial effects of each variable. 
This analysis can strengthen the transparency of further explanatory data analysis. 
Animation as applied in chapter 3 offers visual and dynamic snapshots of urban growth and 
other spatial factors such as roads network and city centres. This exploratory analysis can 
help modellers develop potential hypotheses of urban growth processes.  
 
Chapter 6 has shown that cellular automata (CA) can supply powerful and convenient 
spatial modelling functions, especially when they are integrated within a GIS environment. 
GIS offers CA a large volume of spatial and other socio-economic data. CA provide GIS 
with a strong process modelling function. The integration of both has proved successful in 
simulating the spatial and temporal processes of urban growth and in discovering the 
mechanisms of urban evolution.  
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7.3.3  Planning support systems (PSS) 
 
Process-oriented planning requires a user-friendly environment to build or simulate "what-
if" policy scenarios. As a result, the process of modelling should be transparent to decision-
makers. For scenario building, we need PSS techniques to stimulate decision-makers' 
thinking and to help them use these models. Recent developments in virtual reality (VR), 
web-GIS, participatory GIS, group MCE (multi-criteria evaluation) and visualisation have 
considerable potential for spatial decision-making. It should be borne in mind that 
quantitative analysis needs to be combined with a certain degree of subjectivity, particularly 
in the domain of urban planning, as planning is an organised human activity. In addition the 
users of modelling need to participate in, or at least get involved in, the procedures of 
modelling in order to confirm the outcomes of modelling. The transparency of the 
modelling process and a user-friendly interface become an important criterion for PSS. In 
urban growth, animation is widely utilised for exploratory analyses of dynamic processes. 
This enables users to understand and imagine possible hidden processes and construct 
potential scenarios. The multi-stage method in chapter 6 is transparent in its process of 
modelling when incorporating spatially and temporally explicit decision-making processes. 
It can be extended to a PSS environment in order to help planners to simulate planning 
scenarios.  
 

7.4  Spatial and Temporal Modelling 

7.4.1  The concept of a model 
 
The concept of a model has also been changing since the 1960s. In the past, it usually 
referred to mathematical algorithms or equations, which are typically represented by some 
parameters. This type of modelling aims to choose the types of equation and to calibrate 
these parameters according to real data. A typical example is the Lowry model (1964), 
which consists of about a dozen equations and several more parameters. However, in an 
information society urban systems continually become more complex than in an industrial 
society as the interactions among the increasing number of components are strengthened. 
The hard-system methodology used before is not suitable for these new urban systems that 
require a soft-system methodology (Barry and Fourie, 2002). This new philosophy 
emphasises the process of thinking towards solving complex issues. This is particularly 
useful for applied sciences such as urban planning where human knowledge has a dominant 
effect. In this sense, the content or connotation of the model is broadened and extended to 
include more conceptual components. A typical example of this modelling is the conceptual 
multi-stage model presented in chapter 6. In this case the process of decision-making in 
urban growth is divided into four steps, each related to one or more approaches such as CA. 
Hence, modelling indicates a methodology. As reality is complicated in essence, we cannot 
expect mathematical models to directly solve all complex or ill-structured issues. Human 
thinking is the most complex process of modelling, which can structure complex issues into 
simple form. This modelling to some extent results in the steps or procedures to simplify 
complex issues. In this study, such modelling includes new perspectives (for example, the 
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integration of multiple indicators in chapter 3, relative space in chapter 4, multi-scale in 
chapter 5, and global and local dynamics in chapter 6) to deepen insights into spatial and 
temporal urban growth phenomena. These new perspectives have proved successful in 
linking modelling with urban planning. 

7.4.2  Modelling methods 
 
To understand the complexity of the urban growth process, a number of modelling methods 
can be qualified as evaluated in chapter 2. Each method has both advantages and 
disadvantages. The most important criterion is the purpose of modelling, which is focused 
on understanding system G, i.e. dynamic interactions between G and the three systems P, U 
and N in this study. Understanding means interpretation. This requirement results in the 
selection of fractals, landscape metrics, spatial auto-correlation, spatial logistic regression 
and CA. These methods all can be operated on raster data.  
 
Fractals, spatial auto-correlation and landscape metrics are only quantitative spatial 
indicators rather than integrated modelling. They are limited to spatial variables and are not 
applicable to other socio-economic variables such as planning and administrative 
boundaries. Nevertheless, they are frequently used for exploratory data analysis. 
 
Spatial logistic regression has proved very successful in quantifying the probability of land 
conversion. Its dependent variable corresponds to the two states of land conversion, the 
independent variables to the determinants of spatial patterns. Under the multi-scale 
framework set out in chapter 5, the method can also explain the probability of spatial self-
organisation (i.e. the density of change).  
 
As an effective spatial simulation tool, cellular automata itself cannot model the spatial and 
temporal processes of urban growth. It needs to integrate various variables that enable to 
interpret the causal effects of the processes. Its major advantage in modelling is dynamical 
updating the value of variables and its flexibility in the definition of transition rules. In this 
study, the transition rules are defined at two scales: municipality and project. This results in 
its strong interpretative capacity for understanding global and local temporal dynamics. 
However, these findings in this research do not mean that other methods cannot be applied 
for modelling. A key point is how to integrate these methods into the process of modelling 
and how to develop new methodologies to satisfy the requirements of urban growth 
panning. 
 
As modelling aims to support the decision-making of various actors, the risks or reliability 
of modelling should be evaluated or estimated before using it. The accuracy of modelling is 
impacted by a number of factors such as data accuracy, data completeness, analytical 
techniques, model interpretability and modelling scale. Modelling scale refers to the 
number of variables considered in an integrated model. When modelling is carried out on a 
large scale such as 100 variables, certain points need to be considered. First, the 
computational time is likely to be massive. For instance it is difficult to imagine the 
computational hours needed to run an artificial neural network or CA model with 100 
variables. Second, error propagation can be accumulated to a significant level, particularly 
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when the data accuracy of most variables cannot be guaranteed. The more variables there 
are, the more errors they may accumulate. Third, sensitivity analysis will be difficult or 
even impossible to implement. Fourth, when a model calibrated in one time period is used 
for prediction in the next period, the model will undergo much change as a number of 
variables in the new period are already revalued. For this reason the accuracy of prediction 
modelling cannot be satisfactory especially in a long period of modelling. Consequently, 
modelling scale should be limited to an acceptable level for the selected modelling method. 

7.4.3  Future work 
 
This research focuses on spatial and temporal modelling, although it is important to take the 
economic processes underlying dynamic urban growth into account. Consequently, CA 
modelling is less successful in explaining the human behaviour that leads to the spatial 
processes/outcomes of urban growth, especially in explaining the spatial economic 
processes of land use change at the detailed level. Furthermore the unit of analysis in this 
study is either an individual pixel or some aggregation of structural or functional units, 
rather than the individual decision-maker. 
  
The next step towards understanding complex dynamic processes is how to integrate 
economic behaviour and decision-making actors into spatially disaggregated simulation 
modelling. The CA-based modelling used in this research is disaggregated, dynamic, 
spatially and temporally explicit and globally linked to the decision-making process. 
However, it still has a number of limitations. For example, the probability of development 
or land conversion is determined principally by spatial constraints or factors, which are the 
spatial projection of socio-economic variables. However, the latter can be better linked to 
decision-makers (actors) to better interpret spatial behaviour. This model is also very little 
involved with the economic processes of urban growth, especially on a micro scale such as 
an individual or building level. As a result, it needs to be integrated with other methods 
such as multi-agent and micro-economic process modelling. The integration of the three 
methods can link spatial simulation with disaggregated spatial behaviour and the economic 
process. 
 
To implement the ideas mentioned above, we need a data framework to locate spatial 
behaviour and represent the micro-economic process. The major spatial units should be able 
to integrate social and economic information in as disaggregated a manner as possible and 
spatially to locate micro-level decision-makers. The lowest census unit can be ideal for 
integrating socio-economic information and the land parcel can be the ideal spatial object to 
link with decision-makers. The individual parcel, which in most cases is the decision-
making unit in the context of land use change, makes possible the use of micro-economic 
theory as well as micro-level theories from other sciences. 
 
However, while parcel-based land information systems are technically feasible, they are 
still lacking in developing countries such as China. In China, the hierarchical administration 
structure is the primary source of socio-economic data (chapter 4). Figure 1 illustrates a 
spatial data framework to integrate parcel-based with socio-economic information for 
Chinese cities on which the proposed process modelling framework can be developed. This 
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data framework links the decision-makers at parcel level with the social and economic 
information constraints at the block level. The latter is aggregated and disaggregated from 
administrative units. 
 
With this data framework in mind, we are able to first develop a CA model based on the 
pixel level, which can have a similar size to that of buildings. A multi-agent (MA) model 
can be designed to simulate the decision-making behaviour of the parcel owner and other 
actors. Then an economic process model (EP) can be developed based on the block level. 
Finally, the heuristic rules (decision-maker behaviour constraints) from the MA and the 
socio-economic constraints from the EP can be incorporated into the CA transition rules. 
The units of parcel and block (the black box in figure 1) will become the major carrier of 
the spatial, behaviour and socio-economic information. The methodology can be tested with 
reference to an urban growth project in the period 1993-2000, as described in chapter 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However this method may lose the advantages of disaggregation. Another more promising 
approach treats parcel-based data as the socio-economic and decision-making constraints 
for CA or MA modelling at the pixel level. This treatment is actually a two-level modelling. 
At the parcel level, a socio-economic or transport/land use model is implemented to 
calculate the probability and density of new transitions that are determined by the spatial 
behaviour of actors and socio-economic demands. The proposed spatial data framework can 
provide detailed socio-economic data at the level of block for parcel-based modelling. At 

Sub-block 

Figure 7.1  An integrated spatial data framework for process modelling in Chinese cities 
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the grid level, the spatial and temporal pattern with each parcel will be simulated by CA or 
MA models.  
 

7.5  Complexity theory  

7.5.1  Understanding system G 
 
As explained in chapter 2, urban growth G is a system resulting from the dynamic 
interactions between the three systems U, P and N. This definition provides a theoretical 
framework for modelling and understanding complex urban growth systems. For example, 
chapter 3 examines the temporal changes that have taken place in Wuhan in five different 
periods from 1955 to 2000. These changes are systematically quantified using fractals, 
landscape metrics and other methods to indirectly evaluate temporal urban growth G. Here, 
the system G from t1 to t2 was actually transformed into the system U in t2. In chapter 4, 
the measurement of temporal urban growth G (t1 - t2) is based on both G itself and the 
system U in t1. The relative degree of urban sprawl is impacted by the spatial relationship 
or interaction between G and U. Chapter 5 focuses on the spatial pattern of system G as 
determined by the systems U, P and N. The independent variables in the pattern model are 
defined from these three systems. This is a multivariate pattern for understanding the spatial 
distribution of system G. In chapter 6, the spatial and temporal processes of system G are 
also linked with these three systems. An important distinction from the pattern model lies in 
the fact that the process of G is also influenced by the dynamic iterations of G itself.  
 
To sum up, system G cannot be modelled or understood independently without the support 
of the three systems. Among these four chapters, chapters 3 and 4 explore the functional 
aspects or activity components of system U, which are represented by urban land uses. The 
activity component provides a more detailed socio-economic explanation for physical 
change G. 
 
Chapter 3 touches on the structural and functional complexity of system G. Structural 
complexity aims to quantify the spatial form and morphology of the new system U 
transformed from G. The system U is divided into the urban built-up area and the road 
network. Understanding the structure of the spatial system depends on the perspective of 
the modeller, different angles resulting in different interpretations. Chapter 3 examines two 
angles: dynamic development axes and space-fill, which develop into two structural 
analyses: dynamic morphology analysis and information-dimension-based fractal analysis. 
Fractal analysis is able to quantify the heterogeneous degree of the spatial distribution of 
system U. Morphology analysis can reveal the temporal trend of U. Functional complexity 
aims to quantify the spatial relationships among functional units. In this chapter, the 
functional unit means urban land use type. Each land use type is treated as a landscape unit. 
The landscape metric change can infer some of the social and economic processes shaping 
the functional landscape.  
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In chapter 4, temporal complexity is indicated by the temporal incompatibility of changing 
spatial objects. Comparative measurement is the first step towards understanding the 
temporal process, particularly in the long term. This complexity is transformed into a 
spatial complexity represented by the relative spatial relationship between systems G and U 
based on the concept of "relative space". A methodology consisting of four steps is 
developed to measure spatial complexity based on exploratory spatial data analysis. A 
major advantage is the integration of the physical space (system G) with the activities 
(system U), which results in an improvement in interpretative capacity.  
 
In chapter 5, spatial complexity in pattern is indicated by spatial hierarchies (based on 
hierarchy theory), which leads to a multi-scale framework for understanding the spatial 
determinants of urban growth G. The spatial hierarchies comprise planning, analysis and 
data, which are interrelated. The analysis hierarchy includes the probability of change, the 
density of change and the intensity of change. These provide more detailed information 
support for different levels of urban development planning. As a non-linear analysis 
method, spatial logistic regression (incorporating spatial sampling) together with 
exploratory data analysis is ideal for explaining the spatial impacts (static) of the three 
systems P, N and U on system G.  
 
In chapter 6, complexity in process (spatial/temporal/decision-making) is indicated by the 
self-organisation of urban growth projects (based on the self-organising theory), and 
bottom-up and top-down decision-making processes. Self-organisation theory is able to 
explain the emergence of global spatial patterns from dynamic local interactions. This is 
one of the most important contributions of complexity theory to the social sciences, 
including urban planning. Based on this theory, cellular automata are shown to be ideal for 
simulating and understanding the temporal dynamics of the urban growth process at both 
the global and project levels. The multi-stage framework proposed makes the process of 
modelling more transparent to users and the process of decision-making more explicit. 
Dynamic weighting contributes to the understanding of the interaction between pattern and 
process. The methodology in this chapter can be utilised to explain the dynamic interactions 
between system G and the three systems P, N, U.  

7.5.2  Conclusions 
 
In this research, the "project" has proved to be an important concept for representing urban 
growth as a basic unit. It is the carrier of the complex interactions between systems U, P 
and N. The self-organisation of social and economic processes in urban growth is projected 
on to the spatial clustering of new projects. Spatial self-organisation is represented by 
density (chapter 5) and neighbourhood (chapter 6) respectively. Chapter 3 focuses on the 
global description of all projects. Chapter 4 moves to the interaction between projects and 
the system U. Consequently, the spatial and temporal organisation of projects is crucial to 
understanding the dynamic process of urban growth in this study. 
 
This research has found that complexity theories such as hierarchy theory in chapter 5 and 
self-organising theory in chapter 6 are very helpful in conceptually and methodologically 
understanding the specific complexity of a complex system under study, e.g. G. In reality, 
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hierarchical structure and self-organising processes exist not only in spatial and temporal 
processes but also in social and economic processes. They are typically represented by the 
scale of land development and the density of local growth. Clusters of development projects 
are generated by cumulative and aggregated self-organizing processes. These ideas form 
the general theoretical basis for spatial modelling. However, when applied to any specific 
topic, they should be linked to the purpose of modelling and the specific complexities under 
study. For example, in this research, the purposes of modelling include what information 
should be produced to support various levels of urban development planning (chapters 3, 4 
and 5) and what environment should be offered to support the process of development 
planning (chapter 6). Specific complexity includes spatial/temporal and decision-making 
processes as described in detail in chapter 2. 
 
As a generalised universal systematic philosophy, complexity theory is an emerging science 
that has not received enough attention, particularly in the fields of urban planning and 
management. On the one hand, the discipline itself is still in its infancy; the theories and 
modelling methods currently available are not adequate for completely understanding a 
complex system. On the other hand, there is also a big gap between theory and practice. In 
reality, no required data exist for testing and developing new theories. Despite these 
barriers, the applications of complexity in relevant disciplines such as ecology and 
economics have made great progress. The limited empirical studies described in previous 
chapters have shown the great potential of complexity theory and methods for urban growth 
planning and management. First, they facilitate systematic thinking about complex 
phenomena with qualitative and conceptual understanding and knowledge. Second, they 
provide advanced methods for developing practical and quantitative methodologies to 
support the process of decision-making. Third, however, the complexity in urban growth 
indicates that current theories and methods need further development. Complexity research 
can take urban growth as a typical example of human-nature interaction including its 
spatial, temporal and decision-making complexity. 
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Summary 
 
 
In an effort to better understand the complexity inherent in the urban growth process, the 
aim of this research was to develop a theoretical framework and methodology that focused 
on:  
 
1. Analysing the complexity of the urban growth system and evaluating the current 

methods available for modelling this complexity;  
2.  Monitoring the urban growth of a fast growing city (Wuhan) in a rapidly 

developing country (P.R.China), based on remotely sensed imagery, and 
evaluating its structural and functional changes by modelling; 

3. Developing and demonstrating a quantitative method for the comparative 
measurement of long-term temporal urban growth;  

4.  Developing and demonstrating an interpretable method for urban growth pattern 
modelling;  

5.  Developing and demonstrating a spatially and temporally explicit method for 
understanding the urban growth process. 

 
First, urban growth is defined as a system resulting from the complex dynamic interactions 
between the developable, developed and planned systems. Its complexity can be 
distinguished by projecting onto the spatial, temporal and decision-making dimensions. The 
specific complexity is linked with the major current methods of modern urban modelling, 
such as cellular automata, fractals, neural networks, multi-agent and spatial statistics. This 
confrontation makes it possible to indicate the possibilities of various modelling methods to 
understand urban growth complexity. Based on the theoretical and operational 
consideration, this study concentrates on the complexity in structural and functional 
change, temporal comparability, spatial patterns and spatial-temporal processes. 
 
Second, with remotely sensed imagery (SPOT and aerial photographs) and secondary 
sources, this research presents a methodology for monitoring and evaluating structural and 
functional changes in the last five decades. This methodology primarily comprises 
morphology analysis, urban land use structure change and spatial pattern analysis, using 
fractal and landscape metrics approaches. The findings show that the integration of multiple 
spatial indicators can improve the capacity for interpretation, such as evaluation. This case 
study reveals temporal variations in the spatial urban growth process.  
 
Third, this research presents an innovative method for the temporal measurement of long-
term urban growth for the purpose of comparing urban sprawl. By using the concept of 
relative space, the temporal complexity can be transformed into spatial complexity, 
indicated by the complex spatial interactions between urban sprawl and urban social and 
economic systems. The method comprises temporal mapping, data disaggregation, 
integration on spatial gravity, and global evaluation. The findings reveal that the macro 
patterns of urban sprawl can be interpreted and compared from micro urban activities, as 
activities are directly linked with actors and their behaviour. This research also shows that 
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pattern, process and behaviour must be integrated into a whole towards understanding the 
complexity in urban growth. 
 
Fourth, this research presents a preliminary multi-scale perspective for understanding 
spatial patterns based on spatial hierarchical theory. The spatial hierarchies comprise 
planning, analysis and data, which are interrelated. Multi-scale in analysis hierarchy refers 
to the probability of change (macro), the density of change (meso) and the intensity of 
change (micro). The multi-scale analysis seeks to distinguish spatial determinants on each 
of the three scales, which are able to provide deeper insights into urban growth patterns 
shaped by spontaneous and self-organised spatial processes. The framework is implemented 
by using exploratory data analysis and spatial logistic regression. This combination is 
proven to have a strong capacity for interpretation. The scale-dependent and scale-
independent determinants are found significantly on two scales.  
 
Fifth, this research presents an innovative method for understanding spatial processes and 
their temporal dynamics on two interrelated scales (municipality and project), using a 
multi-stage framework and dynamic weighting concept. The multi-stage framework aims to 
model local spatial processes and global temporal dynamics by incorporating explicit 
decision-making processes. It is divided into four stages: project planning, site selection, 
local growth and temporal control. These four steps represent the interactions between the 
top-down and bottom-up decision-making involved in land development for large-scale 
projects. Project-based cellular automata modelling is developed for interpreting the spatial 
and temporal logic between various projects forming the whole urban growth. As a non-
linear function of temporal land development, dynamic weighting is able to link spatial 
processes and temporal patterns at the project level. The findings from this research suggest 
that this method can facilitate and improve the temporal and transparent interpretation and 
visualisation of the dynamic process of urban growth globally and locally.  
 
Finally, this research has found that complexity theories such as hierarchy theory and self-
organising theory are very helpful in conceptually and methodologically understanding the 
specific complexity of a complex system. Spatial and temporal modelling based on 
complexity methods such as cellular automata can improve the analytical functions of GIS 
with the aid of remotely sensed imagery. 
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Samenvatting (summary in Dutch) 
 
Met het oog op het begrijpen van de complexiteit die kenmerkend is voor stedelijke groei, 
is het doel van deze studie het ontwikkelen van een theoretisch kader en een methodologie 
gericht op: 
 

1. Het analyseren van de complexiteit van het stedelijke groeisysteem en het 
evalueren van gangbare methoden om deze complexiteit te modelleren. 

2. Het volgen van de stedelijke groei van een snelgroeiende stad, Wuhan, in een 
zich snel ontwikkelend land (China), op basis van aardobservatie en door middel 
van het modelmatig evalueren van structurele en functionele veranderingen. 

3. Het ontwikkelen en toepassen van een kwantitatieve methode voor het 
vergelijkend meten van stedelijke groei over lange periodes. 

4. Het ontwikkelen en toepassen van een interpreteerbare methode voor het 
modelleren van stedelijke groeipatronen. 

5. Het ontwikkelen en toepassen van een tijdruimte-expliciete methode voor het 
begrijpen van het stedelijke groeiproces. 

 
Eerst wordt stedelijke groei gedefinieerd als een systeem dat de uitkomst is van complexe 
en dynamische interacties tussen ontwikkelbare, ontwikkelde en geplande territoriale 
systemen. De complexiteit kan begrepen worden door uit te gaan van ruimtelijke, temporele 
en besluitvormingsdimensies. De specifieke complexiteit komt tot uiting in de belangrijkste 
methoden die thans gebruikt worden voor stedelijke modellering, zoals celautomaten, 
fractals, neurale netwerken, multi-actor systemen en ruimtelijke statistiek. Deze 
confrontatie van methoden resulteert in het aangeven van de mogelijkheden van de 
verschillende vormen van modelbouw voor het begrijpen van de complexiteit van stedelijke 
groei. Gebaseerd op theoretische en operationele overwegingen, richt dit onderzoek zich op 
structurele en functionele veranderingen, vergelijkingen in de tijd, ruimtelijke patronen en 
tijdruimte-processen. 
 
Gebaseerd op aardobservatiebeelden (SPOT en luchtfoto’s) en op secundaire bronnen, 
presenteert deze studie vervolgens een methodologie om structurele en functionele 
veranderingen in Wuhan voor de afgelopen vijf decennia te monitoren en te evalueren. 
Deze methodologie is voornamelijk gebaseerd op ruimtelijke vormanalyse, 
grondgebruikanalyse en ruimtelijke patroonanalyse met behulp van fractal en 
landschapmetrie benaderingen. De uitkomsten tonen aan dat de integratie van meervoudige 
ruimtelijke indicatoren de mogelijkheden voor interpretatie kunnen verbeteren, 
bijvoorbeeld ten behoeve van evaluaties. De gevalstudie laat de temporele variaties in het 
ruimtelijke groeiproces van de stad Wuhan zien. 
 
Om stedelijke groei over langere perioden te kunnen meten, met name om verstrooiing van 
grondgebruik en functies te vergelijken, is een innovatieve methode ontwikkeld. Door uit te 
gaan van het concept ‘relatieve ruimte’ kan temporele complexiteit vertaald worden naar 
ruimtelijke complexiteit, bepaald door ruimtelijke interacties tussen stedelijke verstrooiing 
en het stedelijke sociaal-economische systeem. De methode bestaat uit temporele kartering, 
disaggregatie van gegevens, integratie op basis van ruimtelijke zwaartekracht en algemene 
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evaluatie. De resultaten laten zien dat de macropatronen van urbane verstrooiing vergeleken 
en geïnterpreteerd kunnen worden vanuit activiteiten op microniveau omdat ze direct te 
verbinden zijn met het gedrag van bepaalde actoren. Ook wordt aangetoond dat analyses 
van patronen, processen en gedrag geïntegreerd moeten worden om de complexiteit van 
stedelijke groei te kunnen begrijpen.   
 
Het vierde onderdeel van de studie is de ontwikkeling van een voorlopig meerschalig, op de 
theorie van ruimtelijke hiërarchieën gebaseerd, perspectief voor het begrijpen van 
ruimtelijke patronen. De ruimtelijke hiërarchieën hebben betrekking op planning, analyse 
en gegevens in onderlinge samenhang. Meerschaligheid in de gegevenshiërarchie verwijst 
naar de waarschijnlijkheid van verandering (macro), de dichtheid van verandering (meso) 
en de intensiteit van verandering (micro). De meerschalige analyse tracht ruimtelijke 
determinanten te onderscheiden op elk van de drie niveaus om meer inzicht te krijgen in 
stedelijke groeipatronen die ontstaan onder invloed van spontane en op zelforganisatie 
gebaseerde ruimtelijke processen. Het kader is geïmplementeerd door verkennende 
gegevensanalyse en ruimtelijke logistische regressie te gebruiken. Deze combinatie heeft 
bewezen krachtige mogelijkheden voor interpretatie te bieden. De schaalafhankelijke en 
schaalonafhankelijke determinanten blijken significant te zijn op twee schaalniveaus. 
 
Een meerfasen-benadering en een dynamisch wegingconcept worden vervolgens toegepast 
voor een nieuwe methode om ruimtelijke processen en hun temporele dynamiek op twee 
samenhangende niveaus (gemeente en project) te begrijpen. De meerfasen-benadering is 
bedoeld om locale ruimtelijke processen en algemene temporele dynamiek te modelleren 
door expliciet besluitvormingsprocessen mee te nemen. Er wordt een onderscheid in vier 
fasen gemaakt: projectplan, locatiekeuze, locale groei en uitvoeringsbeheer. Deze vier 
stappen representeren de interacties tussen neerwaartse en opwaartse besluitvorming bij de 
ruimtelijke ontwikkeling van grootschalige projecten. Een projectgebaseerde modellering 
op basis van celautomaten is ontwikkeld om de ruimtelijke en temporele logica tussen de 
verschillende projecten die de stedelijke groei bepalen te kunnen interpreteren. Dynamische 
weging is, als een niet-lineaire functie van de ontwikkeling van grondgebruik, in staat 
ruimtelijke processen te verbinden met temporele patronen op projectniveau. De resultaten 
van het onderzoek geven aan dat deze methode een verbeterde inzichtelijke interpretatie en 
visualisatie van dynamische processen van plaatselijke en algemene stedelijke groei 
oplevert. 
 
Tenslotte kan geconstateerd worden dat complexiteitstheorieën, zoals hiërarchietheorie en 
zelforganisatietheorie, waardevol zijn om zowel conceptueel als methodologisch de 
specifieke complexiteit van een systeem te begrijpen. Tijdruimtelijke modelbouw op basis 
van methoden zoals celautomaten kunnen de analytische mogelijkheden van GIS verder 
verbeteren, in het bijzonder met behulp van aardobservatiegegevens. 
 
Het plannen van stedelijke groei en het beheersen van stedelijke verstrooiing zijn 
belangrijke vraagstukken in de geografische wetenschappen geworden. Ze zijn ook van 
belang voor andere wetenschapsgebieden en leiden tot een behoefte aan wetenschappelijk 
begrip van dynamische processen.  
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