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Summary

Zhan, Q., 2003. A Hierarchical Object-Based Approach for Urban Land-
Use Classification from Remote Sensing Data. PhD Dissertation

Land-cover and land-use data are essential for urban planning and man-
agement. Traditional land-use mapping by visual image-interpretation
is expensive, time-consuming and often subjective. Researchers have
been searching for automatic or semi-automatic approaches for many
years. The combination of airborne LIDAR data with high spatial reso-
lution and multi-spectral images such as IKONOS, QuickBird and SPOT
5 offers great opportunities, especially for application in urban areas.
The second generation of airborne scanners with the capacity to acquire
simultaneously range and multi-spectral intensity data, makes it possi-
ble to extract many meaningful features for land-use classification. The
overall objective of this research is the development of a semi-automatic
approach for land-cover and land-use classification, based on laser scan-
ning data and multi-spectral images and the development of methods
for the consistent aggregation of elementary objects to composite objects
at higher abstraction levels.

In this research, several new sensor data have been used and exam-
ined for urban land-cover and land-use classification. We have taken the
most popular pixel-based classifier, the maximum likelihood classifier
(MLC), as an example of traditional classifiers and applied it to high-
resolution data. A number of problems have been observed and high-
lighted, and several remedial measures have been proposed and tested.
Land-cover classification accuracy can be improved by modelling the de-
cision surface in the feature space and by selecting samples from both
pure pixels and mixed pixels. Spatial partitioning of decision surfaces
based on samples of end-member classes is the key to the proposed solu-
tions. The experimental results have confirmed the effectiveness of the
proposed class integration method, which uses pure and mixed samples.

Despite the improved land-cover classification accuracy of MLC, we
consider the attainable results insufficient for a detailed urban land-use
classification. The key features for image-interpretation (size, shape,
colour, orientation, pattern, association) are characteristics for certain

iii



Summary

types of objects and are only relevant for abstraction levels higher than
the pixel level. These features play a key role in image analysis and
land-use classification. Object-based image processing techniques are
considered for image analysis at a supra pixel level. Therefore, an object-
based image analysis approach has become the main focus of this re-
search.

This research develops a hierarchical object-based approach for ur-
ban land-use classification. The proposed method consists of three steps:
land-cover classification, the definition and delineation of land-use units
and land-use classification. It incorporates pixel-based image process-
ing techniques and object-based techniques at different stages. Various
techniques have been proposed and tested for object extraction at differ-
ent aggregation levels.

Several concepts and methods have been proposed and discussed to
extract image objects and object properties, and to identify explicit topo-
logical relations between image objects. We have elaborated and applied
the hybrid-raster data model to explicitly identify topological relation-
ships between image objects. We have tested these concepts and meth-
ods for urban land-cover and land-use classification on two test sites.
The test results demonstrate the effectiveness of the proposed per-object
approach.

Structural information derived from hierarchical image objects plays
an important role in land-use classification of urban areas. Delaunay
triangulation has been successfully applied to spatially disjoint objects
to obtain spatial adjacency relationships and proximity measures; these
provide essential information for spatial clustering of objects that form
spatial land-use units. Several measures have been proposed and tested
for the evaluation of the similarity of buildings. These similarity mea-
sures in combination with the spatial adjacency relationships and prox-
imity measures provide information for spatial clustering of land-cover
objects, which form spatial land-use units.

Several object properties have been proposed and extracted as at-
tributes of land-use objects for our two test sites. Fuzzy membership
functions have been designed to establish the relationships between ex-
tracted land-use object properties and designated land-use classes. A
fuzzy classifier has been applied for per-object classification based on ex-
tracted land-use units and their object properties. The obtained results
show that the proposed object-based land-use classification approach is
promising. The extracted properties of land-use objects are also impor-
tant information for urban studies, planning and management.

A united framework for quality assessment has been proposed and
tested, based on similarity measures between classified data and refer-
ence data. This utilises per-object and per-pixel measurements. The
proposed per-object quality measures provide possibilities for obtain-
ing additional quality assessment based on various object properties.
The proposed uncertainty measures for extracted land-cover objects and
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classified land-use objects have been tested, and we expect them useful
in controlling the classification process.

The developed concepts and methods have been implemented by pro-
gramming in Matlab. The implemented system allows different users
to specify characteristics of information that need to be extracted from
laser data and spectral data, in order to obtain the desired results. This
feature offers planners and other users the opportunity to produce re-
sults according to their specific wishes and application requirements
from a detailed data set. The multi use of such detailed data sets is
important because of the relative high costs of acquiring high-resolution
laser data and spectral data. The experimental results show the rel-
evance of hierarchical object modelling in combination with structural
image analysis techniques for urban land-cover and land-use classifica-
tion.

Buildings, green spaces, water surfaces and sealed-ground surfaces
have been successfully extracted at the land-cover level. Spatial land-
use units have been obtained by aggregation of the extracted land-cover
objects. The high quality of the per-object land-use classification has
been established by comparing it with the results of visual interpreta-
tion.

Keywords
Remote Sensing, GIS, Image Processing, Classification, Feature Extrac-
tion, Object Modelling, Land Use, Urban Planning, LIDAR.
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Chapter 1

Introduction

1.1 Overview of this research
Land-cover and land-use information is essential for urban planning and manage-
ment. The terms ‘land cover’ and ‘land use’ are often confused. Land use can be
defined as the use of land by humans, usually with an emphasis on the functional
role of land in economic activities. Land use is an abstraction not always directly
observable under even the closest inspection. In contrast, land cover designates the
visible evidence of land use, or aspects of it such as roads, buildings, parking lots,
forest, rivers. Whereas land use is abstract, land cover is concrete and therefore is
subject to direct observation. Another distinction is that land cover lacks the empha-
sis on the economic function that is essential to the concept of land use (Campbell,
1996, 2002).

Many computer-aided classification methods have been developed since the early
stages of remote sensing application in 1970s (Curran, 1985; Schowengerdt, 1997;
Richards and Jia, 1999; Mather, 1999; Tso and Mather, 2001; Campbell, 2002). Most
existing approaches are pixel-based, using multi-spectral data alone, and aim at
land-cover mapping, since the spectral information contained in remote sensing im-
ages consists of electromagnetic reflections of the physical properties of terrain fea-
tures. Many existing classifiers fail to produce high-accuracy results because of the
existence of mixed pixels caused by the limited spatial resolution of sensors. There-
fore high spatial resolution images will be tested in this research to find out if such
data can be used for producing better land-cover maps. Please note that in this
dissertation high spatial resolution or high resolution refers to images with a spa-
tial resolution from 0.5 m to 4 m produced by sensors such as IKONOS, QuickBird,
TopoSys.

Currently, urban land-use mapping is still largely based on visual interpreta-
tion using aerial photographs or satellite images, owing to the complexity of urban
patterns and the lack of tools for automatic solutions. Human knowledge plays an
important role in delineating different land-use units in space and identifying the
land-use type of each spatial unit. This is a labour-intensive approach and land-use
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classification results produced manually can be variable and inconsistent as regards
delineating spatial units and assigning proper land-use types, because of the com-
plexity of urban environments and different understanding of individuals. Therefore
an automatic or semi-automatic land-use mapping approach would be preferred.
To support feature extraction and land-cover and land-use classification, an object-
based image analysis approach is developed and investigated in this research, where
image objects are defined based on the hybrid-raster data model. Topological rela-
tions between image objects at different abstraction levels are defined and extracted
based on image regions (representation of objects in a 2D image). In turn, structural
analysis and spatial clustering can be implemented and spatial clusters or spatial
units of land use can be extracted in the object-based approach, which is essential to
accomplishing land-use classification.

Because of the hierarchical nature of urban planning, land-cover and land-use
mapping has to be produced with certain amounts of detail at certain abstraction
levels. Single-product approaches may be inconsistent and expensive and should be
avoided, a series production approach is likely to be a more efficient way of producing
several products at different abstraction levels, based on one set of high-resolution
image data. Since data and updating are expensive, the average costs could be re-
duced if we managed to produce or update several products based on one detailed
data set, so that land-use data at a higher abstraction level could be extracted based
on land-cover data extracted at a lower abstraction level. Therefore in the context
of planning and management it is worthwhile to find out the relationships between
different abstraction levels, in terms of scale, contents, the minimum size of spatial
units, etc., so that consistent land-cover and land-use maps at different abstraction
levels can be produced. In addition, consistent and comparable land-use maps are
expected to be produced by applying the same process and rules to image data ac-
quired in the past, present or in the future, because human influences will have been
eliminated to a great extent. This feature is crucial for change analysis, since owing
to human influences such as diverse understanding and assorted backgrounds, dif-
ferent people often produce different land-use maps (different boundaries, different
codes) based on visual interpretation, even when using the same set of images.

The proposed concepts and approaches will be tested on two case study areas.
The first test site is in Amsterdam. The data for this densely built-up urban area are
an IKONOS image and a digital surface model (DSM) obtained from laser scanning.
The second case considers a low-density sub-urban area, the city of Ravensburg,
Germany, where we have laser data and high-resolution multi-spectral (MS) images
acquired simultaneously. These two different cases were also selected with a view
to including different land-use types and spatial patterns in the investigation and
examining the effectiveness of different data combinations.

1.2 Research objectives and motivation
Land-cover and land-use data are essential for urban planning and management,
based on the roles they play in the planning process, as shown in Figure 1.1. Land-
use data are fundamental sources for problem identification and goal formulation
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Decision to adopt planning

Goal formulation: identification of objectives

Study of possible courses of action,
with aid of models

Evaluation of alteratives by reference
to values and costs / benefits

Action through public investment or
control over private investment

Review
(monitoring)

of state
of system

Figure 1.1: Planning process (McLoughlin, 1969; Hall, 2002).

at the initial stage of planning. Land-use data are key factors in planning formu-
lation and forecasting since land-use types and their spatial arrangement are the
core business of physical planning. Land-use data play an important role in land
suitability evaluation and demand-supply analysis. Land-cover data are fundamen-
tal sources for reasoning on land use and for detailed planning. Moreover, land-use
planning may be the sole purpose of a planning task in hand. Therefore automatic
or semi-automatic land-cover classification and land-use classification, based on re-
mote sensing images and consistent aggregation from lower abstraction levels to
higher abstraction levels, are the overall objectives of this research.

To achieve these objectives, the following technical issues are formulated in re-
lation to finding solutions to our research objectives.

Land-cover classification based on high-resolution data

Detailed data are essential for feature extraction, feature handling and the rep-
resentation of detailed geo-spatial information. Remote sensing technology provides
timely available information from spaceborne earth observation systems and air-
borne laser scanning and imaging systems for a wide range of applications at differ-
ent scale levels. High-resolution (0.5 m to 4 m) images and airborne laser altimetry
data offer exciting possibilities for feature extraction and spatial analysis in urban
areas. A combination of IKONOS images and airborne laser scanning data can be
one choice. An even more promising data source has become available recently from
the second generation of airborne laser scanners combined with a multi-spectral
scanner, e.g. TopoSys, which provides high-accuracy 3D data of the earth’s surface
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and image data simultaneously. However, there are a number of technical issues
that have attracted the attention of researchers because of the complexity of the
real world and the problems brought about by these newly available data sets. The
following are some of the issues that became components of this research.

With the use of high-resolution data the problem of mixed pixels is reduced but
the internal variability and noise within land-cover and land-use classes is increased
(Cushine, 1987). As a consequence, traditional classification methods such as the
maximum likelihood classifier (MLC) method are producing too many classes or
classes that are not well defined. Standard techniques have to be augmented for
an appropriate analysis because the necessary pixel homogeneity can no longer be
achieved by the integration effort of large pixel sizes (e.g., 10 m to 80 m). Because
of their high spatial resolution the information content of the high-resolution data
in such heterogeneous regions is very complex (Ehlers et al., 2002). In cases of
coarse spatial resolution, each pixel may consist of different features appearing in
the spatial coverage of a pixel, thus showing a mixed spectral value in each band.
Spectral information is used for identifying features by comparison with parameters
derived from samples. Comparison is carried out on a basis where sample pixels
may be mixed. A pixel of coarse resolution contains a lot of contextual information
associated with adjacent pixels. Spectral values between neighbouring pixels are
often quite similar, owing to the nature of mixed pixels (smooth transition between
neighbouring classes). Sample pixels selected to represent a class are likely to show
similarity. With high-resolution images, a pixel will contain only one relatively pure
terrain feature in most cases. Pixels as parts of an object may have different spec-
tral values due to the different materials they represent or their orientation toward
sunlight. For instance, the roof of a building may be constructed of different ma-
terials, say, concrete and asphalt, or, in the case of a gable roofs, the parts of the
roof under direct sunlight may have spectral values different from those of the parts
on the dark side. Sample pixels selected from different parts of the same roof to
represent the roof class may appear in several clusters for each end-member class
in the feature space and make a pixel-based classifier such as ML biased. On the
other hand, pixels from different objects may have the same or very similar spectral
values. For example, as roads and roofs may contain the same or similar material
(e.g. asphalt), a pixel from a pixel from a road and a pixel from a roof may have very
similar spectral values. In principle, it is impossible for a pixel-based classifier to
distinguish them explicitly by using spectral information alone.

In addition, structural and topological information such as the adjacency rela-
tionship between buildings is important information for image understanding. Such
information requires the detection of individual features and is unlikely to be de-
rived from adjacent pixels by pixel-based approaches, since each pixel and it adja-
cent pixels will have a relatively small spatial coverage (10 m2 to 150 m2) in these
images. Meaningful structural and topological information will have to be derived
based on the structural analysis of adjacent features (objects) rather than from ad-
jacent pixels. Therefore, conventional pixel-based approaches are not expected to
produce good results for high-resolution data. What improvement can be made to
enable existing pixel-based classifiers to work with this type of data? Can the object-
based approach do a better job here?
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Object-based data model for handling images and raster field data

Digital surface models acquired by a laser scanner are becoming increasingly
available. DSM provides information on the elevation of terrain features above a
well-defined datum, including man-made features such as roofs of buildings. Mod-
elling a surface by elevation values is referred to as ‘representation by field data’.
Multi-spectral remote sensing images are also field data. Land-cover and land-use
classification based on remote sensing images can be treated as mapping or trans-
formation from field data to land-cover and land-use objects. Image objects are con-
ceptualised and can be represented by image regions in a 2D image space. These
provide a better representation than individual pixels and are much closer to the
human perception of entities such as buildings and residential areas, which we use
in planning and many other disciplines. A field model is one of many conceptual
models of geographical variation and a basis for much scientific and geographical
modelling. In the field model, every location in a spatial framework is associated
with a set of attributes measured on a variety of scales. Fields are spatially con-
tinuous by definition, but ‘continuous’ might also refer to the measurement scale (z
value). Variables z can be any data type: binary, nominal, ordinal, interval or ra-
tio (Goodchild, 1992, 1997; Cova and Goodchild, 2002). A field can be viewed as a
mapping between a locational reference frame and an attribute domain (Worboys,
1995). Representation of fields must always be approximate, as we cannot store
an infinite number of locations. Spatial tessellation (regular, irregular or hybrid) is
the means most used for representing field-based models. Common operations on
fields include interpolation, classification, filtering, spatial overlay, statistical anal-
ysis, map algebra, spread functions, corridor analysis, terrain analysis, and many
others (Goodchild, 1997; Cova and Goodchild, 2002).

There are many entities in geographical reality that are readily perceived as ob-
jects, such as lakes, rivers, buildings. Object representation in a database of real
world entities such as buildings and lakes or conceptualised entities such as com-
mercial and residential is considered more natural and logical. In this thesis, we
use ‘object’ to refer to object representation and ‘entity’ to refer to an entity in real-
ity. From an object perspective, space is viewed as a container populated by these
entities, each with an identity, spatial embedding and attributes. Natural language
is much more suited to describing objects than fields (Cova and Goodchild, 2002).
Molenaar (1998) proposes a theory for spatial object modelling in GIS that provides
a theoretical framework for object-based spatial data modelling. Couclelis (1992)
and Worboys (1995) note that the field and object conceptual perspectives should
not be considered mutually exclusive. The field and object perspectives can be used
in conjunction, as well as derived from one another (Cova and Goodchild, 2002).
Therefore, we introduce ‘image object’ (IO) to represent objects extracted from field
data (images) according to their definitions and meaning in natural language (se-
mantic). Image objects are regarded as representations of real world entities or
conceptualised entities in 2D image. An image object is a spatial container that re-
lates locations in a field space to objects in an object space similar to an object field
as described in Cova and Goodchild (2002). The main difference between an image
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object and an object field is that an image object emphasises the spatial extent of an
object (image region) while an object field is defined as a continuous field in which
locations are mapped to spatial objects (Cova and Goodchild, 2002). Both of them
share qualities of the field and the object conceptual perspective of geographical phe-
nomena. How can we define a spatially embedded object so that topological relations
between objects as represented in a raster can be extracted1? What are the roles for
object extraction from images? How can image objects be mapped from a field space
to an object space? How can we define and identify topological relationships between
objects based on a raster data model?

Multi-scale/multi-level aggregation

Urban planning and management use a variety of data in their different stages
(Le Clercq, 1990). Many are geo-spatial data. Planning products are hierarchically
associated so that planning at a higher level will be used as a guide for planning
at the lower levels. For instance, the regional plan will guide the master plan, the
master plan will serve as a guide for the district plan or detailed plan, and so on.
Planning at each level is an attempt to solve particular problems at an adequate
scope or scale. The required degree of detail in geo-spatial data is also quite dif-
ferent at each level. The degree of detail is directly associated with the scale of
the geo-data or maps used for analysis and planning formulation. Therefore, aggre-
gation is involved at different levels of the planning hierarchy in order to provide
a reasonable amount of information (degree of detail) and a suitable scale at each
level. Land-cover and land-use objects obtained from images such as buildings or
residential areas are a better form of representation than pixels for human percep-
tion. Multi-scale/multi-level aggregation will be based on such objects. A syntax has
to be defined to support such multi-scale/multi-level aggregation in the context of
urban planning and management. This syntax should be able to take into account
the geometric, thematic and semantic attributes of objects in multi-scale/multi-level
aggregation. What rules may be relevant for such aggregation with respect to geo-
metric, thematic and semantic attributes?

Semantic and imprecision issues

Planning at different levels will have to look at different aspects of urban reality
such as social aspects (e.g. population, education), economic aspects (e.g. indus-
try, employment), environmental aspects (e.g. pollution, green space). Such the-
matic differentiation of planning looks at the problems from different perspectives,
depending on the planning task and the disciplines involved. This may lead to dif-
ferent interpretations of the same feature presented in geo-databases or maps. It
implies the need to represent geo-spatial features differently according to different

1Please note that we use the term ‘object’ to refer to a spatially embedded unit, which is
different from the ‘objects’ often used in object-oriented programming in computer science. To
avoid further confusion, we will use ‘object-based’ instead of ‘object-oriented’ in this disserta-
tion, although we may share many similar concepts developed for the object-oriented frame-
work in computer science.
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disciplines, but based on a fundamental geo-database. Different representations of
geo-spatial features require semantic modelling with respect to corresponding dis-
ciplines. What semantic modelling techniques can be applied in representing geo-
spatial features?

Land-cover and land-use classification systems (see Appendix A) are defined us-
ing linguistic terms such as ‘containing multi-story residential apartment buildings
with good environment and public facilities available at close range’. Therefore we
have to apply certain measurements in order to check whether an object belongs to
the defined class as described in a linguistic form. This is called semantic fuzziness.
Another issue is raised pertaining to the spatial coverage of land-use classes: when
we have extracted a group of buildings, what are believed to belong to one land-use
class, say residential, the question arises as to where the spatial boundaries of this
class are, since often no such physical boundaries between different land-use classes
can be found on the ground or in images. This is called fuzziness of conceptualised
boundaries. These types of semantic and imprecision issues exist throughout land-
cover and land-use classification. Can fuzzy set and fuzzy logic play a role here?
How does the fuzziness of a semantic definition influence the geometric and the-
matic components of geo-spatial objects? What kinds of measurements can be used
for delineating land-use units?

Based on the above discussion, the research objectives can be summarised as
follows:

• To examine the main problems in land-cover classification, using pixel-based
classifiers based on high-resolution data, and provide potential solutions to
these problems, using pixel-based classifiers, and evaluate effectiveness.

• To provide a conceptual framework and formalism of an object-based approach
to image analysis and land-cover and land-use classification.

• To provide object-based methods and operations for feature (land-cover ob-
jects) extraction.

• To provide spatial aggregation methods for structural analysis toward deter-
mining spatial units of land-use classes based on the spatial distribution of
land-cover objects.

• To provide land-use classification schema that can deal with different types of
information extracted for objects such as thematic, geometric and structural
information.

1.3 Main technical problems and proposed so-
lutions

Before exploring a new approach to the defined problems, we need to investigate the
problems of using existing approaches and find out if they can cope with new types
of data such as high-resolution images. What kind of improvement could be made
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using existing approaches in such cases? Three end-member land-cover classes, –
built-up area, green space (vegetation) and water surface – are proposed for land-
cover classification based on high-resolution multi-spectral data, using a pixel-based
approach, the maximum likelihood classifier. Using high-resolution data, we may
encounter some new problems because of the existence of many pure pixels; using
coarse-resolution data, the problem may be less because the existence of many mixed
pixels. One problem is due to the existence of sub-clusters made of pure-samples of
sub-classes in the feature space when using high-resolution images, for instance,
the dark, medium, light and very light tones of the roofs of buildings and other
concrete surfaces are sub-classes of the built-up class. Samples selected from these
sub-classes to represent the built-up class will form several sub-clusters, which will
then violate the requirement of normal distribution in the case of using the max-
imum likelihood classifier. As a consequence, a large deviation obtained may be
estimated as a parameter for the maximum likelihood classifier. As a result, the
decision surface (probability density function) will not be estimated correctly, espe-
cially in the margin area of each class in the feature space. The proposed measures
focus on spatial modelling in the feature space. We introduce a solution called spa-
tial partitioning for modelling the decision surface in the feature space in order to
improve the classification accuracy of a pixel-based classifier and take the maximum
likelihood classifier as an example.

Geographical information is the representation of an abstract view of reality. It
provides digital data that fit the specifications fixed by the modelling approach. One
notable question remains: does the geographical information represent reality? This
can be split into two rather different components. Is the modelling approach rele-
vant to the observed phenomenon? Do the data meet the specifications? Together,
the answers to these questions allow us to evaluate the most important user require-
ment: fitness-for-use. As feature extraction is treated as transformation or mapping
from field data to objects, what operations or methods are suitable for this type of
transformation or mapping? Do these mapped objects represent the abstract view
of planning and management in reality? We intend to make a comparison from the
object perspective, which is per-object-based rather than per-pixel-based.

The urban land-use classification system is designed hierarchically to correspond
with hierarchical levels of planning. What are the spatial data requirements at dif-
ferent aggregation levels for urban planning and management, such as class def-
inition, degree of detail, minimum spatial unit, concerning map scale? What fac-
tors should be considered and what kinds of rules could be applied so that data
required at high aggregation level can be derived from lower levels through aggre-
gation steps? Can we disaggregate results obtained at high aggregation level to low
aggregation level?

In urban areas most human activities are organised through certain forms of
spatial arrangement, conscious planning or interactions of different activities. There
must be ideas or patterns behind the physical appearances on the ground, such as lo-
cation, closeness, alignment, spatial clustering. If we could summarise and describe
the nature of human activities in urban areas, we would be able to understand them
better from what we see on the ground or in images. How can hierarchically struc-
tured land-use information be extracted from images and aggregated hierarchically?

8
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What quality level can we reach for extracted objects and in spatial data aggrega-
tion? What quality measures should we use? What factors will lead to uncertainty
and how can these factors be quantified?

To answer the above questions, three types of objects, elementary objects (pixels),
land-cover objects and land-use objects, are defined hierarchically according to the
hierarchical layers in which they are located, the roles they play and their geometric
properties (see Figure 1.2). Pixels are regarded as elementary objects with prop-
erties of uniform size and shape, and fixed adjacency relations. Representations of
land-cover entities and land-use entities are image regions (image objects) formed in
the land-cover layer and the land-use layer respectively. Land-cover objects are the
representations of physical entities such as buildings and lakes. Land-cover objects
will be extracted based mainly on physical properties and the spatial distribution of
elementary objects (pixels) (Zhan et al., 2002b). Land-use objects, however, are the
representations of land-use units that are abstracted or conceptualised in terms of
social-economic functions, and often there are no physical boundaries between dif-
ferent land-use types. Land-use objects will be extracted by reasoning based on the
various properties and spatial distribution of land-cover objects (Zhan et al., 2002c).

In our three-stage approach we proceed from pixels to land-cover objects in the
first stage, to reasoning of spatial coverage for land use based on types and spatial
distribution of land-cover objects in the second stage, to reasoning and identifying
the land-use type based on thematic and structural information spatially embedded
in a spatial unit in the third stage (Zhan et al., 2002d).

In the land-cover object extraction stage, image objects are extracted based on
their physical properties, both per-pixel such as electromagnetic reflectance of indi-
vidual pixels and per-object such as size and height, and similarity or homogeneity
measures. Buildings, green spaces, water surfaces and open surfaces (parking space,
squares and other paved or bare surfaces such as construction sites) will be extracted
in this stage, as four end-members of land-cover classes. To this end the geometric
properties such as size, shape, and orientation, as well as thematic information, are
acquired based on multi-spectral and laser scanning data.

Reasoning of spatial extent for land use will be based on the local spatial ar-
rangement of land-cover objects. A number of spatial indicators will be extracted
to represent thematic, geometric and structural information for land-use classifica-
tion. Land use will be identified for each spatial land-use unit, based on categorical,
geometric and structural indicators extracted from images. Image objects are fuzzy
objects in the sense that objects are linguistically defined in planning and manage-
ment, and the spatial extent of objects (image regions) will be extracted or reasoned
based on membership values and the spatial distribution. The fuzziness of the spa-
tial extent of an object is determined by the compactness of membership values in
the feature space and geometric space (2D image plane). Therefore, semantic issues
and related fuzzy membership functions play important roles in various stages of
this research (Zhan et al., under peer review (1)). The work flow of the proposed
land-use classification schema is presented in Figure 1.2. The object-based concep-
tual and computational modelling steps are illustrated in Figure 1.3 (modified after
Worboys (1995)).
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Figure 1.2: A scheme for object-based land-cover and land-use classification.
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Application Domain

- Planning & management


Modelling the application domain (Chapter 3)


Application Domain Model

- Objects in planning & management


Conceptual Computational Model

- Image object, field, graph


System formulation (Chapter 4)


Logical Computational Model

- Feature extraction

- Structural analysis

- Classification


System design (Chapter 5)


Implementation of Computational Model

- Land-cover classification

- Finding spatial units for land use

- Land-use classification


System implementation (Chapters 6, 7, 8)


Figure 1.3: Conceptual and computational modelling of the proposed object-
based approach (modified after Worboys (1995)).
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1.4 Structure of thesis
A review of the existing problems and existing approaches in determining urban
land cover and land use from images is presented in Chapter 2. The two study areas
and the data used in this research are also introduced in Chapter 2. An investiga-
tion is made using the widely used maximum likelihood classifier on high-resolution
data. Problems and their causes are highlighted and proposed remedial measures
are examined in Chapter 2. In order to apply an object-based approach to obtaining
land-cover and land-use data for urban planning and management, an object-based
conceptual model for urban planning and management is outlined in Chapter 3. A
formalism for the image-object data model is proposed in Chapter 4, which provides
a theoretical framework for the logical design and implementation of the identifica-
tion of topological relations between image objects, based on the hybrid-raster data
model. A logical design and an implementation schema for object-based land-cover
and land-use classification is presented in Chapter 5. In Chapter 6 object-based
methods for land-cover feature extraction are applied and the experimental results
are illustrated. Methods for object-based structural analysis and for finding spatial
units of urban land use are proposed and elaborated in Chapter 7. Object-based
land-use classifications are tested and discussed in Chapter 8. The logical links run-
ning from Chapter 3 to Chapter 8 can be seen in Figure 1.3. Assessment of the
quality and uncertainty of the experimental results are analysed and reviewed in
Chapter 9. Finally, conclusions and future research are outlined in Chapter 10.
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Chapter 2

High spatial resolution
data and pixel-based
classification

2.1 Introduction

In this chapter, a general description of the study areas is provided to illustrate the
problems this research is going to tackle. These problems can be found in other ur-
ban areas as well. In this chapter, which deals mainly with pixel-based approaches,
built-up area, green space and water are considered as three end-member land-cover
classes when using multi-spectral data alone, because they are comparatively sep-
arate in feature space, based on spectral reflectance. Built-up area is further sub-
divided into two sub-classes, building and open-surface, when laser data are used
to extract buildings from built-up area. To test the proposed approach in different
settings, two study areas are selected to represent built-up areas in a large city
and in a small town respectively. Next the data used in this research and the pre-
processing steps are introduced. A detailed explanation of the problems and com-
ments on existing approaches follow. In the remainder of this chapter, an example
of applying one of the existing pixel-based approaches using high-resolution data is
presented and a number of modifications are proposed to the existing approach. A
short summary is given at the end of this chapter. In general, this chapter explains
the existing problems, existing approaches to these problems, and problems remain-
ing even with improved approaches. The shortcomings support the motivation to
investigate an object-based approach in an attempt to solve the identified problems.
The object-based approach will be presented in the subsequent chapters.
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2.2. General description of the study areas

Table 2.1: Data used in the case study Amsterdam

Type of data Sensor Date Band/Colour Resolution
or scale

Satellite SPOT 13 Oct. 1996 Multi-spectral 20 m
imagery IKONOS 8 June 2000 Multi-spectral 4 m
Airborne
laser data TopoSys I 28 Mar. 1998 True height

value 1 m

Aerial pho-
tographs

Optical
camera

19 May 1997,
30 May 1999 True colour 1:10,000

Topographic
maps

1996, 1997,
1999

Black-and-
white 1:1,000

2.2 General description of the study areas
2.2.1 The study area in Amsterdam, the Netherlands
A study area of 3 km × 3 km, southeast of Amsterdam, was selected for the experi-
ment (see Figures 2.1 and 2.2). Approximately 200,000 people live in this suburban
district. Several types of residential areas, commercial areas, as well as more nat-
ural features such as parks, lakes and canals, can be found in this study area. The
landscape of this test site is generally flat, but elevated roads obstruct the straight-
forward feature extraction of buildings from laser data or images when using ex-
isting approaches. Many existing approaches for building extraction are based on
analysing profiles derived from laser data. Elevated roads have a similar profile to
buildings, which makes it difficult to separate them from buildings when using these
approaches. In this regard, the site provides a good opportunity to test whether the
proposed object-based land-cover classification approach is more robust than other
per-pixel based approaches such as the maximum likelihood method. A list of data
used for this area is presented in Table 2.1. Detailed descriptions are given in Sec-
tion 2.3.

2.2.2 The study area in the city of Ravensburg, Ger-
many

The second test site is an area of 1 km × 1 km in the southwest of Ravensburg,
Germany (see Figures 2.3, 2.4, 2.5 and 2.6). This is a difficult area for building
extraction because there are many small one- to two- storey houses, often with gable
roofs. Some tall trees are very close to the buildings, and the site is situated in a
hilly area with various types of vegetation. Both urban and rural land-use types
can be found in this area. The advantage is that we are able to use high-resolution
data produced simultaneously by a laser scanner and a four-channel multi-spectral
scanner. The data used for the experiment are DSM1 (digital surface model acquired
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Table 2.2: Data used in the case study Ravensburg

Type of data Sensor Date Band/Colour Resolution
or scale

Airborne
imagery

Laser
scanner 23 April 2001 First and sec-

ond pulse 1 m

Digital
line
scanner

23 April 2001 Multi-spectral 0.5 m

from the first pulse of the laser beam; see Figure 2.3), DSM2 (digital surface model
acquired from the second pulse of the laser beam; see Figure 2.4), colour infrared
image (see Figure 2.5) and real-colour image (see Figure 2.6). DSM1 is useful for
building extraction and for the delineation of trees from other vegetation. DSM2 can
be used as the basis of a digital terrain model (DTM) and provides a reference for
identifying high objects above ground. Combining DSM1 and DSM2 provides a good
means of checking whether feature surfaces are solid or not. Four bands of images
from the multi-spectral scanner are useful information for detecting materials that
feature surfaces contain. A list of data used for this area is provided in Table 2.2. A
detailed description is given in Section 2.3.

2.3 Data
Several types of data have been used in this research, as listed in Table 2.1 for the
Amsterdam test site and Table 2.2 for the Ravensburg test site. However, laser data
and IKONOS imagery are the main data sources for this research.

2.3.1 Laser scanning data
Laser scanning is an airborne elevation mapping method that is characterised by
a largely automated measuring procedure, where fully digital data collection is fol-
lowed by a computer-based data evaluation. It is performed with a multi-sensor
system with the following main components: laser rangefinder, GPS receiver, and
the inertial measurement unit (IMU) recording devices.

In laser scanning, the scanner deflects the laser beam across the flight line; as
a result, a swath of ground along the flight line is sampled. The resulting sam-
pling pattern depends on the scanning device (parallel lines, zigzag lines, ellipses,
etc). The distance to the earth’s surface is determined by measuring the pulse re-
turn time. The position and altitude of the sensor are calculated from GPS, IMU
and calibration data. The proprietary software of laser scanning system providers
(TopoSys, in our cases) is commonly used to calculate the X, Y, Z of terrain points.

The density and distribution of ‘points’ hit by the laser is determined by the
laser system parameters of pulse frequency, scan frequency and scan angle, in com-
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bination with the flight parameters of flying height, aircraft speed, and the distance
between flight lines. The roughness of terrain relief is another factor influencing the
sampling ratio.

Thanks to its variable system parameters (see Tables 2.3 and 2.4), the system
offers a wide range of mapping options, from longitudinal profiles to transverse pro-
files to even spot distribution, and thus a high degree of flexibility with respect to
different requirements (TopoSys, 2002).

The laser data of the study area in Amsterdam were captured and processed
by TopoSys, as a contractor of the AHN (Actual Height model of the Netherlands)
production, using the first generation of laser scanner TopoSys I (Geo-Loket, 2002).
The laser data of the study area in Ravensburg were captured and processed by
TopoSys as testing data using the second generation of laser scanner TopoSys II
(TopoSys, 2002).

At a maximum flying height of 1000 m, above the ground, TopoSys generates
its standard product, the 1 m raster elevation model – other raster sizes can be
produced by changing the survey height. Elevation accuracy is the order of 0.15 m
(in the local coordinate system).

At a flying height of 1000 m the spatial resolution of multi-spectral images ac-
quired by the TopoSys II multi-spectral line scanner is about 0.5 m. Images of the
line scanner, which are recorded simultaneously with the laser data, are delivered
as true-colour or infrared images.

2.3.2 IKONOS imagery
An IKONOS image is the product of the first commercial satellite remote sensing
company, Space Imaging. Images are offered at various levels of processing, based
on 4 m resolution for multi-spectral bands and 1 m resolution for the panchromatic
band. The first satellite was launched on 24 September 1999. Some of the specifi-
cations can be found in Table 2.5. The geo-referenced IKONOS image of the study
area is shown in Figure 2.2.

2.4 Data pre-processing
2.4.1 Geo-referencing
The Dutch coordinate system with stereographic projection was selected for geo-
referencing all data. Large-scale (1:1,000) base maps were scanned and registered as
the base map for other data. Aerial photographs of scale 1:10,000 were scanned and
geo-referenced with the base map. The IKONOS image was geo-referenced using
the base map and the registered aerial photographs. The laser data had already
been processed in the same coordinate system by the Survey Department, Ministry
of Transportation and Public Works, the Netherlands. The accuracy for this project,
where the entire country was surveyed by laser altimetry, depends strongly on the
type of vegetation and topography in the area. Here, a standard deviation of 15 cm
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Table 2.3: System parameters of TopoSys I and TopoSys II

Parameters TopoSys I TopoSys II

Sensor type Pulsed fibre
scanner

Pulsed fibre
scanner

Range < 1000 m < 1600 m
Wave length 1.54 µm 1.55 µm
Pulse length 5 nsec 5 nsec
Scan frequency 650 Hz 650 Hz
Pulse repetition rate 83000 Hz 83 000 Hz
Resolution of distance mea-
surements

0.06 m 0.02 m

FOV 14◦ (± 7◦) 14◦ (± 7◦)
Swath width (at maximum
range) 220 m 390 m

Av. measurement density (at
max. range) 5 meas./m2 3 meas./m2

Measurement possibilities First or last
pulse

First and last
pulse simultane-
ously

Intensity measurements None Possible
Source: www.toposys.de accessed on 10 September 2002

Table 2.4: Parameters of the Digital Line Scanner

FOV 21◦

Pixel per line 682
Resolution (at 1000 m survey height) 0.55 m

4 spectral channels

(1) 440 - 490 nm
(2) 500 - 580 nm
(3) 580 - 660 nm
(4) 770 - 890 nm

Source: www.toposys.de
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Table 2.5: Technical specifications of IKONOS sensors

Imagery spectral
response

Panchromatic: 0.45 - 0.90 microns
Multi-spectral:
Band 1: Blue 0.45 - 0.52 microns
Band 2: Green 0.52 - 0.60 microns
Band 3: Red 0.63 - 0.69 microns
Band 4: Near IR 0.76 - 0.90 microns

Swath widths and Nominal swath width: 11 km at nadir
scene sizes a nominal single image at 13 km × 13 km

Metric accuracy

12 m horizontal and 10 m vertical accuracy with
no ground control
2 m horizontal and 3 m vertical accuracy with
ground control

Altitude 681 km
Inclination 98.1 degrees
Speed 7 km per second
Descending nodal
crossing time 10:30 a.m.

Revisit frequency 2.9 days at 1 m resolution
1.5 days at 1.5 m resolution

Orbit time 98 minutes
Orbit type sun-synchronous
Source: www.spaceimaging.com accessed on 15 September 2002
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maximum, with a systematic error of 5 cm maximum, applies to the accuracy of ‘solid
topography’ (such as roads and parking lots) as well as ‘flat or soft topography’ (such
as beaches and grass fields). In wooded areas the accuracy is lower. In this case
specifications accept a minimum point density of one point per 36 m2, a standard
deviation of 20 cm maximum and a systematic error of 10 cm maximum (Geo-Loket,
2002). For the test site of Ravensburg, the ‘geo-referencing’ of both laser data and
multi-spectral data was done by TopoSys, achieving an accuracy similar to that of
AHN data. Therefore, no additional geo-referencing is necessary for these data.

2.4.2 Data correction

There were several problems with the laser data provided, which had to be corrected
as described below.

Flight gaps

A few small gaps were found in the original raster data of the Amsterdam site.
To have a complete coverage of the area, manual editing was done using aerial pho-
tographs and the large-scale base map.

Missing data

The grided laser data from both sites contained pixels with no values. This may
be caused by several factors. The first is the so-called ‘mirror reflection’. When
the laser beam hits a smooth surface situated near the end of the scan-line, the re-
flection will be cast off in another direction and the laser rangefinder will receive no
signal. This happens often on still water surfaces. Correction can be made by finding
the lowest height value in the surrounding region and replacing the missing pixels
with this value. Another mirror reflection type was found on top of several high-rise
buildings. The highest value in the region will be used to replace the missing pixels
in this case. The second cause of false pixels is mainly due to mixed types of vegeta-
tion canopy, where the laser signal is weakened or missed because of a mixed type
of surface. A few pixels of this type are found in wooded areas.

Noise

Some false pixels were found at random positions. This type of ‘missing pixel’ can
be treated as ‘noise’. The average values of surrounding pixels were taken instead.

The laser data used for this research after the above-mentioned corrections had
been made are shown in Figures 2.1, 2.3 and 2.4.
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Figure 2.1: DSM from laser scanning of the study area in Amsterdam with
1 m resolution (with correction).

2.5 The problems and existing approaches to
the problems

2.5.1 Aerial photo-interpretation
Aerial photo-interpretation is still a practical way of obtaining land-use classifica-
tion results, given the lack of automatic or semi-automatic solutions. However, it is
labour-intensive and subjective. Different results may be obtained by different inter-
preters owing to differences in understanding. Therefore, researchers are searching
for automatic or semi-automatic approaches to land-use mapping in various disci-
plines (Barr and Barnsley, 1997; Barnsley and Barr, 1997; Aplin et al., 1999a,b;
Zhan et al., 2002c,d). Size, shape, colour, orientation, pattern and association are
some of the cues used in photo-interpretation. These cues should continue to play a
key role in potential automatic solutions.

2.5.2 Per-pixel based approaches for land-cover classi-
fication

With the use of high-resolution remote sensing data, the problem of mixed pixels
is reduced but the internal variability and the noise within land-use classes are
increased (Cushine, 1987; Ehlers et al., 2002). Most conventional pixel-based clas-
sifiers, such as minimum distance and maximum likelihood assume parametric sta-
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Figure 2.2: Geo-referenced IKONOS image of the study area in Amsterdam
(false colour, 4 m resolution).

tistical models, such as the Gaussian distribution (Curran, 1985; Campbell, 1996;
Richards and Jia, 1999). These methods are not designed to handle data from differ-
ent sources or of varying accuracy and they cannot cope with non-numerical data. In
practice, the data do not usually obey the conditions imposed by these conventional
methods that classify pixels via crisp rules (Mertikas and Zervakis, 2001). Urban
areas are complicated because of the mix of man-made features and natural fea-
tures. Among the cues for photo-interpretation, only colour can readily be extracted
from images for land-cover identification. However, it is difficult to be determine size
and shape by using per-pixel approaches. In addition, pattern and association are
higher-level structural and topological information that is also difficult to extract by
using pixel-based approaches, but they are useful in land-use classification. For in-
stance, an isolated building surrounded by woods or other vegetation is likely to be a
farm house in a rural setting but a facility or shop in a recreational area in an urban
setting. A group of buildings of similar size and regularly spaced or orientated in an
urban area is likely to be a residential area. Such higher-level structural informa-
tion should play an important role in the land-use classification of an urban area.
Additional spatial indicators should be extracted, also based on structural analysis,
in order to understand and identify spatial patterns or the spatial organisation of
features, especially man-made features.
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Figure 2.3: Digital surface model from the first pulse of laser beam (DSM1),
Ravensburg, Germany (gray tone is proportional to terrain relief: lighter
tone refers to higher terrain, not cloud).

Figure 2.4: Digital surface model from the second pulse of laser beam
(DSM2), Ravensburg, Germany (gray tone is proportional to terrain relief:
lighter tone refers to higher terrain, not cloud).
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Figure 2.5: Colour infrared composite, Ravensburg, Germany.

Figure 2.6: True-colour composite, Ravensburg, Germany.
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2.5.3 Per-field approach using vector data
A per-field approach uses vector data to extract image regions (pixels inside a poly-
gon, a spatial unit such as an agricultural field or a parcel) and classify these re-
gions as a whole to improve classification accuracy (Aplin et al., 1999a,b; Zhan et al.,
2000; Aplin and Atkinson, 2001). The per-field approach is good for extracting and
analysing of structural information. In many cases, however, accurate and up-to-
date vector data sets are rarely available (Tatem et al., 2001b). Feature boundaries
may have changed between the time of producing vector data and the time of acquir-
ing new image data (Zhan et al., 2002a).

2.6 Improvement of pixel-based land-cover
classification

Pixel-based approaches have been developed and are widely used in remote sens-
ing image processing and classification. Since the early stage of remote sensing
applications, simple geometric properties such as the uniform shape and size of pix-
els have attracted many researchers to using pixel-based approaches. Examples of
pixel-based classifiers include the maximum likelihood classifier (MLC), the fuzzy
classifier, the tree-based approach and the neural network approach. A number of
issues have to be taken into consideration when selecting a suitable classifier. A
classifier such as the MLC requires normally distributed data. In practical multi-
class problems it is rather difficult to guarantee normal or even symmetric distri-
butions with similar covariance matrices for all the classes (Marques de Sa, 2001).
The requirement may be further violated when we apply this type of classifier to
high-resolution data. In this section, we would like to examine a number of issues
raised by the newly available high-resolution images in urban land-cover classifica-
tion. We take the MLC as a representative of pixel-based approaches, based on the
following considerations: widely used in remote sensing, comparatively robust as
regards marginal samples, and high classification accuracy can be reached. We will
illustrate the normal distribution problem by analysing the decision surfaces in the
feature space estimated by the MLC, using given samples, and show that the MLC
would be improved by introducing modifications.

2.6.1 Maximum likelihood classifier (MLC)
The MLC is a parametric statistical classifier that estimates mean and standard
deviation of each class based on samples. Classification is made by computing the
probability of each predefined class for each pixel, according to the probability den-
sity function (pdf) derived from estimated parameters with the assumption of the
normal distribution (Richards and Jia, 1999). The probability for class ωi can be
calculated for N bands as

p(x|ωi) = (2π)−N/2 |Σi|−1/2 exp{−1

2
(x−mi)

tΣ−1
i (x−mi)}
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Figure 2.7: 1D pdf of two classes,
µA=40, ρA=5, µB=60, ρB=10.
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Figure 2.8: 1D pdf of two classes,
µA=40, ρA=5, µB=60, ρB=20.

where mi and Σi are the mean vector and covariance matrix of the data in class
ωi.

2.6.2 Known problems with the MLC

The MLC can achieve relatively high accuracy in remote sensing classification when
the classes are well defined and samples are selected that meet or nearly meet the
requirement of normal distribution, as shown in Figure 2.7 for the one-dimensional
case.

Problems may occur when samples of one class have a small deviation while
samples of another class have a large deviation, as illustrated in Figure 2.8 for the
one-dimensional case and in Figure 2.9 for the two-dimensional case. In this exam-
ple, class A and class B1 as shown in Figure 2.8 will be classified properly. Pixels
in class B2, however, will be classified as class B instead of the more reasonable
class A as, using the standard MLC, pdf values computed for class B will be higher
than those for class A in this range. Such a problem may happen when we use high-
resolution images, particularly in urban areas, where a class such as water will have
a small deviation, green space will have a large deviation, and built-up areas will
have a very large deviation (as shown in Figures 2.10 and 2.11). The classification
result will be wrong because many water pixels will be wrongly classified as be-
longing to the built-up class. This occurs because the pdf of the built-up class has
been overestimated, owing to the existence of several different types of sub-clusters
(newly built-up, buildings with light tone, buildings with medium tone and buildings
with dark tone), which causes a large deviation in the built-up class.
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Figure 2.9: 2D pdf of two classes, µ1=(40, 40), ρ1=(5, 5), µ2=(60, 60), ρ2=(15,
15).

Figure 2.10: 2D plot of pdf
based on pure samples of three
land-cover classes: built-up (yel-
low), vegetation (green) and water
(blue).

Figure 2.11: 3D draped pdf
based on pure samples of three
land-cover classes: built-up (yel-
low), vegetation (green) and water
(blue).
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2.6.3 Potential solutions to the identified problems
Classification can be treated as partitioning in a feature space. The decision bound-
aries are formed by the intersection of the pdf obtained for all classes when using the
MLC or by the intersection of the fuzzy membership functions in fuzzy classification.
Based on the above observation, we consider that three solutions may contribute to
improving the maximum likelihood classification. The first measure is to obtain in-
dependent samples (Gong and Howarth, 1990). The second and third measures are
based on sample and parameter manipulation in the feature space. We might obtain
good classification results if we could delineate good decision boundaries in the fea-
ture space.

Single-pixel training approach

The single-pixel training approach is a sampling strategy where sample pixels
are selected individually instead of using image regions or block training, and each
pixel has to be at least several pixels away from any other selected pixel. The single-
pixel training approach has proved capable of improving the classification accuracy
(Gong and Howarth, 1990). This requirement is meant to reduce positive spatial
autocorrelation that may exist among pixels that are spatially contiguous or close
together (Campbell, 1981; Lobovitz and Masuoka, 1984). The traditional block train-
ing method violates the independent sampling requirement and makes the training
signatures for each class less representative. The block training is even worse for
high-resolution images. Therefore the single-pixel training approach was chosen in
our research without further testing.

Sample selection from central (pure) pixels or boundary (mixed) pixels

The sample selection strategy may have to be adapted to include not only pure
pixels but also mixed pixels that can be found along feature boundaries. The reasons
for this are the existence of sub-clusters in feature space for candidate end-member
classes and the increasing number of pure pixels existing in high-resolution images.
Mixed pixels here refer to pixels whose dominant cover classes can be easily defined
in visual interpretation although they are located along feature boundaries. We have
observed that including such mixed pixels provides more representatives than tak-
ing pure pixels only, and the mixed pixels can provide more evidence for determining
probability surfaces in the transit regions between different clusters in the feature
space, as shown in Figures 2.12 and 2.13. Both the pure-pixel sampling strategy and
the pure-plus-mixed pixel sampling strategy will be tested in Section 2.6.4.

Sample integration or class integration

The previous solutions focus mainly on sampling strategies. There is another
issue that has to be taken into account when using high-resolution images. Some of
the end-member classes may contain a number of sub-clusters in the feature space
because of the increasing number of pure pixels. When we select sample pixels for
these classes, we have to select samples from each sub-cluster. For instance, we may
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Figure 2.12: 2D plot of pdf based
on pure and mixed samples of
three land-cover classes: built-up
(yellow), vegetation (green) and
water (blue).

Figure 2.13: 3D draped pdf based
on pure and mixed samples of
three land-cover classes: built-up
(yellow), vegetation (green) and
water (blue).

need to select sample pixels from buildings with light tone as well as from buildings
with dark tone for the built-up class. The way of combining samples that were se-
lected for each sub-cluster in order to represent a class is called sample integration.
Problems may occur in that the built-up class may contain samples from different
sub-clusters and the deviation may be overestimated in the feature space with para-
metric MLC, as shown in Figures 2.10 and 2.11. This problem has been reduced
by including mixed pixels as shown in Figures 2.12 and 2.13. However, as you may
discover, a small yellow area still exists in the left side of the water cluster in Fig-
ure 2.13. Our proposed solution to this problem is using the class integration method
instead of sample integration. Unlike sample integration, which simply combines
samples of different sub-clusters for parameter estimation of a certain class, class
integration estimates a pdf for each sub-cluster in a class and then creates a united
pdf for this class by applying a maximum function

pdf(ωi) = max(pdf1, pdf2, . . . , pdfk)

where class ωi contains k sub-clusters. The class integration method provides a
better solution to this problem, as shown in Figure 2.14 for pure samples and Fig-
ure 2.15 for pure and mixed samples. Based on the above testing and observations,
we observe that by combining the efforts of single-pixel training, the involvement
of boundary or mixed pixels, and class integration, classification accuracy may be
improved for high-resolution images.
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Chapter 2. High spatial resolution data and pixel-based classification

Figure 2.14: 3D draped pdf based
on class integration method with
pure samples of three land-cover
classes: built-up (yellow), vegeta-
tion (green) and water (blue).

Figure 2.15: 3D draped pdf based on
class integration method with pure
and mixed samples of three land-
cover classes: built-up (yellow), veg-
etation (green) and water (blue).

2.6.4 Effectiveness of the proposed modifications
To examine the effectiveness of the proposed modifications in a real situation, some
300 samples were manually selected from an IKONOS image for each individual
cluster, using the single-pixel approach. According to the spectral values of the four
bands of the IKONOS image, the built-up class was subdivided into four clusters,
from very light tone to very dark tone; vegetation was subdivided into two clusters,
trees and lawn; water was subdivided into two clusters, lake and canal. The first
100 samples were selected from pure pixels and the following 200 samples were se-
lected from boundary or mixed pixels for each cluster. All samples had been divided
into two groups by taking every two samples alternately, so that samples with an
odd number in the list were used for training and those with even numbers were
used for quality assessment. The experimental results of four tests are presented
in Tables 2.6, 2.7, 2.8 and 2.9. They refer to sample integration with pure sam-
ples, sample integration with pure and mixed samples, class integration with pure
samples, and class integration with pure and mixed samples. Comparison of the
approaches in terms of overall accuracy and the Kappa coefficient is shown in Fig-
ures 2.16 and 2.17. Based on the test results, we can conclude that in general the
class integration method achieves a higher quality than sample integration. The
highest classification quality was obtained by using the class integration method
with pure and mixed samples. Comparing Table 2.6 and Table 2.7 as a result of
applying the sample integration method, we can see that the classification quality is
reduced when mixed samples are included. This is mainly because the pdf values of
classes with small deviations (e.g. water class) are much more sensitive in response
to an increasing number of mixed samples in sample integration than classes with
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Table 2.6: Quality assessment of ML classification based on sample integra-
tion of 50 pure training samples and 150 test samples for each cluster

Reference Data
Built-up Vegetation Water

Classified
Data

Built-up 573 0 21
Vegetation 4 299 9
Water 23 1 270

Overall accuracy: 95.17 %, Kappa coefficient: 92.28 %

Table 2.7: Quality assessment of ML classification based on sample integra-
tion of 150 pure and mixed training samples and 150 test samples for each
cluster

Reference Data
Built-up Vegetation Water

Classified
Data

Built-up 553 1 14
Vegetation 2 298 5
Water 45 1 281

Overall accuracy: 94.33 %, Kappa coefficient: 91.03 %

large deviations (e.g. built-up class), as is obvious from comparing Figure 2.11 and
Figure 2.13. It confirms our earlier observation, and proves that our proposed mea-
sures can improve classification quality. One suggestion is to select, in addition to
pure samples, samples near the boundaries with other classes and to use the class
integration method instead of the sample integration method when sub-clusters ex-
ist in end-member classes. A small part of the test site is selected for close obser-
vation of the classification results obtained by applying different combinations, as
shown in Figures 2.18 and 2.19. The classification results of these different com-
binations are illustrated in Figures 2.20, 2.21, 2.22 and 2.23. We can observe that
many pixels in the dark roofs had been classified as water in Figure 2.20. The sit-
uation is even worse in Figure 2.21 because of disproportional changes in the MLC
parameters owing to the involvement of mixed samples. The pdf values increase
faster for the water class than for the built-up class in the boundary region between
the water and built-up classes in the feature space, because the built-up class has a
much larger deviation than the water class when sample integration is applied (see
the differences between Figure 2.11 and Figure 2.13). From Figure 2.22 we can see
that the result is better when using the class integration method. However, the best
result is obtained by using pure and mixed samples and applying the class integra-
tion method (see Figure 2.23). Figure 2.24 show the improved classification result
obtained by using the proposed method.
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Table 2.8: Quality assessment of ML classification based on class integra-
tion of 50 pure training samples and 150 test samples for each cluster

Reference Data
Built-up Vegetation Water

Classified
Data

Built-up 571 0 17
Vegetation 7 298 8
Water 22 2 275

Overall accuracy: 95.33 %, Kappa coefficient: 92.56 %

Table 2.9: Quality assessment of ML classification based on class integra-
tion of 150 pure and mixed training samples and 150 test samples for each
cluster

Reference Data
Built-up Vegetation Water

Classified
Data

Built-up 584 1 21
Vegetation 4 298 3
Water 12 1 276

Overall accuracy: 96.50 %, Kappa coefficient: 94.39 %
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Figure 2.16: Comparison of over-
all accuracy based on 150 test
samples for each cluster.
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Figure 2.17: Comparison of
Kappa coefficient based on 150
test samples for each cluster.
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2.6. Improvement of pixel-based land-cover classification

Figure 2.18: A small portion of
IKONOS image for close observa-
tion. This is a complicated part
of the test site due to similarity
of spectral features of dark roof,
shadow and water.

Figure 2.19: The differences be-
tween classification results of dif-
ferent combinations (black pixels
indicate the different classifica-
tion results of different combina-
tions).

Figure 2.20: Classification result
of applying the sample integra-
tion method and using the pure
samples.

Figure 2.21: Classification result
of applying the sample integra-
tion method and using the pure
and mixed samples.

32



Chapter 2. High spatial resolution data and pixel-based classification

Figure 2.22: Classification result
of applying the class integration
method and using the pure sam-
ples.

Figure 2.23: Classification result
of applying the class integration
method and using the pure and
mixed samples.

Figure 2.24: Classification result of applying the class integration
method and using the pure and mixed samples.
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2.7 Proposed object-based approach for land-
cover and land-use classification

2.7.1 Complexity of land-use classification
Urban land-use in an urban planning context refers to certain functions with re-
lated social-economic characteristics. For instance, a residential area consists of a
number of physical features such as residential buildings, parking spaces, footpaths,
green space, and maybe canals. Quite often, these features are targets of land-cover
classification. Physical features in general have certain associations with spectral
features, so they can be identified by using multi-spectral information from remote
sensing images. However, land use cannot be determined directly from land-cover
information (Barr and Barnsley, 1997; Zhan et al., 2002d). This is because land
use is an abstract concept – an amalgam of economic, social and cultural factors –
one that is defined in terms of function rather than physical form. Urban land use
might be distinguishable in terms of the morphological properties of, and the spatial
relations between, their component land-cover parcels (regions) (Barnsley and Barr,
1997). It is possible, for example, that different sample areas of the same nominal
land use might exhibit somewhat different morphological properties and/or spatial
relations in terms of their component land-cover regions. If the within-class varia-
tion (i.e. within a single land use) is greater than the between-class (i.e. between
different land uses), then it will not be possible to identify and to distinguish ur-
ban land use consistently on the basis of these structural measures (Barnsley and
Barr, 1997). Besides the morphological properties and the spatial relations in terms
of their component land-cover regions, a number of other indicators are needed in
order to identify land use, such as proportion of areas covered by different types of
land cover, building density, floor area ratio, or evidence derived from other sources.
In addition, correct delineation of the spatial extent of a land-use unit is a crucial
factor, and many land-use-related measurements (such as building density) may be
influenced by delineating different land-use units, possibly leading to incorrect iden-
tification. Therefore, in this research an intermediate stage is proposed for finding
spatial units where certain functions are held spatially. This intermediate stage be-
tween land-cover classification and land-use classification reflects what is happen-
ing in the human vision system. The indicators, as mentioned above, are supposed
to be extracted from laser data or multi-spectral images. Many features essential
for land-use classification are per-object based. They are difficult or impossible to
extracte by per-pixel approaches. Therefore, the object-based approach is needed.

2.7.2 Object-based approach for land-cover and land-
use classification

A hierarchy of three levels is proposed to achieve land-use classification at three
levels, namely pixel level, land-cover level and land-use level (Figure 2.25). At each
level we create image objects in order to represent spatial coverage and respective
thematic information. For maintaining logical consistence and uniform expression
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Figure 2.25: Hierarchy of image objects and work flow.

in object-based modelling, each pixel is treated as an object despite the holding of
some unique characteristics such as uniform size, shape, function of spatial location.
Detailed descriptions of the proposed approach are presented in coming chapters.

2.8 Discussion and outlook
Two test sites with corresponding data have been introduced in this chapter. This
is not because we are going to solve problems raised by these particular sites, but
because we wish to illustrate typical problems immediately. We shall use them for
the practical testing of methods proposed and developed in this research. By intro-
ducing the test sites and data preparation in this chapter, we are able to use the
data for test purposes and show the test results in the following chapters without
any further explanations about the test sites and their data.

Triggered by the potential problems of high-resolution data, we have examined
the most popular pixel-based classifier, the MLC, as to its suitability for this type
of data. A number of problems have been observed and highlighted, such as the ex-
istence of sub-clusters. Several remedial measures for the problems observed have
been proposed and tested. Quality improvement has been achieved by modelling
the decision surface in the feature space, which aims at obtaining better spatial
partitions for each end-member class in feature space, based on selected samples.
The experimental results have confirmed the effectiveness of these measures. How-
ever, other issues such as pixels in shadow areas and relief displacement caused by
non-vertical observation remain untouched by the proposed improvements. These
problems will be revisited by using an object-based approach in Chapter 6.

Although the proposed modifications have raised the classification accuracy of
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the MLC, we consider the attainable results insufficient for a detailed urban land-
use classification. Based on our knowledge of, and experiments in, visual image-
interpretation, the key features for image-interpretation, such as size, shape, colour,
orientation, pattern, association. are directly associated with explicit objects, which
are at higher abstraction levels than pixels. These key features should continue
to play a key role in image analysis and land-use classification. For instance, we
need to check how buildings are spatially distributed in space in order to find out
if they belong to a residential area. We need to know the number of floors of a
building in order to achieve better understanding and classification. We need to
know if buildings are similar in size, height, orientation, etc. We need to explore
the surrounding features of specific objects. Such information cannot be acquired
by per-pixel approaches because they are directly associated with objects, not pixels.
Therefore, object-based image processing techniques, which provide additional tools
and methods for dealing with higher abstraction levels, are considered for higher
levels of image analysis. Thus an object-based image analysis approach becomes the
main focus of this research. It will be investigated in the coming chapters.
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Chapter 3

An object-based
conceptual model for
urban land-cover and
land-use classification

3.1 Introduction
Geographical information systems (GIS) were developed in the late 1960s but very
few places installed them because of their expensive hardware and limited software.
Since the early 1980s, there has been a marked increase in the installation of GIS at
different levels and in different departments of urban and regional governments in
the developed countries. with the introduction of microcomputers in the late 1980s,
GIS became increasingly being used in planning agencies in the developing coun-
tries. The inventory, analysis and mapping capacities of GIS are the main functions
that had wide applications in urban and regional planning at this stage (Marble
and Amundason, 1988; Yeh, 1988; Chen et al., 1989; Yeh, 1991). The large-scale
implementation of urban (planning) information systems indicates the success at
this stage. The main characteristics at the time were the practical uses of GIS and
remote sensing on a daily-routine basis. The developments during this stage have
led the planning discipline to move from analogue to digital. The entity-relationship
approach is the prime tool for semantic data modelling. However, experience has
shown that for many systems the initial set of modelling constructs (entity, attribute
and relationship) is inadequate. There are many phenomena in geographical real-
ity that are readily perceived as entities and represented by objects such as lakes,
rivers, roads, buildings. In the planning discipline, many geo-spatial entities such
as residential, commercial and industrial in land-use mapping are perceived as en-
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tities and are represented by objects as well, despite the fact that no physical bound-
aries may exist between different land-use objects. Natural language is much more
suited to describing objects and fields (Cova and Goodchild, 2002). Many phenomena
and concepts in planning are described by way of natural language, such as built-
up areas, a good living environment, a walking distance. Object-oriented analysis
(OOA) is a method of analysis that examines requirements from the perspective of
the classes and objects found in the vocabulary of the problem domain (Booch, 1993).
Many principles and techniques for managing complexity have been collected in the
OOA, such as abstraction, encapsulation, inheritance, association. (Coad and Your-
don, 1990). The OOA approach is applied in object-based spatial data modelling
in the planning and management domain in order to support object-based image
analysis toward land-cover and land-use classification in urban areas. Considering
the implementation of the OO models in a raster environment, these objects are
formulated based on the raster representation. In the following sections, a layered
sequence is followed for the OOA – from Subject layer, Class-&-Object layer, Struc-
ture layer, Attribute layer to Service layer (Coad and Yourdon, 1990). Object-based
conceptual analysis in the planning context follows the same line as OOA and is
presented toward urban land-cover and land-use classification as a subject layer. A
brief introduction of the OO approach and tools will follow. In the coming sections,
conceptual modelling is elaborated by using an adapted syntax based on the notions
from both UML (United Modelling Language) and OMT-G (Object Modelling Tech-
nique for Geographic Application), and on the notion presented by Molenaar (1998),
corresponding to Class-&-Object layer, Structure layer, Attribute layer and Service
layer. A number of diagrams are produced concerned with class, structure, attribute
and operation. Please note that the conceptual modelling presented in this chap-
ter focuses on the problem domain of urban land-cover and land-use classification
based on high-resolution data and does not aim at a general model for GIS in urban
planning and management. Therefore, structures, attributes and operations, such
as ownership, address and building materials of a building, which rely on additional
data rather than remote sensing data, are not considered in this modelling.

3.2 An object view on geo-spatial data used in
urban planning and management

3.2.1 Objects and their behaviours in the urban plan-
ning context

A starting point for defining objects in an urban planning context may be to look
at what features are currently stored and processed in existing GISs. We may find
settlements, buildings, roads, commercial districts, green areas, water bodies, in-
dustrial areas, etc. These can be treated as objects. However, some of them are not
likely to appear on a map at the same time.

By taking a close look at these objects, we can see that some of them are physical
entities that have physical properties and physical boundaries, such as buildings,
green spaces, water bodies. And there are conceptual entities that consist of other
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physical entities, often with fuzzy boundaries, such as residential areas, commercial
areas and industrial areas, which directly relate to land use. A residential area may
consist of buildings, gardens, footpaths, small lakes or canals, etc. We may notice
that certain entities can be treated as physical entities in some cases but considered
as conceptual entities in others. For instance, a lake classified as water surface in
land-cover classification may, in land-use classification, be identified as recreational
land use if it is located in a park, or as a fishing pool if it is located outside the built-
up area. Therefore, an entity may ‘behave’ differently in different circumstances.

3.2.2 Hierarchy of planning
Regional planning

Regional planning aims at the reasonable structure and spatial distribution of pro-
duction elements at the regional scale. It deals mainly with abstract entities such
as human settlement, industrial zones, transportation networks. The central loca-
tion, physical size and the spatial coverage of its influence zone on the surrounding
regions are the main features to be modelled in regional planning.

Master planning

Master planning aims at the sound spatial and sectional distribution of land in ur-
ban built-up areas and surrounding regions.

Detailed planning

Detailed planning deals mainly with organic spatial arrangement at the neighbour-
hood level to meet the certain functions assigned to each neighbourhood block.

3.2.3 Objects at different hierarchical levels of urban
and regional planning

Objects at the regional planning level

There are three main types of objects at the regional planning level: point objects,
line objects and area objects, corresponding to settlements, transportation networks
and influence zones.

Objects at the master planning level

There are three types of objects at the master planning level: point objects and line
objects, which are mainly for providing spatial references, and area objects (land
use), which are the spatial partitions of major land-use classes as represented in a
2D space.
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Objects at the detailed planning level

The objects at the detailed planning level are very similar to the objects at the
master planning level. The main differences are small spatial units and greater
specificity in land-use functions. Therefore, land-use objects at the master planning
level can be generated from land-use objects at the detailed planning level by merg-
ing objects from specific land-use classes into major land-use classes and dissolving
the boundaries between neighbouring objects within the same major land-use class.
Land-use objects at the detailed planning level can be disaggregated or specified
from land-use objects at the master planning level.

Objects at the land-cover level

Physical entities such as buildings, roads, green spaces and water bodies are repre-
sented by objects at the land-cover level. This is a fundamental base for land-use
classification. Each object can be an element of a land-use class. Land-cover objects
can be used as an indication for determining the spatial extent of a land-use unit.

3.2.4 Object types
Objects with similar properties or similar behaviours are organised into types. Sim-
ilar behaviours can be identified according to various criteria or perspectives such
as spatial extent and abstraction level. Types of objects will be discussed in the
following subsections, according to different perspectives.

3.2.5 Types of objects concerning different abstraction
levels

Elementary objects (images or field data)

Pixels are regarded as elementary objects that have uniform geometric properties.
Elementary objects share many methods or operations of pixel- or raster-based pro-
cessing, such as filtering, convolution, classification.

There are two types of elementary objects, one relating to images or field data
and one relating to object fields. There is one main difference between the two. The
images or field data take data take digital number (DN) values from pixels. These
DN values usually range from 0 to 255 or actual height values of laser data. The
DN values of an object field are taken mainly from membership functions according
to the characteristics of the object. The DN values of an object field are taken from
the Boolean value 0 (false) or 1 (true) for crisp objects or a real value from 0 to 1 for
fuzzy objects.

Objects at the land-cover level

Objects at the land-cover level have object ID, geometric properties such as location,
size, shape, orientation, as well as class-related attributes such as class name or
class ID, mean value and standard deviation of membership functions in this class.
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Objects at the land-use level

Objects at the land-use level have object ID, geometric properties such as location,
size, shape, orientation, as well as class-related attributes such as class name or
class ID, composition and proportion of land-cover types contained, number of build-
ings held by a land-use object.

3.2.6 Types of objects concerning their spatial extent

Objects with fixed boundaries and adjacency relationship (OPixel)

Pixels or OPixel are elementary objects in a raster data model. A pixel is the smallest
spatial unit of uniform size. Pixel values are spectral reflectance in multi-spectral
images, height values in laser data, or membership function values in object fields
represented in a regular grided space. In general all image processing operations
are applicable to this class.

Objects with physical boundaries or physical indications for their
spatial extent (OPB)

OPB are representations of physical entities existing in the real world, such as build-
ings, roads, rivers. Their spatial extent can often be determined by their physical
boundaries. These types of objects are often considered in land-cover classification.
Many land-cover objects such as buildings, roads and water belong to this class.
Edge detection and regional growth methods are common tools for delineating this
class. These tools are often not sufficient for object extraction. For instance, many
edges and regions may be extracted even from the same roof, since it is difficult to
identify whether an edge is part of an object or the boundary of the object or whether
two regions belong to the same object or to different objects. Additional measures
such as size and shape can be introduced by the object-based approach for extracting
objects of this class (as discussed in Chapter 6).

Objects with fuzzy boundaries or fuzzy indications of their spatial
extent (OFB)

OFB are representations of physical objects existing in the real world, such as green
spaces in the planning context or vegetation (trees or lawns). It is often difficult to
extract the spatial extent with clear sharp boundaries. For instance, it is difficult to
determine where a dense wood ends and where grassland begins in an area where
tree density is changing gradually in a transition zone. These types of objects such
as green space are relevant in both land-cover and land-use classification and are
often used in environmental studies. Their spatial extent will have to be determined
based on a decision surface, according to fuzzy membership functions.

41



3.2. An object view on geo-spatial data used in urban planning and management

Objects without physical boundaries, or their existence and spatial
extent are conceptualised (OC)

OC are representations of conceptualised entities, in the sense that their existence
has to be referenced based on the existence of a number of key features and their
spatial extent has to be inferred based on the spatial distribution of these key fea-
tures. Most objects in land-use classification are of this type, such as residential,
commercial, industrial areas. The existence and spatial extent is determined based
on decision surfaces. The decision surfaces might have to be generated based on a
number of indicators, according to definitions such as building density and floor area
ratio.

3.2.7 Land-cover and land-use classes
Land-use classes are determined based on economic functions and can be reasoned
according to evidence of the ground activities associated with a place. Many classi-
fication systems have been developed for different purposes in different countries.
For instance, the land-based classification standard was developed by the American
Planning Association (American Planning Association, 2001). The first and second
levels of land-use classes in the function dimension are presented in Appendix A,
Table A.3. The National Land Use Database (NLUD) Land Use Classification ver-
sion 3.3 was proposed by the British authority (Harrison and Garland, 2001). Its
13 divisions and 51 classes are provided in Appendix A, Table A.4. The National
Standard for Urban Land Use Classification was presented by the Chinese author-
ity (The Ministry of Construction P. R. China, 2001). Its first and second levels of
land-use classes can be found in Appendix A, Table A.5. The land-use classification
that we are talking about in our research concerns the need for investigating and
monitoring how urban land is actually used for various purposes in an urban space,
and provides planners and decision makers with quantitative measurements of how
urban land is used and changed in terms of physical space, time and different cat-
egories. The purpose is different from that of land-use codes used in zoning, where
particular land-use codes are used to specify the preferences for certain uses of a
particular land parcel, although the same or similar land-use classification systems
are applied in both cases. In general, these types of classification systems are based
mainly on the needs of planners and other related businesses, without much con-
sideration as to whether remote sensing or visual aerial photo-interpretation can
yield the wanted data. This type of classification system is too detailed (considering
both the first and second levels), thus requiring additional information even if man-
ual visual interpretation is applied. A general land-use classification system was
proposed in 1976 considering the use of satellite images (Anderson et al., 1976). An-
derson et al. (1976) had manual interpretation in mind and the main data sources
available at that time were the Landsat MSS data with a spatial resolution of 79 m.

To make use of high-resolution images (0.5 m to 4 m) in an automated approach,
the above-mentioned classification systems need to be adapted and merged. Since
we are interested in land-use classification in urban areas, we consider only urban-
related land-use types. The proposed urban land-use classification system for the
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automatic classification experiments in this research is presented in Table A.6.

3.3 Object-based analysis and modelling
Object-based modelling follows the line of the object-oriented (OO) approach, due
consideration to the spatial components in this research. Since many issues regard-
ing the OO approach have been discussed in existing literature (Booch, 1993), here
we will mention only some key concepts and provide some examples in applying the
OO approach in the urban planning and management domain.

Notions are taken from both UML and OMT-G. Although these tools were orig-
inally developed for modelling toward OO programming in software development,
they are also important tools for object-based analysis and modelling, and the results
can be easily understood and implemented by following these notions and diagrams.

3.3.1 Key elements of an object-based approach
From the object perspective, there are several key elements such as abstraction,
encapsulation, modularity, hierarchy. The following definitions are given by Booch
(1993).

Abstraction

An abstraction denotes the essential characteristics of an object that distinguish it
from other kinds of objects and thus provide crisply defined conceptual boundaries,
relative to the perspective of the viewer. For instance, land-cover classes are an
abstraction of physical features of both natural and man-made objects in reality.
Land-use classes are an abstraction of conceptualised features in terms of human
activities, which are usually indicated by certain types of physical features in reality.

Encapsulation

Encapsulation is the process of compartmentalising the elements of an abstraction
that constitute its structure and behaviour; encapsulation serves to separate the
conceptual interface of an abstraction and its implementation. For instance, an in-
dex to pixels that are parts of an image object are encapsulated in the spatial embed-
ding of an image object. Thus other geometric properties such as the centre of mass,
size, shape and orientation can be derived from these pixels and can be encapsulated
as well.

Modularity

Modularity is the property of a system that has been decomposed into a set of cohe-
sive and loosely coupled models. Image processing operations, which are applicable
to elementary objects (images or field data) will be collected in an image processing
model, while additional operations applicable to image objects will be the compo-
nents of an image-object processing model.
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Hierarchy

Hierarchy is a ranking or ordering of abstractions. Pixel, land cover and land use
form a hierarchy in terms of spatial coverage: a land-cover object is a collection of
elementary objects (pixels) and a land-use object is a collection of land-cover objects.

3.3.2 Class
A class is a set of objects that share a common structure and behaviour. A single
object is simply an instance of a class. In a land-cover or land-use classification
system, each class is readily treated as a class by its definition as it is in the OO
domain. However, the definitions provide mainly the indications of the chief charac-
teristics of classes. Their explicit attributes and behaviour are often not provided.
Class attributes and operations will have to be defined in the OO modelling.

3.3.3 Relationships among classes
In an OO perspective, several versions of relationships have been proposed for de-
scribing relationships among classes (Worboys et al., 1990; Booch, 1993; Fowler and
Scott, 1999). The Worboys version used in this research includes generalisation,
specialisation, aggregation and association. The following definitions are proposed
by Worboys et al. (1990). Examples are given of potential applications to land-cover
and land-use classification.

Generalisation

Generalisation is the construction that enables groups of similar types to be consid-
ered as a single higher-order type. Land-use object types at the master planning
level can be generalised from land-use object types at the detailed planning level.

Specialisation

Specialisation is the construction that enables the modeller to define possible roles
for members of a given type. A residential class may be subdivided into sub-classes
according to the number of floors of residential buildings or building density, etc. A
land-use type consists of a number of land-cover types. Under certain circumstances,
some land-cover types should not be included in this particular type. For instance,
when a footpath, originally part of a residential area, has been expanded to become a
main road, it should be included in the transportation class instead of the residential
class.

Aggregation

Aggregation is the construction that enables types to be amalgamated into a higher-
order type, the attributes of whose objects are a combination of the attributes of the
constituent types. Mapping from land-cover types to land-use types can be treated as
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aggregation, so that some attributes of land-cover types become attributes of land-
use types.

Association

Association or grouping is the construction that enables a set of objects of the same
type to form an object of higher-level type. Hierarchically formed land-use clas-
sification systems readily provide associations between classes at different levels.
Spatially adjacent residential areas of different types can be merged into a single
residential area at a higher level where only the major land-use classes are used.

3.3.4 Object-based modelling tools
United Modelling Language (UML)

UML is a standard tool for OO modelling and OO programming (Fowler and Scott,
1999; OMG, 2001). There have been many publications over the past decades in the
fields of OO modelling and UML. For further information, a UML bibliography is
available online (UML Bib, 2002).

Object Modelling Technique for Geographic Application (OMT-G)

OMT-G is an object-oriented data model for geographical applications, which was
initially based on the classic OMT class diagram notion, and later adapted to ap-
proach the concepts and notion of UML. OMT-G offers primitives that provide the
means of modelling the geometry and topology of geographical data, making the
modelling of geographical applications easier (Borges et al., 2001).

An extension of OMT-G

Since many primitives of geographical objects are defined based on the vector data
model in OMT-G, an extension is proposed to include geographical objects with prim-
itives based on the raster data model in this research. Geo-field or image, object field
and image object are three types of objects defined based on the raster data model.

Geo-field or image is called an elementary object, which is the fundamental base
for object-based image analysis and object-based land-cover/use classification.

Object field is a field but with field values reflecting certain semantic mean-
ings regarding certain features. Such field values are often used to represent fuzzy
membership functions for semantic mapping from field data to spatial embedding of
objects or desired features in the thematic domain.

Image object is a conditional object in raster form, which is often derived from
the object field by image segmentation with certain thresholds. Graphic notation for
the extended OMT-G classes is shown in Figure 3.1.

45



3.4. Object classes in raster for land-cover and land-use classification
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Figure 3.1: Graphic notation for geo-field (a), object field (b) and image ob-
ject (c).

3.3.5 A syntax for object-based modelling in the context
of urban planning and management

Object and object class

We use the bold italic font to represent a class and use an index for an object. For
instance, we use Building to denote the class building and use Buildingi to denote
a building object.

Method or operation

We use the italic font to represent a method that is applicable to a class, which
is quoted in brackets. For instance, we use Topo[Objecti,Objectj] to denote the
method or operation to obtain the topological relationship between objecti and objectj .

Notions for spatial relations

The sign s
= denotes a relationship in the spatial domain. The symbol ∪s denotes the

union in the spatial domain or spatial partition.

3.4 Object classes in raster for land-cover and
land-use classification

3.4.1 Object classes concerning their geometric and
topological characteristics

Elementary object

As an elementary object, a pixel in a geo-field or image has a uniform size and an
adjacency relationship with surrounding pixels. It also inherits properties and op-
erations of images or field data. Many image or raster processing operations are
applicable to this class, such as filtering and convolution.

An elementary object will have following attributes:
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• ID: X, Y or row, column
• Geometric properties: uniform size and shape (pixel)
• Thematic attributes: DN values of images and field data (e.g. multi-spectral,

elevation values of DSM1 and DSM2, etc.)

Remote sensing image data normally take 8-bit or 11-bit (IKONOS) gray values
from 0 to 255 or 0 to 2047 for each spectral band. Laser scanning data usually record
height information in real values. Laser scanning data are usually represented in
regular grid or raster form and can be processed like images. Variables in field data
can be of any data type: binary, nominal, ordinal, interval or ratio.

Object field

An object-field generally has all the same properties and operations as an elemen-
tary object. It usually takes values from 0 to 1 as a membership value. In a crisp
case, an integer 0 or 1 is the attribute value for each pixel, while a real number be-
tween 0 to 1 will be the attribute value in a fuzzy case.

An object field will have the following attributes:

• ID: X, Y or row, column
• Geometric properties: uniform size and shape (pixel)
• Thematic attributes: membership function values of corresponding features of

an object

Image object

Image objects will be determined based on a number of conditions according to their
definition. The spatial embedding of image objects is similar to image regions, so
that geometric attributes include size, shape and orientation. Topological relations
are determined based on surrounding objects (or image regions) rather than on
neighbouring pixels. Both land-cover objects and land-use objects inherit attributes
and operations from image objects. Due to the conceptual nature, land-use objects
are at a higher hierarchical level and will be determined based on land-cover objects
at a lower level. A number of attributes and operations of land-cover objects can be
inherited by the land-use objects through spatial aggregation, so that the land-use
object will have additional attributes, such as structural attributes, which represent
the spatial distribution of land-cover objects in the spatial embedding of a land-use
object.

An image object will have the following attributes:

• ID
• Geometric properties: size, shape, orientation, etc.
• Thematic attributes: land-cover or land-use class
• Semantic attributes: typicality or membership function values to designated

classes
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Elementary


Multi-spectral
 DSM1
 DSM2
 Others


Figure 3.2: Components of elementary class.

3.4.2 Object classes and their sub-classes at different
hierarchical levels

At the pixel level

Field data obtained by airborne or satellite-borne sensors provide multi-spectral
and/or height information, which is recorded data describing the earth’s surface.
Images and fields are components or a sub-class of the elementary class.

Multi-spectral imagery, LIDAR data (DSM1, DSM2) etc. are used as attributes
of the elementary class in this research.

The relationship between the elementary class and its components is presented
in Figure 3.2.

At the land-cover level

Buildings, roads, green spaces and water surfaces are the main land-cover sub-
classes that can be extracted from remote sensing images. The land-cover class can
be generalised from these sub-classes. The land-cover sub-classes are specialised
from the land-cover class. Their attributes and operations can be inherited from the
land-cover class. The relationship between the land-cover class and the land-cover
sub-classes is presented in Figure 3.3.

Besides the attributes that are inherited from the image object, there are more
specific attributes that can be extracted and added to the individual land-cover sub-
class. Some examples are proposed:

Building: number of floors, etc.

Green space: average height, etc.

Water: water table, etc.
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Water
Building
 Green Space
 Road
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Land-cover


Figure 3.3: The relationship between land-cover class and land-cover sub-
classes.

Green Space
Transportation
 Utility
 Others
 Non-Urban
Road
Industrial
Commercial
Residential


Land-use


Figure 3.4: The relationship between land-use class and land-use sub-
classes.

Road: road width, etc.

At the land-use level

Objects at the land-use level form the land-use class. Residential, commercial and
service, industrial and warehouse, main road and main street (including main roads
and main streets inside the built-up areas), transportation (including main roads
that connect other cities, railway lines and stations as well as airports and har-
bours), public green space (large green spaces for protectional use, such as trees
and lawns planted along river banks and in areas between residential areas and
industrial areas, as well as large green spaces for leisure use), utility, others in ur-
ban areas and non-urban are some of the major land-use sub-classes (see detailed
descriptions and definitions in Appendix A). The land-use class can be generalised
from these sub-classes. The land-use sub-classes are specialised from the land-use
class. Their attributes and operations can be inherited from the land-use class. The
relationship between the land-use class and the land-use sub-classes is presented in
Figure 3.4.

An object class at a higher level can be aggregated from a lower level. The object
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Figure 3.5: Hierarchical aggregation of classes and their attributes.

field plays an important role and acts as a mediator for aggregations or mapping be-
tween an elementary object and a land-cover object and between a land-cover object
and a land-use object. The aggregation hierarchy of the elementary, land-cover and
land-use classes is illustrated in Figure 3.5.

3.5 Methods needed for land-cover and land-
use classification

A number of methods are needed to support land-cover and land-use classification
and must be attached to applicable objects and classes. The following are some key
methods as proposed in the conceptual modelling stage. They will play an impor-
tant role in various aspects in this research, such as feature transformation, object
formation, structural analysis, classification.

3.5.1 Standard pixel-based methods
There are many standard image processing methods or operations such as morpho-
logical operations, which can be found in the literature (van der Heijden, 1994;
Parker, 1997; Richards and Jia, 1999; Sonka et al., 1999; Tso and Mather, 2001)
and are ready to be applied to images and field data. This type of operation can be
described using the following syntax:

Imageout = Operation(Imagein1, ...)
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Convolution

Convolution is a commonly used operation in image processing. There are several
possible notations to indicate the convolution of 2D image to produce an output im-
age. The most common are:

Imageout = Convolution(Imagein, Kernel) = Kernel⊗ Imagein

Morphological operations

Morphological operations are useful tools in image processing. Commonly used op-
erations include dilation, erosion, closing and opening. A more detailed description
of morphological operations can be found in Parker (1997).

Dilation operation

A dilation of set A by set B is:

A⊕B = {a + b, a ∈ A, b ∈ B}

where A represents the image being operated on, and B is a second set of pix-
els, a shape that operates on the pixels of A to produce the result; set B is called a
structuring element (SE), and its composition defines the nature of specific dilation.
Dilation can be used to acquire the surrounding pixels of an image object (e.g. build-
ing), which are then used to obtain a feature (e.g. ground elevation of a building).
Dilation can be used to generate the solid core of a land-use object (a residential
area), based on clustered land-cover objects (buildings).

Erosion operation

An erosion of set A by set B is:

A	B = {z | (B)z ⊆ A}

Opening operation

The application of an erosion immediately followed by a dilation using the same
structuring element is referred to as an opening operation. The name ‘opening’ is a
descriptive one, describing the observation that the operation tends to ‘open’ small
gaps or spaces between touched objects in an image (Parker, 1997). The opening op-
eration is an efficient tool for the removal of noises (small clutters) and for splitting
touched image objects.

Closing operation

A closing is similar to an opening except that the dilation is performed first, fol-
lowed by an erosion using the same structuring element. A closing operation is often
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used to fill small holes in an image object.

These morphological operations can be expressed as:

Imageout = Dilate(Imagein, SE)

Imageout = Erode(Imagein, SE)

Imageout = Open(Imagein, SE)

Imageout = Close(Imagein, SE)

Examples of applying these morphological operations to a test image are shown
in Figure 3.6.

a

b c d e

Figure 3.6: Examples of morphological operations: original test image (a);
result of dilation (b); result of erosion (c); result of opening (d); result of
closing (e).

3.5.2 Transformation for multi-spectral images
Transformation is needed to acquire data that provide indications for desired fea-
tures, such as the normalised difference vegetation index (NDVI) and the normalised
difference water index (NDWI).

Normalised difference vegetation index (NDVI)

The NDVI can be obtained by transformation using the RED band and the NIR band
of multi-spectral images.
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NDVI =
NIR−RED
NIR + RED

Normalised difference water index (NDWI)

The NDWI can be obtained by transformation using the GREEN band and the NIR
band of multi-spectral images.

NDWI =
GREEN−NIR
GREEN + NIR

3.5.3 Methods of sub-pixel analysis
A proposed sub-pixel method is used for image resampling from a coarser resolution
to a finer resolution by the spatial modelling of the probability density surface or the
surface made by fuzzy membership function values. A detailed description will be
presented in Chapter 5.

Imagesub = Subpixel(Imagein, factor)

3.5.4 Methods of mapping from semantic domain to fea-
ture domain

Fuzzy membership function, or mapping from semantic domain to
feature domain

In many cases, fuzzy membership functions have to be extracted by semantical mod-
elling, since land-use classes are conceptualised in terms of human activities over
the earth’s surface in relation to certain social-economic functions that are defined
in linguistic terms, and often no physical boundaries can be found for many classes
in reality. Therefore methods are needed for constructing fuzzy membership func-
tions or for mapping from the semantic domain to the feature domain.

Object-field = FuzzyMF (Field, [Parameter1, ...])

3.5.5 Methods of obtaining image objects
Formation of objects

The formation of objects will be based on their membership function according to
their characteristics modelled by their definitions. The thematic and geometric com-
ponents will have to be considered alternately while forming an object. Therefore
methods are required for alternately checking the thematic and geometric compo-
nents for the formation of objects.

Obw = Binary(Object-fieldOA, Threshold)

53



3.5. Methods needed for land-cover and land-use classification

Labelling of objects

When image regions are formed, a method is needed to assign an object ID (label)
to each region, using the 4-connection criteria. These IDs are used as identifiers for
image objects.

Oid = Bwlabel(Obw, 4)

Reasoning on object size

Some features such as vertical walls for building extraction, are based on the third
dimension, which can be better assessed by reasoning vertically based on size changes
along image regions obtained by segmentation applied to laser data.

∆Sizei =
Sizei − Sizei+1

Sizei

i and i+1 denote objects obtained at elevation layer i and layer i+1 respectively.

Reasoning on object location

Vertical walls for building extraction can also be assessed by reasoning based on
location changes (centres of mass of image objects) along image regions obtained by
segmentation applied to laser data vertically.

∆Loci =
√

(xi+1 − xi)2 + (yi+1 − yi)
2

i and i+1 denote objects obtained at elevation layer i and layer i+1 respectively.

Building reasoning based on changes in object size and location

Si =

{
Building, ∆Sizei , ∆Sizei+1 < TSize ∧∆Loci < TLoc ∧ Si ∈ [10, 5000] m2

Else.

i and i+1 denote objects obtained at elevation layer i and layer i+1 respectively.

3.5.6 Methods of measuring feature similarity
The feature similarity relationship describes the degree of similarity between two
objects in geometric feature space, thematic feature space or others. Similarity is
measured in a scalable metric space based on certain features. Similarity plays
an important role in classification and clustering. In object-based classification or
clustering, similarity will have to be measured in feature space based on scalable
metric distances as membership functions to desired classes, and in the geometric
space based on Euclidean distances. Methods for similarity measurements in geo-
metric space and feature space are required, as well as the integration of similarity
measurements from both spaces.

Similarity(Oi, Oj) = Sim(Oi, Oj)
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3.5.7 Methods of identifying topological relationships
Topological relationship plays an important role in land-use reasoning. The adja-
cency relationship at pixel level includes two options, 4-connection and 8-connection,
between the central pixel and neighbouring pixels. The adjacency relationship at
the land-cover level will be determined by close neighbours between an object and
its surrounding objects. Close neighbours can be derived by deploying the Delauney
triangulation to objects at the land-cover level. Other topological relations between
objects will be needed at the land-use level. Therefore methods for extracting topo-
logical relationships are useful.

Topology(Oi, Oj) = Topo(Oi, Oj)

3.5.8 Methods of extracting proximity relationships
Delaunay triangulation is applied to obtain proximity relationships between image
objects. The shortest distance is extracted by comparing the lengths of the triangle
edges that link pixels representing different objects. The result is then used for
spatial clustering in order to find spatial units for land-use objects.

3.5.9 Methods of clustering analysis
Fuzzy c-means is selected for finding clusters in the feature space and finding clus-
ters in histogram space.

3.5.10 Methods of spatial clustering
To find land-use spatial units, methods of spatial clustering are needed. The spatial
clustering operation has to consider both spatial closeness and feature similarity in
order to obtain spatial clusters based on land-cover objects. Such a spatial clustering
operation can be regarded as an operation for hierarchical spatial aggregation.

3.5.11 Methods of classification
Classification is often used in remote sensing and planning, while clustering has of-
ten appeared in computer sciences and data analysis, although both of them share
a core function of grouping or assigning objects into different categories or clusters.
Classification is often used when categories are defined such as land-cover or land-
use classes. Classification can be applied when data and the required classes are
presented. Quite often training samples are needed for the construction of a clas-
sifier, either parametric or non-parametric. This is called supervised classification.
When training samples are not provided or are unknown, the classifier will have to
use data to determine likely clusters. The actual meaning of each cluster will have
to be determined by checking the characteristics of each cluster before a class name
is assigned. This is called unsupervised classification. Clustering is often used when
clusters, or even the numbers of clusters, are unknown. To avoid confusion, we will
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use the term ‘classification’ when the desired classes are defined, and the term ‘clus-
tering’ when clusters are unknown or are to be formed based on features contained in
data. Both classification and clustering methods are required. Classification meth-
ods will be used in land-cover and land-use classification. Clustering methods will
be needed in finding spatial units or the spatial extent of land-use classes.

3.6 Summary
An object-based conceptual analysis for land-cover and land-use classification is pre-
sented. Concepts and tools for object-based modelling are briefly introduced with
respect to applications in urban planning and management. Classes, structures,
attributes and operations are proposed, which will be further developed and imple-
mented in the following chapters. The image-object data model and image-object
fundamentals are presented in Chapter 4. The logical design for implementation is
provided in Chapter 5.
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Chapter 4

The image-object
fundamentals

4.1 Introduction

The choice of a conceptual model determines how information can later be derived
(Burrough and McDonnell, 1998). Currently, such a choice has to be made between
the vector data model and the raster data model. Since remote sensing images and
field data are mainly represented in a regular grid space, image objects are natu-
rally defined based on cells with a regular shape in a discrete 2D space which shares
the simplicity of the raster model. To derive meaningful image objects and classify
them according to their physical properties, geometric forms and spatial relations,
an object-based data model is proposed in this research that uses an image object
as a container to check the semantic, thematic and geometric components of a geo-
spatial feature. It will take advantage of both the vector data model and the raster
data model. To support hierarchical object-based image analysis and land-cover and
land-use classification, a formalism is necessary that can be regarded as an exten-
sion of current raster data models. Many concepts used in this formalism are then
taken from the vector data model, such as topological relationships (Egenhofer, 1989;
Egenhofer and Franzosa, 1991; Egenhofer and Herring, 1991; Molenaar, 1998). By
using the concept of object, the dispute between the vector model (which represents
objects in R2) and the raster model (which represents objects in Z2) can be elimi-
nated to a certain degree. In this chapter, we introduce a raster data model called a
hybrid-raster data model, developed to represent image objects. We expect that the
proposed object-based model with a raster-based representation will enable smooth
and consistent transformation from the object-based conceptual model to the hybrid-
raster data model, as well as from the data model to the logical model (Array-table)
for implementation. The next section explains the hybrid-raster data model.
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no simplical complex simplical complex

0-simplex

1-simplex

2-simplex

0-simplex

1-simplex

2-simplex
no simplical complex simplical complex

Figure 4.1: Examples of simplices and a simplicial complex in the vector
model.

4.2 Elementary objects represented in a
raster

In the two-dimensional (2D) discrete space Z2, pixels are the elementary objects in
a raster model. There are three elementary objects in the hybrid-raster model: cell,
edge and node (Winter, 1995). In a vector data model, points can be considered as
0-simplices, straight line segments as 1-simplices and triangles as 2-simplices in a
2D space R2, as shown in Figure 4.1 (Molenaar, 1998). Similarly cells can be treated
as 2-simplices, edges as 1-simplices and nodes as 0-simplices in a 2D discrete space
Z2, as shown in Figure 4.2.

The representation of objects in a raster can best be done in a cell raster. Because
the cells represent area segments, this geometry is most suitable for the represen-
tation of area objects. Rasters are less suitable for representing point objects or line
objects. It is possible to indicate in which cell a point object falls and with which
cell a line object intersects, but this has to be approximated with an accuracy that is
determined by the resolution of the raster (Molenaar, 1998). Despite its weakness in
representing point objects or line objects – using high-resolution data can partially
compensate for this – the raster data model is still considered a model well suited
to land-cover and land-use classification based on multi-spectral images and laser
data. There are two reasons for this: both input data, such as images and grided
laser data, and output data, such as image objects as presentations of extracted
land-cover and land-use objects, can be processed based on the same data model and
the extension to the hybrid-raster data model based on the cellular decomposition
(Kovalevski, 1989; Winter, 1995; Winter and Frank, 1999, 2000).

The coordinate system is defined by row (i) and column (j). According to tradi-
tion, in image processing, rows are counted in from top to bottom and columns are
counted from left to right. For graphic presentation or the simultaneous display of
raster and vector, a transformation can be applied by flipping the image upside down
and shifting the original point to an appropriate location if necessary.
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Figure 4.2: Examples of simplices and a simplicial complex in the raster
model.

edge

node

cell / pixel

Figure 4.3: A fundamental image
object defined in the hybrid-raster
data model (cell or pixel: interior;
edges and nodes: boundaries).

Figure 4.4: A general form image
object defined in the hybrid-raster
data model (blue: interior; red:
boundaries).

4.2.1 The hybrid-raster data model
The hybrid-raster data model is applied in this research to represent objects in a
raster-based model for the convenience of direct use of multi-spectral images and
rasterised laser data, as well as to enable explicit representation of the topological
relationships between two objects in a raster model. In the hybrid-raster data model,
a pixel is equivalent to a cell and a cell is an open set. So a pixel or a cell can be
treated as the interior of a closed set (a fundamental image object) bounded by its
four edges and four nodes, as shown in Figure 4.3. A more general form of an image
object, which consists of several pixels and may have a hole inside, can be found in
Figure 4.4. Obviously an image object is a simplicial complex in the hybrid-raster
data model.

To ensure a partition in a raster as a bounded 2D discrete space, we make the
following definitions. A Cell is an open set bounded by its four edges and four nodes.
An Edge is an open set bounded by two cells and two nodes. A Node is an open
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set bounded by four cells and four edges. Therefore the bounded universe U of an
image in a 2D discrete space Z2 is the collection of a cell set, an edge set and a node
set, and an image object is a subset of U (Winter, 1995; Egenhofer and Franzosa,
1991; Kainz et al., 1993; Molenaar, 1998; Winter and Frank, 1999). Consequently,
topological relationships between two image objects can be identified explicitly.

U = {Cell, Edge, Node}

Cell = {celli | celli ∈ U}

Edge = {edgei | edgei ∈ U}

Node = {nodei | nodei ∈ U}

4.2.2 Image objects
The geometry of an instance of an image object is represented in a raster by a con-
tiguous region consisting of one or more adjacent cells, as well as edges and nodes
lying between these cells.

An image object (O or OI ) can be defined as:

O = {(x, f(x)) | x ∈ U2, f(x) ∈ {0, 1}}

where x is a location vector (a list of pixel locations or location index) and f is
a function that defines whether the object is present (1) or absent (0) at a given
location for crisp objects. In the case of fuzzy spatial objects, f is determined based
on a degree of presence, with a membership value µ(x) taken from a continuous
range between 0 and 1. Its geometry, such as spatial extent, size, shape, orientation,
is taken based on a defined threshold, say 0.5, to transform an object field (fuzzy
image object) into a crisp image object.

f(x) =

{
1, µ(x) ≥ Threshold, µ(x) ∈ [0, 1]

0, µ(x) < Threshold, µ(x) ∈ [0, 1]

In practice, if a celli,j is part of an image object Ok, this will be represented by
(Molenaar, 1998):

Part22[celli,j , Ok] = 1

or we can simply use following expression:

pk
i,j = 1

to indicate that pixel pi,j is part of an image object Ok.

60



Chapter 4. The image-object fundamentals

If an image segment Si or an image region is part of an image object O, this will
be represented by:

Part22[Si, O] = 1

An image segment Si is an instance of a potential image object in a binary image
derived according to certain attributes of this image segment, which are associated
with the definition of the object type. A number of segments may be suitable for
presenting an object. In practice, there may be more than one segment that can
potentially belong to one object class. They have to be reasoned based on their prop-
erties and within a certain application context. For instance, segments have to meet
two conditions to qualify as trees: they are 1 or 2 m higher than the surrounding
area and obtain higher NDVI values. Only if their size is larger than a defined
threshold, can they be further identified as forest.

In the object-based model, an image or a field can be regarded as a partition in a
raster in a bounded 2D discrete space U. Considering the implementation in a raster
model, an image object (Ok) can be defined as:

Ok = {pi,j | ∀ p ∈ Ok
s
= 4− connection, pi,j ∈ Ok, Ok ∈ U}

where pi,j is a pixel with location index: ith row and jth column; Ok is an image
object; U is the universe of a given image; Ok

s
= 4− connection denotes adjacent

connection between pixels by at least one edge. Pixels connected only by node(s) in
the 8-connection case are not considered as elements of the same object.

In the hybrid-raster data model, an image or a field can be regarded as a parti-
tion by the three subsets Cell (pixel), Edge and Node in a raster in a bounded 2D
discrete space U. Considering the implementation of the hybrid-raster model for
identifying topological relationships between objects, an image-object (Ok) can be
defined as:

Ok = {Cellk, Edgek, Nodek}

This implies:

Cellk = {celli,j | celli,j ∈ Ok}

Edgek = {edgei,j | edgei,j ∈ Ok}

Nodek = {nodei,j | nodei,j ∈ Ok}

Cellk ∪s Edgek ∪s Nodek
s
= Ok, Ok ∈ U}

where celli,j , edgei,j and nodei,j are a pixel, an edge and a node, respectively,
with location index: ith row and jth column; Cellk, Edgek and Nodek are a collection
of cells, edges and nodes, respectively, in Ok; Ok is an image object; U is the universe
of an given image; Cellk ∪s Edgek ∪s Nodek

s
= Ok denotes that Cellk, Edgek, Nodek

are the spatial partition of Ok (spatially connected).
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4.3. Fundamental components of an image object

4.3 Fundamental components of an image
object

For reasoning topological relations between two image objects, it is necessary to ex-
plicitly define the interior (Oo), boundary (∂O) and exterior (O-) as fundamental
components of an image object. Since each object consists of cells, edges and nodes
in the hybrid-raster data model, these elementary components will have to be de-
termined explicitly as to the fundamental object component they belong to: interior,
boundary or exterior. In the hybrid-raster data model, an image object (O) can be
defined by cells, edges and nodes. For a region (image object) in a binary image,
the interior (Oo), boundary (∂O) and exterior (O-) of an image object can be defined
based on configurations of surrounding pixels (p) in a 2D binary image.

4.3.1 The interior of an image object
The interior of an image object (Oo) consists of inside cells (oCell), inside edges
(oEdge) and inside nodes(oNode).

Oo = {oCell, oEdge, oNode}

All pixels with value 1:

oCell = {celli,j | pi,j = 1}

All horizontal edges for which the upper and lower pixels have the value 1:

oEdge = {edgei,j;i+1,j | pi,j = 1 and pi+1,j = 1}

All vertical edges for which the left and right pixels have the value 1:

oEdge = {edgei,j;i,j+1 | pi,j = 1 and pi,j+1 = 1}

All nodes for which the four surrounding pixels all have the value 1 at the same
time:

oNode = {nodei,j |
i+1∑

i

j+1∑
j

pi,j = 4}

4.3.2 The boundary of an image object
The boundary of an image object (∂O) consists of boundary edges (∂Edge) and bound-
ary nodes (∂Node).

∂O = {∂Edge, ∂Node}

All edges for which the pixel has the value 1 on one side and 0 on the other side.
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Horizontal edges:

∂Edge = {edgei,j;i+1,j | pi,j = 1 and pi+1,j = 0 or pi,j = 0 and pi+1,j = 1}

Vertical edges:

∂Edge = {edgei,j;i,j+1 | pi,j = 1 and pi,j+1 = 0 or pi,j = 0 and pi,j+1 = 1}

All nodes for which one or two or three pixels out of the four surrounding pixels
have the value 1 and other pixels have the value 0. Nodes with four surrounding
pixels all having the value 1 or all having the value 0 will not be considered as
boundary nodes.

∂Node = {nodei,j |
i+1∑

i

j+1∑
j

pi,j = 1 or 2 or 3}

4.3.3 The exterior of an image object
The exterior of an image object (O-) consists of outside cells (-Cell), outside edges
(-Edge) and outside nodes (-Node).

O- = {-Cell, -Edge, -Node}

For all pixels with the value 0:

-Cell = {celli,j | pi = 0}

For all horizontal edges with upper and lower pixels that have value the 0 at the
same time:

-Edge = {edgei,j;i+1,j | pi,j = 0 and pi+1,j = 0}

For all vertical edges with left and right pixels that have value the 0 at the same
time:

-Edge = {edgei,j;i,j+1 | pi,j = 0 and pi,j+1 = 0}

For all nodes with four surrounding pixels that all have value the 0 at the same
time:

-Node = {nodei,j |
i+1∑

i

j+1∑
j

pi,j = 0}

Based on the above definition, the topological relations hold by excluding the left
edge and the top edge of an image, which makes it more efficient in implementation
by using the schema proposed below.
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4.3.4 A schema for implementation
For the extraction of explicit topological relations between two image objects derived
from different sources and the efficient implementation of the hybrid-raster model,
an index schema proposed by Winter et al. (Winter, 1995; Winter and Frank, 1999)
can be applied here for each cell, edge and node. celli,j represents a cell in i row and
j column; nodei,j represents the node in the lower-right corner (node surrounding
by celli,j , celli,j+1, celli+1,j and celli+1,j+1) of celli,j . edgei,j;i,j+1 indicates the ver-
tical edge between celli,j and celli,j+1 and edgei,j;i+1,j indicates the horizonal edge
between celli,j and celli+1,j . The derived cells, edges, and nodes of an image ob-
ject are illustrated in Figure 4.7. Compared with the standard raster model, the
hybrid-raster data model and the index method provide powerful tools for explor-
ing additional topological relations between two image objects in raster data or field
data.

A tube structure

For efficient computation, we make the following proposal. Instead of checking
neighbouring pixels using index i and i+1 or j and j+1 in a loop each time, it seems
more efficient to create a four-layer tube in the third dimension of a 2D image, i.e.
T(1:m, 1:n, 1:4) for I(1:m, 1:n). The first layer T(1:m, 1:n, 1) is used to store all pixels
in the current image (T(1:m, 1:n, 1)=I(1:m, 1:n)). The second layer T(1:m, 1:n, 2) is
for a shift image with one pixel upward (T(1:m, 1:n, 2)=I(2:m+1,1:n)). The third layer
T(:, :, 3) is for a shift image with one pixel to the left (T(1:m, 1:n, 3)=I(1:m,2:n+1)).
The fourth layer T(:, :, 4) is for a shift image with one pixel upward and with one
pixel to the left (T(1:m, 1:n, 4)=I(2:m+1,2:n+1)). Having created such a tube means
that pixel p(i, j) in T(i, j, 1) has its lower pixel p(i+1, j) in T(i, j, 2), its right pixel
p(i, j+1) in T(i, j, 3), and its lower-right pixel p(i+1, j+1) in T(i, j, 4). (A graphic il-
lustration of such a tube structure is given in Figure 4.5.) By creating the tube, the
loop operation for finding neighbouring pixels is avoided, which makes it computa-
tionally more efficient at the cost of using extra memory space. This tube structure
will be generated temporarily for extracting the fundamental components of image
objects (Cells, Edges and Nodes).

The same arrangement can be used for another tube to store cells, edges and
nodes in the hybrid-raster model. The first layer of the tube H(1:m, 1:n, 1) is used
for cells. The second layer H(1:m, 1:n, 2) is for horizontal edges (H-edges) on the
lower side. The third layer H(1:m, 1:n, 3) is for vertical edges (V-edges) on the right
side. The fourth layer H(1:m, 1:n, 4) is for nodes at the lower-right corners. This tube
establishes a primary data structure for representing image objects for the hybrid-
raster model. An example is shown in Figure 4.6.

An encoding schema

The following encoding schema is proposed for recording the different types of
cells, edges and nodes of an image object derived from images in the implementation
of the hybrid-raster model. Based on this information, topological relations between
two image objects are extracted explicitly.
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Layer 4: cell(i+1,j+1)

Layer 3: cell(i,j+1)

Layer 2: cell(i+1,j)

Layer 1: cell(i,j)

1

m

i

1 nj

An image-object
in 2D image

n1

m

1

Figure 4.5: A tube structure for representing pixels and their neighbouring
pixels.

Cell =

{
1, inside cells

0, outside cells

Edge =


2, inside edges

1, boundary edges

0, outside edges

Node =


2, inside nodes

1, boundary nodes

0, outside nodes

4.3.5 Implementation
Working on the definitions and schema described in the previous sections, we are
now ready to derive, store and present all necessary information to implement the
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Layer 4: nodes

Layer 3: V-edges

Layer 2: H-edges

Layer 1: cells

n

n1

1

m

1

Code: 0 1 2

m

1

An image-object
in 2D image

Figure 4.6: A tube structure for recording extracted cells, edges and nodes.

hybrid-raster data model based on a binary image. Examples of a derived image
object without holes and an image object with holes are illustrated in A and B of
Figure 4.7. Two special cases can be presented as the full region U and the empty
region Ø, which can be defined as

Ok = {U}

and
Ok = {Ø}

as shown in Figure 4.8 A and B respectively. The current implementation is made
in Matlab.

4.4 Identification of topological relationships
between image objects

With the definitions and the implementation concept described in the previous sec-
tions, we are able to determine the topological relationships between two image ob-
jects, based on the 9-intersection matrix (Egenhofer, 1989; Egenhofer and Franzosa,
1991; Egenhofer and Herring, 1991; Egenhofer, 1993; Egenhofer and Sharma, 1993;
Molenaar, 1998).
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Figure 4.7: The derived cells, edges and nodes of an image object based on
a binary image (A: a simple region; B: a region with holes). Light pixels
represent the inside cells, dark pixels represent the outside cells; magenta
lines represent inside edges, cyan lines represent boundary edges, yellow
lines represent outside edges; green dots represent inside nodes, red dots
represent boundary nodes, blue dots represent outside nodes of an image
object.

Figure 4.8: The derived faces, edges and nodes based on a region (A: full
region; B: empty region).

67



4.4. Identification of topological relationships between image objects

R(A, B) =

 Ao ⋂
Bo Ao ⋂

∂B Ao ⋂
B-

∂A
⋂

Bo ∂A
⋂

∂B ∂A
⋂

B-

A- ⋂
Bo A- ⋂

∂B A- ⋂
B-


The derived topological relations between two objects are consistent regardless

of whether the objects have holes or not, because holes in an image region are re-
garded as the exterior of an object, as shown in Figure 4.7 B. To examine whether
the proposed schema works well for identifying the topological relationships of two
image objects, defined based on the hybrid-raster data model, we create a number
of different cases and check whether the right topological relationship is identified
in each case. In the following, the values in the 9-intersection matrix are presented
for each type of topological relationship in order to check if the results obtained by
using the given image objects match the corresponding values.

4.4.1 Disjoint
Two objects are disjoint if

RDisjoint(A, B) =

 0 0 1

0 0 1

1 1 1


An example of ‘disjoint’ objects is shown in Figure 4.9, where two objects are

spatially separate. Another example of ‘disjoint’ objects is shown in Figure 4.10,
where object A is inside a hole of object B but remains ‘disjoint’. In both cases, the
same values in the 9-intersection matrix are obtained, which indicate the ‘disjoint’
topological relationship.

4.4.2 Equal
Two objects are equal if

REqual(A, B) =

 1 0 0

0 1 0

0 0 1


Two examples of ‘equal’ objects are shown in Figures 4.11 (simple objects) and

4.12 (objects with holes). In both cases, the same values in the 9-intersection matrix
are obtained, which indicate the ‘equal’ topological relationship.

4.4.3 Contain
Object A contains object B if
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A B

Figure 4.9: A ‘disjoint’ B (A and B
are spatially separate).

A B

Figure 4.10: A ‘disjoint’ B (A in a
hole of B).

A B

Figure 4.11: A ‘equals’ B (without
a hole).

A B

Figure 4.12: A ‘equals’ B (with a
hole).
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A B

Figure 4.13: A ‘contains’ B.

A B

Figure 4.14: A ‘contained by’ B.

RContain(A, B) =

 1 1 1

0 0 1

0 0 1


An example of ‘contain’ objects is shown in Figure 4.13. In this case, the same

values in the 9-intersection matrix are obtained, which indicate the ‘contain’ topo-
logical relationship.

4.4.4 Contained by
Object A is contained by object B if

RContainedBy(A, B) =

 1 0 0

1 0 0

1 1 1


An example of ‘contained by’ objects is shown in Figure 4.14. In this case, the

same values in the 9-intersection matrix are obtained, which indicate the ‘contain
by’ topological relationship.
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4.4.5 Meet
Two objects are meet if

RMeet(A, B) =

 0 0 1

0 1 1

1 1 1


There are two situations that can be equally treated as ‘meet’: the connection is

either by touched boundary edge(s) or by touched boundary node(s). An example of
two objects ‘meet’ by a touched boundary edge is shown in Figure 4.15. An exam-
ple of two objects that ‘meet’ by a touched boundary node is shown in Figure 4.16.
Figure 4.17 shows two objects that ‘meet’ from inside by a touched boundary edge.
Figure 4.18 shows two objects that ‘meet’ from inside by a touched boundary node.
In these four cases, the same values in the 9-intersection matrix are obtained, which
indicate the ‘meet’ topological relationship.

4.4.6 Cover
Object A covers object B if

RCover(A, B) =

 1 1 1

0 1 1

0 0 1


There are two situations that can be equally treated as ‘cover’: the connection

is either by boundary edge(s) or by boundary node(s). An example where object A
covers object B, with a connection by boundary edge(s), is shown in Figure 4.19. Fig-
ure 4.20 shows object A covering object B, with a connection by boundary node(s). In
both cases, the same values in the 9-intersection matrix are obtained, which indicate
the ‘cover’ topological relationship.

4.4.7 Covered by
Object A is covered by object B if

RCoveredBy(A, B) =

 1 0 0

1 1 0

1 1 1


There are two situations that can be equally treated as ‘covered by’: the connec-

tion is by boundary edge(s) or by boundary node(s). Figure 4.21 shows that object
A is covered by object B and connected by a boundary edge(s). Figure 4.22 shows
object A covered by object B and connected by a boundary node(s). In both cases, the
same values in the 9-intersection matrix are obtained, which indicate the ‘covered
by’ topological relationship.
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A B

Figure 4.15: A ‘meets’ B by edge.

A B

Figure 4.16: A ‘meets’ B by node.

A B

Figure 4.17: A ‘meets’ B by edge
from inside.

A B

Figure 4.18: A ‘meets’ B by node
from inside.
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A B

Figure 4.19: A ‘covers’ B with con-
nection of boundary edge.

A B

Figure 4.20: A ‘covers’ B with con-
nection of boundary node.

A B

Figure 4.21: A ‘covered by’ B with
connection of boundary edge.

A B

Figure 4.22: A ‘covered by’ B with
connection of boundary node.
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A B

Figure 4.23: A ‘overlaps’ B with
boundary nodes.

A B

Figure 4.24: A ‘overlaps’ B with
boundary edges and nodes.

4.4.8 Overlap
Two objects are overlapping if

ROverlap(A, B) =

 1 1 1

1 1 1

1 1 1


There are two situations that can be equally treated as ‘overlap’: (a) overlap-

ping cell(s) and boundary node(s), or (b) overlapping cell(s), boundary edge(s) and
boundary node(s). An example of overlapping objects with overlapping cell(s) and
boundary node(s) is shown in Figure 4.23. An example of overlapping objects with
overlapping cell(s), boundary edge(s) and boundary node(s) is shown in Figure 4.24.
In both cases, the same values in the 9-intersection matrix are obtained, which in-
dicate the ‘overlay’ topological relationship.

4.5 Geometric properties of an image object
The geometry of a planar region comprises the following aspects: size, position, ori-
entation and shape. Many of these aspects are covered by a family of parameters
called moments. In probability theory, moments are used to characterise probabil-
ity density functions, e.g. expectation (first-order moment), variance, covariance
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(second-order central moments) (van der Heijden, 1994). In our 2D image case, we
use the same definitions but replace the density function with a binary function,

pk
i,j =

{
1, pk

i,j ∈ O

0, pk
i,j /∈ O

in a 2D image I(1:M,1:N). The moments of order p + q of a region represented by
the bitmap pi,j are:

Mp,q =

M∑
i=1

N∑
j=1

ipjqpi,j =
∑

pi,j∈Ok

ipjq

Size of an image object

The size of an image object is the total number of pixels that belonging to this image
object (M0,0) in units of pixel area (∆2).

Size(Ok) = M0,0 =
∑

pk
i,j (4.1)

Location of an image object

The first-order moments M1,0 and M0,1 are related to the balance point (x, y) of the
region. The location of an image object can be represented by the balance point (x,y).

x = M1,0/M0,0 and y = M0,1/M0,0 (4.2)

This point (x,y) is also called the centre of gravity, or centroid (centre of mass),
and can be used to determine the position or location of the region given in units of
pixel period (∆).

Location(O) = (x, y) (4.3)

In order to make the description independent of position, moments can be calcu-
lated with respect to the centroid. The results are the so-called central moments:

µp,q =

M∑
i=1

N∑
j=1

(i− x)p(j − y)qpi,j =
∑

pi,j∈Ok

(i− x)p(j − y)q (4.4)
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If the ordinary moments are known, it is less expensive to derive the central mo-
ments from the ordinary moments than to evaluate expression (4.4) directly (van der
Heijden, 1994).

For instance:

µ0,0 = M0,0

µ0,1 = µ1,0 = 0
µ0,2 = µ2,0 − xM1,0

µ1,1 = M1,1 − xM0,1

. . . . . .

The second-order central moments exhibit a number of properties that are com-
parable to the covariance matrices in probability theory and the moments of inertia
associated with rotating bodies in mechanics. The principal axes of a region are
spanned by the eigenvectors of the matrix (van der Heijden, 1994):

[
µ2,0 µ1,1

µ1,1 µ0,2

]

The principal moments are the corresponding eigenvectors.

λmax =
1

2
(µ2,0 + µ0,2) +

1

2

√
µ2

2,0 + µ2
0,2 − 2 µ0,2 µ2,0 + 4 µ2

1,1

λmin =
1

2
(µ2,0 + µ0,2)−

1

2

√
µ2

2,0 + µ2
0,2 − 2 µ0,2 µ2,0 + 4 µ2

1,1

The direction of the largest principal moment is:

θ = tan−1(

√
λmax − µ2,0

µ1,1
)

Orientation

The direction of the largest principal moment (θ) is often used to specify the ori-
entation of a region. When orientation (θ) is used as a feature for comparison, we
have to keep in mind that a disk-like region (λmax/λmin ≈ 1) does not make sense
for quantitative comparison based on θ. Therefore the ratio (λmax/λmin) should be
consulted before making orientation matching between objects. However, the ratio
can be used as an uncertainty measurement for matching.
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Shape of an image object

Exact geometric shape descriptions of an image object are difficult to derive because
of the existence of vague boundaries and uncertainty in an image in many cases. On
the other hand, it is not necessary to use exact descriptions since it will be difficult
to make a robust comparison between objects according to exact shape matching
anyway. However, many shape descriptors can be derived based on the statistics of
the spatial distribution of the pixels that form an image object. These descriptors
are considered robust for matching similar shapes and can be used as indicators for
similarity comparison of object shape. Below we describe a number of such indica-
tors that can be directly derived from image regions. Many of them are provided by
the Image Processing Toolbox, Matlab (The MathWorks Inc., 2001).

• Length of the major axis and the minor axis
The principal moments λmax and λmin can be used to represent the lengths
(in pixels) of the major axis and the minor axis of the ellipse that has the same
second moments as the region.

• Eccentricity
The eccentricity of a region can be defined as the ratio between the square
roots of the two principal moments:

Eccentricity =

√
λmax

λmin

• Convex area
The number of pixels in the convex hull, the smallest convex polygon that can
contain the region.

• Solidity
The proportion of the pixels in the convex hull that are also in the region.
Computed as:

Solidity =
Area

Convex area

• EquivDiameter
The diameter of a circle with the same area as the region. Computed as:

EquivDiameter =

√
4 ∗Area

π
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• Hole size
Hole size can be computed as:

Hole size = Filled area−Area

• Hole ratio
Hole ratio can be computed as:

Hole ratio =
Filled area−Area

Area

4.6 Thematic attributes of an image object
The thematic attributes of an image object can be derived directly from images and
other field data, usually by taking the average value of all pixels belonging to this
image object.

For instance, multi-spectral values of an image object:

Band 1(Ok) =

∑M
i=1

∑N
j=1 pi,j · Band 1∑M

i=1

∑N
j=1 pi,j

, pi,j ∈ Ok

Band 2(Ok) =

∑M
i=1

∑N
j=1 pi,j · Band 2∑M

i=1

∑N
j=1 pi,j

, pi,j ∈ Ok

. . . . . .

The same principle can be applied with other data, such as:

DSM 1(Ok) =

∑M
i=1

∑N
j=1 pi,j ·DSM 1∑M

i=1

∑N
j=1 pi,j

, pi,j ∈ Ok

NDVI(Ok) =

∑M
i=1

∑N
j=1 pi,j ·NDVI∑M

i=1

∑N
j=1 pi,j

, pi,j ∈ Ok
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4.7 Semantic component of an image object
The semantic component of an image object includes features used to extract im-
age objects, methods and parameters applied for obtaining these objects, as well as
quality and uncertainty assessment figures.

This type of information is very important to users, in that it allows users to
decide whether extracted image objects meet their requirements, and what kinds
of changes may be needed in order to acquire image objects that meet their specific
needs and satisfy quality aspects.

If this type of information is made transparent to users, problems that arise
when users from different disciplines interpret the same scene differently can largely
be avoided. Users are allowed to choose different models or modify related param-
eters in order to obtain the image objects they desire. Since the whole system is
intended to be semi-automatic, any user can specify his/her requirements by choos-
ing the desired features and models, as well as parameters, to produce the desired
results based on one fundamental data set. Such a set-up provides the possibility
for different users to share the relatively high costs of acquiring high-resolution data
and to produce the data they expect.

4.8 Summary
A model for image objects is proposed in this chapter. The hybrid-raster data model
based on a regular cellular decomposition of 2D space is applied in the research as
an extension of the simple raster data model in order to derive explicit topological
relations between two image objects. This data model has been implemented in Mat-
lab, thus enabling the extraction of topological relationships between image objects
derived from image and laser data. The topological relations provide useful infor-
mation for reasoning in urban land-use classification. It is impossible to derive such
information by per-pixel approaches. The presented considerations and implemen-
tation schemes focus on topological relationships between image regions. The rela-
tionships between image regions are sufficient for the current research since both
land cover and land use are represented as image regions. Topological relationships
for linear features and point features are not included in this research. This chapter
has also introduced measures for the geometric properties and attributes of an im-
age object. These per-object properties provide useful information, which can only
be derived by the object-based approach. Object-based measures are considered ro-
bust to noise and other high-frequency signals existing in high-resolution data, and
hence can reduce complexity in classification compared with per-pixel approaches.
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Chapter 5

Logical design for
object-based land-cover
and land-use
classification∗

5.1 Introduction
Urban land-cover classification and land-use classification are processes of parti-
tioning urban space into discrete spatial units that hold certain physical features or
certain functions. Man-made features are easily conceived of as determinate objects
because they have discernible boundaries. The physical evidence of the building
materials used and the simple constructs, as compared with natural features such
as trees, imply very little fuzziness in determining the boundaries of man-made
features. Natural features share with man-made features the property of an eas-
ily defined physical interior at the abstraction level of reality we are interested in.
The boundary of a natural river, however, gives far more rise to fuzziness than the
boundary of a paved road. If the boundary of a feature is indiscernible or, although
discernible, is not the boundary of interest (e.g. the boundary of leaves, branches, or
trunk of a tree), we may refer to such a feature as an indeterminate object. In land-
cover classification we attempt to delineate determinate and indeterminate objects,
such as buildings, water surfaces, green space. They have in common the fact that
they are physical features of urban space, a fact we fairly successfully make use of
in semi-automatically producing land-cover maps from remote sensing data.

Land-use classification, however, aims at delineating regions that have a func-

∗This chapter is based on the following papers: Zhan et al. (2002d), Zhan et al. (2002b),
Zhan et al. (2002c), Zhan et al. (2002a) and Zhan et al. (under peer review (1)).
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tional meaning. The boundary of a residential area is indiscernible. The object
‘residential area’ is indeterminate on solely physical evidence as provided by remote
sensing data. Only if we can relate land-use classes to physical appearance – con-
taining certain types of features in certain constellations – can we have a chance
of delineating such indeterminate objects from remote sensing data. ‘Delineate’ im-
plies the determination of the boundaries with a quantifiable degree of certainty. We
aim at determining the boundaries of land-use classes based on probability surfaces
derived from identified feature constellations. The indicant features and their spa-
tial distribution will be reasoned on and extracted, based on high-resolution multi-
spectral and laser data. The probability surfaces of land-use objects must be mod-
elled based on available data and their thematic associations with their definitions
concerning the certain functions they fulfil. The intersection of the probability sur-
faces of neighbouring objects will need to be modelled and extracted as the bound-
ary of objects. Therefore, we have to collect detailed information about land-cover
features and their properties before we can classify land-use. We expect the combi-
nation of high-resolution multi-spectral image and laser data to be able to provide
such detailed information and allow us to infer both land cover and land use.

In Chapter 2 we have shown that we cannot expect pixel-based classification
approaches to yield land-use identification. In Chapter 3 we have presented a con-
ceptual framework for object-based image analysis. In Chapter 4 we have presented
the concept of the image object and its representation based on the hybrid-raster
data model. We shall now elaborate on the logical design of how to extract image
objects and how to accomplish land-cover and land-use classification in urban ar-
eas. We shall lay down the methods of dealing with image objects. The mapping
from field space to object space is done in three steps: feature extraction toward
land-cover classification; finding spatial units for land-use classes based on land-
cover features; land-use identification for each spatial unit. The overall scheme is
described in Figures 1.2 and 2.25. A number of issues will be discussed in the follow-
ing sections of this chapter, such as the spatial representation of image objects, the
hierarchy of image objects, image object extraction at the land-cover level, finding
spatial units for land-use types, extracting image-object properties at the land-use
level, and classifying land-use objects.

5.2 Spatial representations of image objects

5.2.1 Homogeneity and semantic description of image
regions

Homogeneity

Image objects are represented by image regions. Image regions are usually obtained
by segmentation. Most of the existing segmentation algorithms developed in image
processing, computer vision and other related communities are based on homogene-
ity measures and certain constraints based on digital numbers (DN) in an image.
They are based on the assumption that no a priori knowledge is available about
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objects in the scene (Ballard and Brown, 1982; Beaulieu and Goldberg, 1989). Seg-
mented regions should be uniform and homogenous with respect to some character-
istic such as gray tone or texture. Region interiors should be simple and without
many holes. Adjacent regions of segmentation should have significantly different
values with respect to their homogeneity characteristics. Boundaries of each seg-
ment should be simple, not ragged, and must be spatially accurate (Haralick and
Shapiro, 1985). Image segmentation often constitutes the low-level processing stage
of an image analysis system, while the high-level stage is then devoted to the inter-
pretation of these regions (Ballard and Brown, 1982; Beaulieu and Goldberg, 1989).
In the past most researchers concentrated on the stage of low-level processing of
images. The ‘region-growing’ technique, the ‘split-merge’ approach, as well as the
adaptive threshold or optimisation approach, have been applied in many areas of
image segmentation and analysis. Many good applications can been found in litera-
ture. But the fact is that one homogeneity measure that may work well for certain
features may not be good for other features. A more comprehensive homogeneity
measure may be able to cope with some more features, but it may increase vague-
ness in what should be included in the segments. Again it cannot always be suitable
for all features. On the other hand, filtering and kernel-based approaches are sensi-
tive to the size of the window. Therefore in this research we propose to initiate image
segmentation at the high-level stage, based on meaningful features, and apply the
low-level image analysis techniques at a later stage to refine these regions.

Semantic description of image regions

The DNs of an image are recorded according to the electromagnetic reflection or
emission from locations on the earth. Despite bias or errors made during data col-
lection, due to atmospheric impacts, limited accuracy of equipment involved etc.,
these DNs often have meaningful associations with the physical environment. For
instance, in the infrared band, the DN values are associated with the amount of veg-
etation and its growth status. Therefore, knowledge of physical features can play a
very important role in image segmentation. Such knowledge can be derived based on
the semantic description of desired features and by the quantitative measurement
of the desired features and corresponding DN values based on samples, as we did by
using the MLC. Knowledge of both definitions and their associations with features
that can be extracted from various remote sensing data is used in this research for
designing an image segmentation schema and for image region refinement by us-
ing fuzzy membership functions to represent such associations. The basic idea is to
identify ranges of DN values that can be associated with certain land-cover classes.
For instance, vegetation pixels have higher NDVI (normalised difference vegetation
index) values, while most built-up and water pixels have lower NDVI values. A
number of techniques can be applied to identify membership functions between DN
values and classes, such as fuzzy logic, probability theory, rule-based reasoning. The
fuzzy membership functions obtained by semantic analysis can be implemented at
the pixel level, as well as the land-cover level and the land-use level, when we regard
each image object as a unit like a pixel.

Some semantic descriptions are, however, directly related to image regions or the
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geometric properties of image regions. For instance, one characteristic of a region
belonging to the building class is that buildings should have vertical walls. This is
a characteristic that refers to the geometric properties of an object. In this case,
we need to look at LIDAR data for solutions. We may find a solution to extracting
this 3D feature based on LIDAR data (2D data containing height information). It
can be measured by comparing the sizes of image regions that are obtained by a
‘vertical segmentation’ of the DSM. The size differences between the image regions
of a building at several elevation slices should be small with regard to the vertical
wall characteristic, as shown in Figures 6.1 and 6.2. A detailed description of the
vertical segmentation and its utilisation can be found in Zhan et al. (2002b) and
in Section 6.2. This type of information cannot be derived by per-pixel approaches
because the height value for each pixel in LIDAR data can vary. Thus it is dif-
ficult to form regions according to these height values alone, for example, we can
extract edges by edge detection algorithms. To detect a region based on these edges
is often problematic owing to the lack of evidence as to how these edges are interre-
lated. Therefore, the object-based approach can play a better role than pixel-based
approaches in region-based feature extraction.

5.2.2 Extraction of image objects
In current geo-information systems, a spatial entity can be described by the geo-
metric properties and thematic properties that are linked with it as attributes. Two
commonly used data models in geo-information communities and related fields are
vector and raster. Using a vector data model, the geometric boundaries have to be
measured first, often manually on the ground or in images, according to the indi-
vidual’s understanding of the requirements. A unique identifier and a class name
and attributes will be attached to this spatial entity later on. The raster data model
plays an important role in remote sensing image processing. We look at the the-
matic information contained in each pixel first, and then assign class labels to each
pixel according to likelihood value in the case of maximum likelihood classification.
Geometric boundaries will be determined in a post-processing stage if necessary.
In general, a geo-spatial object has geometric and thematic components (Molenaar,
1998). However, in the proposed image-object approach, we try to include seman-
tic components in addition to geometric and thematic components in image objects.
Semantic components provide information as to how image objects are formed by
indicating the characteristics used in determining these objects, the membership
values corresponding to these characteristics, and uncertainty assessment, etc. We
start with semantic analysis based on the semantic components of class definition
and features that can be derived from images. In some cases, ancillary data such as
population, infrastructure and cadastre may be useful, especially for land-use clas-
sification. In this research, we try to use features that can be derived from images or
laser data without relying on additional ancillary data. Quite often these ancillary
data are not available or there may be changes taking place between the acquisition
of images and the acquisition of ancillary data. A logical design can be carried out
by using characteristics that meet the requirement of classes in the semantic de-
scription and can be derived from images. Image objects are determined based on
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GIS/Vector RS/Raster Image objects

Geometric
(Boundary)

Geometric
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(Application context)
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(Attributes)

     Thematic
- Values of pixels,
- Values of regions
- Geomatric properties of regions

Thematic
(Classes)

Geometric – Image objects
- Pixel-based attributes
- Region-based attributes
- Geometric properties of regions
- Thematic attributes

Figure 5.1: Different ways of extracting geo-spatial features, using vector,
raster and image-object data models.

the membership values of pixels and refereed based on the image segments derived
from images. Ways of extracting object by using vector, raster and image-object data
models are compared and illustrated in Figure 5.1.

Image objects (OI or O) or regions contain thematic information from images.
Once an image object is formed, a number of geometric properties can be derived
such as location, size, orientation, shape (see Zhan et al. (2002d)). As described in
the previous section semantic information will be included as well. Therefore, three
components can be included in an image object.

O{Thematic, Geometric, Semantic}

For feature extraction based on image objects, we can define several conditions
that image objects have to meet in order to be classified. Because of the limitation
of the spatial resolution of images and data collection errors attributable to atmo-
spheric impacts, limited accuracy of equipment involved, etc., these conditions may
be satisfied to only a certain degree. Membership functions are needed to check the
degree to which these conditions are satisfied using the minimum function. The
following expressions are based on notions of the Formal Data Structure (FDS) pro-
posed by Molenaar (1998). In the following text an object (Oi) is equivalent to an
image object (OI ).

If an object Oi passes the test formulated in a decision function for a class Cj ,
then it will be a member of that class.

85



5.3. Hierarchical image objects and hierarchical aggregation

MF[Oi, Cj ] =

{
1, if Oi is a member of Cj

0, otherwise

For each object Oi we define the function specifying the class Cj to which the
object belongs:

CLASS(Oi) = {Cj | MF[Oi, Cj ] = 1}

In a multi-condition case, the minimum function is used:

CLASS(Oi) = {Cj | min(MFk[Oi, Cj ]) = 1, k = 1, ..., n}

where k denotes a condition.

As many membership functions are fuzzy (0 ≤ MF(Oi, Cj) ≤ 1), an overall mem-
bership function (MFOA[Oi, Cj ]) is required for the final decision, which is obtained
by applying the minimum function to all related membership functions to meet these
conditions:

MFOA[Oi, Cj ] = min(MFk[Oi, Cj ]), k = 1, ..., n (5.1)

or by using the normalised Euclidean distance when MFk are considered as mea-
sures in a metric space:

MFOA[Oi, Cj ] =

√∑n
k=1 MFk(Oi)2

n
, k = 1, ..., n (5.2)

A final decision can be made by choosing a threshold (T) for the overall mem-
bership function. When geometric conditions are also included, the final decision
will have to be made by reasoning between the overall membership function and
geometric properties of potential image objects.

CLASS(Oi) = {Cj | MFOA[Oi, Cj ] > T} (5.3)

5.3 Hierarchical image objects and hierarchi-
cal aggregation

As discussed in Chapter 3, objects may have different types of characteristics and
behaviours at different abstraction levels.
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5.3.1 Image objects at the pixel level
Each pixel in an image can be regarded as an image object at the lowest level of
reasoning. Its spatial coverage is a square covered by a pixel in an image. Its at-
tributes are values from image sources, i.e. intensity of each spectral band of multi-
spectral images, or the height value from laser scanning data. The 4-connection and
8-connection adjacency relationships, which respectively consider four and eight di-
rectly connected pixels as the adjacent neighbours of a pixel, are commonly used for
its spatial relation in a 2D image space.

5.3.2 Image objects at the land-cover level
An image-object at the land-cover level is a group of adjacent (4-connection) pixels
that are likely to have the same or similar values (homogeneity) based on certain
characteristics or membership functions of a certain class. Its spatial coverage is de-
rived by image analysis and meaningful image segmentation based on image objects
(pixels) at the pixel level (Zhan et al., 2001). Its attributes are the average value of
pixels forming the object from different image sources. There are two types of objects
at the land-cover level, as discussed in Chapter 3 and in the previous section. The
first type of object has a determinate interior and describable boundaries, such as
buildings and water surface. The second type has a determinate interior, but fuzzy
boundaries, such as green space. Topological relations between objects can be identi-
fied based on the approach introduced in Chapter 4. Image objects at the land-cover
level have to be extracted or aggregated based on image objects (pixels) at the pixel
level. Detailed design is presented in Section 5.4.

5.3.3 Image objects at the land-use level
An image object at the land-use level is a spatial unit that contains a number of
land-cover objects and represents a particular type of land use. Image objects at the
land-use level are often conceptualised entities, such as residential areas. The con-
cepts used for extracting land-use objects may vary depending on the understanding
and perception of a specific discipline. Therefore, many image objects at the land-
use level are indeterminate objects and have to be modelled based on probability
surfaces created based on image objects obtained at the land-cover level. Topologi-
cal relations between objects can be identified based on the approach introduced in
Chapter 4. Detailed design is given in Sections 5.6, 5.7 and 5.8.2.

5.4 Formation of objects at the land-cover
level

5.4.1 Extraction of buildings
Before a building can be extracted, we have to answer the following questions and
try to specify them semantically and logically:
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What is a building? How can we describe a building from different perspectives?

We could try to describe a building by using common-sense knowledge (semantic
analysis) from the following perspectives. These features are considered to be ex-
tracted based on remote sensing data.

From an application perspective

From an application point of view, different disciplines may have different meanings
or understandings regarding these spatial entities. In such cases, additional specifi-
cations are required at this stage. In an application where building forecourts should
be included as part of the buildings, they can impose a loose condition as regards
checking the size differences between two height layers of the same building. In an-
other application where the upper parts of buildings are essential, the forecourt of
buildings may be excluded, for instance in assessing the number of dwellings. They
can impose more restricted conditions by checking the size differences between the
higher layers.

From the geometric perspective

Size

The size of a building as projected in a plane should be larger than 10 m2 and
should be smaller than 5000 m2.

Height

Buildings should usually stand at least 3 m or more above the surrounding
ground and have vertical walls.

From the building material perspective

Building roofs are constructed using various building materials, such as concrete,
asphalt, iron and steel, wood, glass. However, most building roofs are built using
concrete or tiles. This implies that building roofs are solid and that building roofs
are usually not vegetation or water.

5.4.2 Extraction of green spaces
Green space in urban areas usually includes trees and lawns, both having features
of vegetation. Vegetation has a unique feature that absorbs electromagnetic waves
in most of the panchromatic range, particularly in the RED band range, and emits
strong electromagnetic waves in the near infrared (NIR) range, as shown in Fig-
ure 5.2. The normalised difference vegetation index (NDVI) is a transformation
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designed to enhance such characteristics. Therefore, green space can be extracted
based on NDVI values calculated using the NIR band and the RED band from multi-
spectral images, using the formula:

NDVI =
NIR− RED

NIR + RED

NDVI values can be best extracted based on original multi-spectral images (IKO-
NOS for Amsterdam test site). NDVI values are transformed to fuzzy membership
values via an ‘S-shape’ fuzzy membership function toward two classes, vegetation
and non-vegetation, using two parameters obtained by a fuzzy clustering approach
called fuzzy c-means to specify the start- and end-points of the S-shape spline curve.
A sub-pixel spatial modelling approach is implemented to convert the fuzzy mem-
bership value from 4 m resolution to 1 m resolution for integration with laser data.
The proposed sub-pixel spatial modelling approach is presented in Section 5.5.

5.4.3 Extraction of water surface
A water body absorbs the full range of electromagnetic waves in different degrees, as
shown in Figure 5.2. The normalised difference water index (NDWI) was proposed
to reflect such characteristics (McFeeters, 1996). Therefore, water surfaces can be
extracted based on NDWI values calculated using the NIR band and the GREEN
band from multi-spectral images using the formula:

NDWI =
GREEN−NIR

GREEN + NIR

Water extraction by using NDWI alone may be good enough for remote sens-
ing images with coarse spatial resolution and in natural areas or rural areas where
not many man-made objects exist. For a high-resolution image and in much more
complicated urban areas, using the standard NDWI alone may not be sufficient to
separate water from other objects that have very similar spectral features to water
pixels, such as dark shadow, dark road, dark building roof. To illustrate the prob-
lem, we manually pick up a number of typical samples from an IKONOS image (see
Figure 2.2) to represent land-cover features typical of an urban scene, as shown in
Figure 5.2.

Enhance normalised difference water index (eNDWI)

Based on Figure 5.2, we can observe that lake water, canal water, shadow and dark
building are very similar in all four bands of the IKONOS image. We can also ob-
serve that both normal and new buildings show a similar trend to water if we choose
Band 2 (GREEN band) and Band 4 (NIR band) to acquire NDWI. Only vegetation
can be easily separated from others by using NDWI. Therefore, we propose another
formula in which all bands are used for water extraction. To make it different from
the existing NDWI, we called this index the enhanced NDWI and use the notion
eNDWI. The eNDWI intends to enhance the difference between a shallow water
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Figure 5.2: Spectral reflectance of typical urban features, based on IKONOS
image.

body such as a canal and shadow area, as well as the difference between water and
light building.

eNDWI =
BLUE + GREEN− RED−NIR

BLUE + GREEN + RED + NIR

Even when using eNDWI, we may still not be able to completely separate water,
shadow and dark building, but these water-like features are better separated from
buildings, particularly new buildings. By comparing two histograms, NDWI and
eNDWI, obtained from the same image (see Figures 5.3 and 5.4), it can be seen
that, despite the slight shrinkage in contrast, eNDWI separates a significant feature
(canal indicated by second small peak to the right in Figure 5.4), that was previously
mixed with building and concrete in NDWI.
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Figure 5.3: Histogram of NDWI based on IKONOS image.
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Figure 5.4: Histogram of eNDWI based on IKONOS image.

Remove other features from water surfaces

Although the proposed eNDWI performs better than NDWI, it is still not able to
clearly distinguish shadow and dark building from water. Since we have detailed
laser data, and buildings are extracted as described earlier, we could consider using
this information to mask building-related features such as shadow and dark build-
ing.

Using laser data and meta data of the multi-spectral image, we can simulate
shadow areas caused by buildings and the relief displacement of buildings by ap-
plying the hillshade algorithm. Water surfaces can be refined by masking shadow
areas and buildings, including displaced roofs caused by the slightly oblique viewing
of the sensor.

5.4.4 Derivation of image-object properties at the land-
cover level

The extracted image regions obtained by segmentation based on the overall mem-
bership function or reasoning are represented in the form of a binary image. Pixels
belonging to such regions will have the value 1 and other pixels will have the value
0.

Such a binary image is further labelled with a unique ID for each region so that
all pixels in a region should be connected by the 4-connection. The unique ID is used
as the identifier for each image region.

A number of geometric properties such as size, shape and orientation can be
derived for each image object as described in Sections 4.5 and 4.6.
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5.5 Spatial modelling for pixel interpolation
from a coarser resolution to a finer reso-
lution

Urban features often have sharp boundaries. Because of the limited spatial reso-
lution of remotely sensed images, pixels containing boundary elements will contain
a mixture of the spectral responses from different features. Among the four causes
of mixed pixels described by Fisher, and as shown in Figure 5.5 (Fisher, 1997), the
‘Sub-pixel’ and ‘Linear sub-pixel’ cases are the most difficult, owing to lack of infor-
mation regarding their existence and their spatial extents for objects smaller than
the pixel size. Therefore the ‘Boundary pixel’ and ‘Intergrade’ cases are the main
targets of our sub-pixel approach. However, the proposed approach aims at solu-
tions to the ‘Boundary pixel’ and ‘Intergrade’ cases without neglecting the potential
existence of the other two cases.

Sub-pixel Boundary pixel

Intergrade Linear Sub-pixel

Figure 5.5: Four causes of mixed pixels (Fisher, 1997); reproduced from
the International Journal of Remote Sensing by permission of Taylor and
Francis Ltd, http://www.tandf.co.uk/journals

There are a number of techniques proposed for dealing with the pixel unmixing
issue (Atkinson, 1997; Foody et al., 1997; Schowengerdt, 1997; Foody, 1998; Stein-
wendner, 1999; Tatem et al., 2001a,b). As the value of each pixel is the composite
spectral signature of the land-cover types present, these approaches were applied
based on spectral pixel unmixing and spatial unmixing respectively, or based on
both aspects.

Mixture modelling, neural networks and fuzzy c-means classifier are currently
available for estimating the proportions of different classes that a pixel may rep-
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resent (Foody, 1996; Atkinson, 1997; Atkinson et al., 1997; Bastin, 1997). Conven-
tional classifiers such as the maximum likelihood classifier (MLC) are based on the
spectral signatures of pure pixels and do not recognise spatial patterns in the same
way that a human interpreter does (Gong and Howarth, 1990). On the other hand,
the MLC generates a substantial amount of information on the class membership
properties of a pixel, which provides valuable information on the relative similarity
of a pixel to the defined classes (Foody et al., 1992). The objective of our approach
is to incorporate probability measures derived from the MLC or fuzzy membership
values, together with spatial information at the pixel scale to increase the accuracy
classification and to produce finer classification maps or interpolation results at the
sub-pixel scale.

A spatial dependence model was applied in mapping the location of the land-
cover proportions estimated from the mixture model at the sub-pixel scale (Atkin-
son, 1997). The algorithm was iterated several times through all the pixels at the
pixel and sub-pixel scales to avoid a ’hole’ at the centre and to smooth the surface.
However, such an arrangement conflicts with our understanding of what constitutes
’maximum spatial order’ as the authors indicated (Atkinson, 1997). The proposed
approach therefore intended to define the contributions from the central pixel and
the neighbouring pixel to spatial allocation at the sub-pixel scale, based on the as-
sumption that the land cover is spatially dependent both within and between pixels,
as our aim is to respond to the ‘Boundary pixel’ and ‘Intergrade’ cases (Atkinson,
1997; Verhoeye and De Wulf, 2000).

Some promising results have also been achieved for pixel unmixing by using
a neural network approach (Tatem et al., 2001a,b). However, neural network ap-
proaches are sensitive to samples used in training and testing phases. It may cost
a lot of effort to select a sufficient number of good samples, with due consideration
to representatives of the spectral and spatial aspects, to ensure the ability of neural
networks in pixel unmixing. This training procedure has to be repeated again when
it applies to other data sets. However, in our approach only spectral information
of samples is used. Spatial allocation at the sub-pixel scale will be processed in a
separate stage.

A per-field approach using detailed vector data can improve classification ac-
curacy (Aplin et al., 1999a,b; Aplin and Atkinson, 2001). In most cases, however,
accurate vector data sets are rarely available (Tatem et al., 2001b). Feature bound-
aries may have changed as well if image data and vector data have been captured at
different periods.

In the proposed two-stage (spectral-spatial) approach, we implemented fuzzy
classification, using an S-shape fuzzy membership function in the first stage. In
the second stage, we applied the inverse distance weighting predictor to interpo-
late a membership surface at the sub-pixel scale with the MF values of the central
pixel and neighbourhood at the pixel scale, and classified the image according to the
interpolated MF values at sub-pixel scale.

The proposed approach aims at increasing the accuracy of land-cover classifi-
cation and producing finer classification maps, especially for boundary pixels. The
results will be used later in inferring urban land use based on land cover classifica-
tion. We have already demonstrated the ability of the proposed sub-pixel approach
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to improve classification accuracy, based on probability derived by maximum likeli-
hood classifier (see Zhan et al. (2002a)). In this case, we apply this spatial modelling
approach for pixel interpolation from coarse resolution (IKONOS, 4 m) to finer reso-
lution (Airborne LIDAR, 1 m), based on fuzzy membership values.

5.5.1 Proposed sub-pixel methods
After implementing the maximum likelihood classification or fuzzy classification,
the proportion of each class in a pixel is given by the pixel’s probability or member-
ship vector. Each pixel is split up by the zoom factor. We use zoom factor 4 to illus-
trate that each pixel is split up into 4 x 4 = 16 sub-pixels, as shown in Figure 5.6.
To determine the class probability or membership value of a sub-pixel for each end-
member class, a new probability vector or membership value is calculated, based on
the probability or membership value vectors of the central pixel and its eight neigh-
bouring pixels. The inverse distance weighting predictor was used in computing a
new probability value or membership value for each sub-pixel. The assumption is
that the value of an attribute z at an unvisited point is a distance-weighted average
of data points occurring within a neighbourhood or window surrounding the unvis-
ited point (Burrough and McDonnell, 1998).

Ẑ(x0) =

∑n
i=1 Z(xi) · d−r

ij∑n
i=1 d−r

ij

(5.4)

Ẑ(x0) : is the value of the attribute at an unvisited location
Z(xi) : z is the known value of the attribute at location xi
dij : d is the distance between the unknown point xj and a neighbour xi

r : is a distance weight factor
n : is the number of neighbours

For a given sub-pixel the distances to the nearest edges or corners of the neigh-
bours are calculated. These distance measures dij are used to calculate the new
probability vector of the sub-pixel z(x0) by taking the distances from a given sub-
pixel to the edges of the N, E, S and W neighbours and to the corners of the NW,
NE, SE and SW neighbours (see Figure 5.6). The effect of these distance measures
on the interpolation result is tested. The distance weight factor r is set to 1.0. An
important factor to consider is how to incorporate the probability or membership
value vector of the current pixel itself in the interpolation. One option is to leave the
centre probability vector out. In this case, only the neighbouring probability vectors
are used (neglecting the existence of the ‘Sub-pixel’ and ‘Linear sub-pixel’ cases in
Figure 5.5). Another option is to choose a distance value for the central pixel in
the interpolation (considering the potential existence of the ‘Sub-pixel’ and ‘Linear
sub-pixel’ cases in Figure 5.5). For example, the distance from each sub-pixel to the
centre pixel could be set at 1.0 to give this pixel a large weight.
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Figure 5.6: Inverse distance interpolation used to compute sub-pixel prob-
ability vectors. Distances are taken from sub-pixel to corners or edges of
neighbouring pixels.

5.5.2 Experimental testing of the proposed sub-pixel
method

To verify the proposed sub-pixel approach, a number of controlled tests were imple-
mented. Four test images were created manually as truth at the sub-pixel scale (200
× 200 pixels), with two classes with values 1 and 0 (white and black respectively as
shown in Figures 5.7-c, 5.8-c, 5.9-c and 5.10-c). Simulated probability images (50 ×
50 pixels) were generated from four test images, using the averaging aggregation
method in order to maintain the statistical and spatial properties of the simulated
data (Bian and Butler, 1999). Simulated images are presented in Figures 5.7-a, 5.8-
a, 5.9-a and 5.10-a (50 × 50 pixels). Each pixel of a simulated image covers 4 × 4
pixels at the sub-pixel scale (truth images), corresponding to the same spatial ag-
gregation scale of IKONOS imagery (4 m) and LIDAR (1 m). Classification results
obtained at pixel scale are provided in Figures 5.7-b, 5.8-b, 5.9-b and 5.10-b. Prob-
ability results at the sub-pixel scale by applying the ‘bilinear’, the ‘bicubic’ and the
proposed approaches are shown in Figures 5.7-d,f,h; 5.8-d,f,h; 5.9-d,f,h and 5.10-d,f,h
respectively. The classification results at the sub-pixel scale by using these three ap-
proaches are shown in in Figures 5.7-e,g,i; 5.8-e,g,i; 5.9-e,g,i and 5.10-e,g,i.

The proposed sub-pixel interpolation results are compared with the results ob-
tained at pixel scale, as well as the standard ‘bilinear’ and ‘bicubic’ interpolation
approaches, as shown in Figures 5.7, 5.8, 5.9, and 5.10. Pixel-to-pixel comparison
with corresponding ‘truth’ images shows that the proposed approach gains the high-
est overall accuracy and Kappa coefficient in the four tests, as indicated in Table 5.1.
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resolution

a b c

d e

f g

h i

Figure 5.7: Sub-pixel test 1: a - simulated image at the pixel scale based
on ‘truth’ image (c); b - classified image based on image (a) at the pixel
scale; c - ‘truth’ image prepared at the sub-pixel scale; d - result of ‘bilinear’
interpolation based on image (a); e - classified image based on image (d); f -
result of ‘bicubic’ interpolation based on image (a); g - classified image based
on image (f); h - result of proposed sub-pixel approach based on image (a); i
- classified image based on image (h).
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a b c

d e

f g

h i

Figure 5.8: Sub-pixel test 2: a - simulated image at the pixel scale based
on ‘truth’ image (c); b - classified image based on image (a) at the pixel
scale; c - ‘truth’ image prepared at the sub-pixel scale; d - result of ‘bilinear’
interpolation based on image (a); e - classified image based on image (d); f -
result of ‘bicubic’ interpolation based on image (a); g - classified image based
on image (f); h - result of proposed sub-pixel approach based on image (a); i
- classified image based on image (h).
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resolution

a b c

d e

f g

h i

Figure 5.9: Sub-pixel test 3: a - simulated image at the pixel scale based
on ‘truth’ image (c); b - classified image based on image (a) at the pixel
scale; c - ‘truth’ image prepared at the sub-pixel scale; d - result of ‘bilinear’
interpolation based on image (a); e - classified image based on image (d); f -
result of ‘bicubic’ interpolation based on image (a); g - classified image based
on image (f); h - result of proposed sub-pixel approach based on image (a); i
- classified image based on image (h).
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a b c

d e

f g

h i

Figure 5.10: Sub-pixel test 4: a - simulated image at the pixel scale based
on ‘truth’ image (c); b - classified image based on image (a) at the pixel
scale; c - ‘truth’ image prepared at the sub-pixel scale; d - result of ‘bilinear’
interpolation based on image (a); e - classified image based on image (d); f -
result of ‘bicubic’ interpolation based on image (a); g - classified image based
on image (f); h - result of proposed sub-pixel approach based on image (a); i
- classified image based on image (h).
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Table 5.1: Test results using overall accuracy and Kappa coefficient

Test
image

Pixel scale Sub-pixel scale
Bilinear Bicubic Proposed

Overall Kappa Overall Kappa Overall Kappa Overall Kappa
accuracy coefficient accuracy coefficient accuracy coefficient accuracy coefficient

Test1 98.21% 94.33% 99.42% 98.19% 99.40% 98.12% 99.51% 98.44%
Test2 98.73% 95.95% 98.73% 95.97% 98.67% 95.77% 99.62% 98.78%
Test3 99.22% 97.42% 99.52% 98.42% 99.48% 98.31% 99.80% 99.35%
Test4 98.53% 93.60% 99.12% 96.17% 99.09% 96.03% 99.57% 98.09%

5.6 Finding spatial units for land-use types

To avoid confusion caused by using different terms, we would like to give more ex-
plicit explanation of the terms used in this section. We use ‘spatial pattern’ to refer
to both spatial arrangement and spatial distribution. ‘Spatial arrangement’ means
spatial alignment such as along the road, or shapes such as rectangular and circu-
lar. ‘Spatial distribution’ indicates the spatial extent of certain features that can
be bounded by convex hulls. ‘Adjacency’ refers to a qualitative spatial relationship
where no other object exists between the adjacent objects, but the adjacent objects
may not necessarily ‘touch’, i.e. the adjacent objects can be disjointed. ‘Proximity’
refers to a quantitative spatial relationship that indicates closeness, considering the
distance between objects.

Since an individual land-cover feature does not tell much about the spatial ex-
tent of a land-use unit, we need to look for the spatial arrangement and spatial dis-
tributions of land-cover features. Certain land-use types often show certain spatial
patterns or even unique patterns in urban areas. On the other hand, some indicators
as to what a spatial unit contains can be derived according to feature type, number
and their distribution. For instance, we can use building as a feature for reasoning
land-use units, and use the number, average size of buildings and building density
as properties or attributes of such units (land-use units) to classify the use of such
units (land-use types). Therefore, finding reasonable spatial units and boundaries is
the key to land-use classification.

Buildings are land-cover objects with certain shapes and sharp boundaries. It is
relatively easy to extract buildings from image and laser data of good quality. The
spatial distribution and spatial arrangement of buildings are often the results of
conscious planning and development to serve certain functions, and thus can pro-
vide indications for land-use reasoning. For instance, a residential area normally
consists of closely situated houses of similar size, shape and orientation (parallel or
perpendicular). Gardens or green space can often be found in open space between
residential buildings. Therefore, spatial clustering of buildings plays an important
role in finding spatial units of land uses. In this section we will introduce a method
of extracting land-use spatial units based on the spatial distribution and feature
similarity of buildings.

100



Chapter 5. Logical design for object-based land-cover and land-use classification

5.6.1 Cluster analysis and spatial clustering
A spatial unit is a spatial cluster of land-cover objects that serves certain economic
functions and contains certain types of physical features. Physical features such as
buildings in a spatial unit often show similar characteristics, such as size, shape, ori-
entation, and these features are often located within a close range in space, forming
a certain spatial pattern. Cluster analysis techniques can help to find clusters based
on similarity of features in a feature space. k-means, k-nearest neighbour (k-NN),
fuzzy c-means etc. are some well-known approaches for clustering.

Spatial clustering is the process of grouping a set of objects into classes or clus-
ters so that objects within a cluster are highly similar to one another, but are dis-
similar to objects in other clusters (Han et al., 2001). Partition methods such as
the k-means algorithm (MacQueen, 1967), the expectation maximisation (EM) algo-
rithm (Dempster et al., 1977; Bradley et al., 1998; Yu et al., 1998) and the k-medoid
algorithm (Kaufman and Rousseeuw, 1990) tend to find only spherical-shaped clus-
ters and encounter difficulty in discovering clusters of arbitrary shapes (Han et al.,
2001). Unfortunately, land-use spatial units often have arbitrary shapes and the
number of clusters k is often unknown.

Han et al. (2001) provided a survey on spatial clustering. Spatial clustering is
a special type of clustering that takes into account both similarity of features in a
feature space and spatial distance in a 2D or 3D physical space.

Therefore, we need to find suitable solutions to our specific problems by investi-
gating the following aspects:

• Distances between objects

• Similarity measures of features

• Spatial arrangement and/or spatial distribution

• Spatial partitioning based on closeness (distance), and spatial comparability
that takes feature similarity into consideration (i.e. features that are more
similar based on certain characteristics are more likely to belong to the same
cluster)

5.6.2 Distances between objects
Euclidean distance plays a very important role in spatial clustering. It remains a
key player in our case since proximity often denotes a similarity of use. Euclidean
distance is used to determine how close objects are situated in 2D space.

The distance between two objects can be defined in several ways: the distance
between the centres of two objects (the centre of gravity), or the shortest distance
between two objects (i.e. the shortest distance between pixels that belong to two
objects). To illustrate the different distance measures and their clustering results,
a small sample area is selected, as presented in Figure 5.11. Buildings shown in
Figure 5.11 should be clustered in three groups, as shown in Figure 5.12, by visual
interpretation, according to spatial pattern and our planning knowledge of spatial
arrangement. The same result may not be achieved by using distances between the
centres of objects, as illustrated in Figure 5.13 where distance a is obviously larger
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Figure 5.11: Buildings in an ur-
ban area where buildings vary in
size, shape, orientation, and per-
haps in height etc.

Figure 5.12: Manual clustering
of buildings (red, green and blue)
according to our planning knowl-
edge.

than b, and c differs slightly from d. Therefore, for spatial clustering based on the
distribution of buildings, we consider the shortest distance between objects a better
measure than the distance between object centres, as shown in Figure 5.14.

In general, the shorter the distance between two buildings, the higher the possi-
bility that the two buildings belong to the same cluster. Buildings may vary in size
and shape. The distance between small and low-rise residential buildings tends to
be small, and the distance between large and high-rise residential buildings has to
be large in accordance with the planning requirement in many countries that resi-
dential dwellings need direct sunlight, even during the season with the lowest sun
angle, to ensure a healthy living environment. Such a requirement can be achieved
by considering the longest shadow a building may project in direction of sunlight,
and the terrain relief, as shown in Figure 5.15. The minimum distance between
residential buildings is often enforced by planning regulations governing geograph-
ical locations and building height. The required minimum distance may be smaller
when a location is closer to the equator, when building height is constant. Such a
requirement and association are valid for residential areas. Rules may be differ-
ent for other land-use types and between different land-use types. In addition, real
situations are very complicated, especially in urban areas, where similarity in size,
shape, orientation and building height should have an impact on spatial clustering
as well. Therefore, for spatial clustering it may be necessary to consider and in-
corporate similarity measures based on these features, in addition to the shortest
distance.
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Figure 5.13: Distances between
centres of objects (a, b, c and d).

Figure 5.14: The shortest dis-
tances between objects (a’, b’, c’
and d’).

Figure 5.15: Relationship between the minimum distance to avoid shadow,
building height and sun angle of a location with flat terrain.
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5.6.3 Similarity measures in feature space
Many similarity measures have been proposed in literature for various applications,
such as feature-based similarity (Tversky, 1977), similarity for case-based reasoning
(Osborne and Bridge, 1996, 1997a,b), similarity measures for content-based image
retrieval (Santini and Jain, 1995, 1999) and semantic similarity evaluation for cat-
egorical data (Bishr, 1997; Liu et al., 2002; Rodrı́guez and Egenhofer, 2003), just to
mention a few. It is extremely difficult to identify a single all-encompassing ‘best’
similarity measure (Zobel and Moffat, 1998). The following are a number of indica-
tors and features that are considered useful for reasoning spatial units of land-use
in this research.

We observe that many features are not linear or not even monotonic in feature
space when we use these features to determine whether two objects should be in
the same spatial cluster or in different spatial clusters, i.e. we may not be able to
determine whether or not two objects belong to the same spatial cluster according to
the individual values of these features. For example, two objects of similar size are
likely to belong to the same cluster, but we are not so sure because of the complexity
in reality. In such cases, a distance measure based on object features may not be
a metric one, because it may not follow the three axioms required for metric space:
minimality, symmetry and triangle inequality.

Tversky proposed the well-known contrast model and the ratio model which are
based on a feature matching function using a set-theoretic model (Tversky, 1977):

Similarity Sim(a, b) = F (A ∩B, A−B, B− A).

The similarity Sim of object a to object b is expressed as a function F of three
arguments: A ∩ B, the features that are common to both a and b; A-B, the features
that belong to a but not to b; B-A, the features that belong to b but not to a. One
representation called the contrast model was proposed under certain assumptions
(see details in Tversky, 1977):

Sim(a, b) = θf(A ∩B)− αf(A−B)− βf(B− A), for θ, α, β ≥ 0.

This is a linear combination of the measures of the common and the distinctive
features. For example, if θ = 1, α and β vanish, then Sim(a, b) = f(A ∩ B); that is,
the similarity between objects is the measure of their common features. If, on the
other hand, α = β = 1, and θ vanishes then−Sim(a, b) = f(A−B)+f(B−A); that is,
the dissimilarity between objects is the measure of the symmetric difference between
the respective feature sets. Note that in the former model (θ = 1, α = β = 0),
it is determined by their common features, whereas in the latter model (θ = 0,
α = β = 1), it is determined by their distinctive features. The contrast model
expresses similarity between objects as a weighted difference of the measures of
their common and distinctive features, thereby allowing for a variety of similarity
relations over the same domain (Tversky, 1977). The contrast model intends to
obtain an absolute value to indicate the degree of similarity between two objects.
In practice, however, it is quite difficult to verify such a function and determine the
three parameters θ, α and β. The ratio model, which is presented in the same paper,
provides another option:
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Figure 5.16: Similarity comparison between the absolute dif-
ference and the proportional difference.

Sim(a, b) =
f(A ∩B)

f(A ∩B) + αf(A−B) + βf(B− A)
, α, β ≥ 0

where similarity is normalised so that Sim lies between 0 and 1. The ratio model
gives a relative value to the degree to which features are similar.

5.6.4 The ratio model
Before choosing a similarity measure, we would like to do a simple experiment and
use object size as a feature for similarity comparison. As shown in Figure 5.16, we
can observe that the degree of similarity between a and b is more or less equivalent
to that between a’ and b’ in terms of size because the ratio of size difference between
a and b and the ratio between a’ and b’ are the same (a is half the size of b or
b is two twice the size a and the same ratio is applicable to a’ and b’). Similar
observations can be made between the pairs c, d and c’, d’. When we compare the
degree of similarity between a and b and the degree of similarity between c and
d, we can observe that c and d are more similar than a and b (i.e. Sim(c, d) >
Sim(a, b)) because c is two-thirds of the size d and a is half the size of b. The
first conclusion that can be made is that the ratio of size between two objects is
proportional to the degree of similarity in terms of size. We should notice that the
absolute size difference between a and b (i.e. |a − b|) is the same as that between
c and d (i.e. |c − d|). The second conclusion is that the absolute size difference is
not a suitable measure for similarity assessment, since c is more similar to d than
a is to b although |a−b| = |c−d|. A similar observation can be made for similarity
comparison in terms of building height. Therefore the ratio model (proportional) is
better than the absolute measure in these cases.
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Table 5.2: Similarity in size of each pair of ‘squares’ in Figure 5.17

A, B a, b b, c c, d d, e e, f f, g g, h h, i
A ∩B 1 4 16 25 36 49 64 81
|A−B| 3 12 9 11 13 15 17 19
A ∪B 4 16 25 36 49 64 81 100

Similarity 0.25 0.25 0.64 0.694 0.735 0.766 0.79 0.81

Figure 5.17: Similarity test in terms of size.

To determine the choice of the two parameters of the ratio model α and β, we
consider that the similarity function is symmetric when we compare two objects
in terms of building size or building height in our case, since |a − b| = |b − a|.
Therefore we use α = β = 1 in the ratio model and construct our similarity measures
for building size, building height etc. as follows:

Sim(a, b) =
f(A ∩B)

f(A ∩B) + f(A−B) + f(B− A)
=

f(A ∩B)

f(A ∪B)
(5.5)

In a test using the above formula, the similarity value is calculated for each pair
of ‘squares’ (see Figure 5.17), as shown in Table 5.2. The test results show that
the similarity values fit well with our visual observation, as discussed earlier. The
similarity values of pair (a, b) and pair (b, c) are the same and fit well with our
visual observation. This is because the larger object is four times bigger than the
corresponding smaller object in both pairs, despite the fact that the absolute size
difference between b and c is four times bigger than that between a and b.

This formula will be applied in spatial clustering for similarity assessment of
building size and height. Similarity measures for shape and orientation are much
more complicated because the similarity can hardly be measured by a single similar-
ity measure. Additional investigation has to be made in this regard. The similarity
measures for building size and height will be used to determine whether or not two
neighbouring buildings belong to the same spatial cluster, in addition to the distance
measure (i.e. the shortest distance between these objects).
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5.6.5 Spatial distribution of buildings as indication of
the spatial extent of land-use units

Although we believe in the fundamental assumption that the shorter the distance
between two objects, the more similar the instances are, the actual spatial patterns
are function-based, in that some facilities (such as schools) are built to serve resi-
dents at the local neighbourhood level, while other facilities (such as shopping cen-
tres) serve the local communities or even for the whole city. These types of functional
spatial associations are much more complicated for spatial modelling than are other
physical constraints such as terrain relief, rivers, canals and lakes, or social and
political constraints such as administrative boundaries. There are still some rules
that can be applied at the local level. For instance, in a residential neighbourhood,
houses are likely to be built by a developer at a certain time and in a similar fash-
ion with regard to building size, shape, number of floors and orientation, etc. These
buildings are also likely to be situated at close range in an urban space. Therefore,
additional similarity measures such as size and height should be involved in spa-
tial clustering, besides the shortest distance between adjacent objects. This type of
information can be extracted from airborne laser data and multi-spectral data by
using the object-based approach.

Many social-economic functions in urban areas are proposed and organised in
the planning and implementation phases. Urban space used for certain social-
economic functions is conceptualised and continuous in nature, and thus often has
vague boundaries. This means that we may not be able to find sharp spatial bound-
aries for different functions. For instance, vegetation may be found in a residential
area and continuously distributed to a park (recreational use) next to the residential
area when no physical boundaries can be found in the transit zone between the res-
idential area and the park. However, a number of physical components that provide
these functions may be found in a spatial extent, such as buildings for residential
use. Therefore, we may use the distribution of physical features (land-cover objects)
for reasoning the spatial extent of land-use functions (i.e. land-use objects).

Indicators for spatial clustering

• Adjacency relationship
The adjacency relationship provides a meaningful spatial relation between
two objects. The adjacency relationship can be obtained by the Delauney trian-
gulation. In our approach, adjacent objects are only considered if they belong
to the same cluster, while property similarity of adjacent objects is also con-
sidered. Non-adjacent objects will not be checked. Two non-adjacent objects
may be grouped in the same cluster only if adjacency links hold (i.e. two adja-
cent objects connected by the adjacency link meet the criteria for belonging to
the same cluster) and such links pass from one object to another non-adjacent
object via other adjacent objects. For instance, if object a and its adjacent ob-
ject b are considered as belonging to the same cluster, and b and its adjacent
object c are also in the same cluster, then non-adjacent objects a and c are
considered to be in the same cluster (as shown in Figure 5.18).
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• The shortest distance between two adjacent objects
The distances between two adjacent objects can be measured from many pixels
that belong to these two adjacent objects. The shortest distance between two
adjacent objects is obtained by comparing the length of all triangle edges (De-
launey triangulation) that link two adjacent objects. The shortest distance be-
tween two adjacent objects is a quantitative proximity measure for how close
two adjacent objects are.

• Feature similarity
The more properties found similar (i.e. similar size, shape, etc.), the more
likely it is that two adjacent objects are grouped in the same cluster.

• Density and other area-related measures
Density and other area-related measures such as building density and floor
area ratio (FAR) are spatially related measures in a continuous or discrete
space. Similar density or other measure values provide indications for the
possible merging of clusters. Building density and FAR are useful measures
in built-up areas, not only for checking whether to combine two clusters, but
also for cluster identification (land-use classification).

a

B

b c
Figure 5.18: Clustering of adjacent and non-adjacent objects.

The adjacency relationship can be derived by applying Delaunay triangulation
or its dual graph, the Voronoi diagram, since no other point can be found along
any edges of Delaunay triangulation or two points share a common boundary in
the Voronoi diagram, which ensures the two points are adjacent. When Delaunay
triangulation is applied, pixels as parts of image objects at the land-cover level can
be treated as points and used for creating Delaunay triangulation. We can then
determine the shortest link between two adjacent objects by comparing the lengths
of all the Delaunay triangulation edges that link pixels that belong to the two objects.
Such shortest links and their lengths are stored in a table, similar to the region
adjacency graph (RAG), as an indicator for checking if these two objects belong to the
same spatial cluster (land-use unit), along with other indicators such as similarity
in size and height. The shortest links provide information that indicates that these
objects are spatially adjacent and the degree to which these objects are close.

Feature similarity provides additional measures for decision making on merg-
ing or splitting in spatial clustering. As mentioned earlier in this section, the ra-
tio model is applied as a similarity measure for features such as building size and
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building height. Similarity measures will be based on the average per cluster when
comparing two clusters, while each of these clusters contains more than one object.

5.6.6 Partitioning according to similarity of features
and the shortest distance

Owing to the complexity of the spatial arrangement and spatial distribution of fea-
tures in urban areas, we may not be able to find these spatial clusters by using
similarity measures of features or spatial distances alone. It has to be clear that
similarity measures of features are derived from a feature space whereas distances
are derived from the physical space (i.e. Euclidean distance). These two types of
measures are independent in nature. To find reasonable spatial units for land-use
classes in a space partitioning process, we need to integrate both feature similarity
between objects and the distance between them.

Similarity of features and proximity

Studies using texture stimuli have found that the human visual system can quickly
group similar colour and shape features into global spatial regions and then rapidly
segregate them at their boundaries or edges in order to begin establishing figure-
ground relations within a scene (Cook, 2001). Similarly, in our cases many factors
may have to be considered in terms of similarity and spatial closeness in order to
define and delineate spatial clusters. The adjacency relationship, the shortest dis-
tance, feature similarity and density are considered important factors for reasoning
in finding spatial units of land use in this research. The effectiveness of these factors
will be discussed in detail in Chapter 7.

Delineation of land-use units

As discussed in Chapter 3, there is often no direct physical evidence to be found to
indicate the spatial extent of a land-use unit, and some land-use types are conceptu-
alised. Therefore we proposed a surface modelling approach to delineate boundaries
for such land-use units when spatial clusters are determined. To illustrate the ap-
proach step by step, we use the example shown in Figure 5.19. A morphological
closing operation is applied to create the solid core of a spatial cluster, as shown
in Figure 5.20. The distance transformation is then applied to generate a transit
zone around the core of each land-use unit and an S-shape fuzzy membership func-
tion is used to create a simulated surface represented by fuzzy membership values
which gradually decrease from the edge of the core toward the neighbouring clus-
ters, as shown in Figures 5.21, 5.22 and 5.23. The integrated surface as shown in
Figure 5.24 is used to determine the boundaries of land-use units by taking the lo-
cal minima as the boundary between different clusters, as illustrated in Figure 5.27.
This can be treated as the watershed when we reverse the surface. In the final stage,
the watershed algorithm (Vincent and Soille, 1991) is used to obtain the boundaries
of land-use objects, as shown in Figure 5.25. The land-cover objects superimposed
with land-use objects are shown in Figure 5.26.
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For application of the surface model, we can specify the maximum width of the
transit zone (e.g. 80 m) and obtain surface values by applying the Z-shape fuzzy
membership function, as shown in Figure 5.27. In this model, we consider the same
width for all land-use types since we have not identified the land-use type yet. It is
possible to specify different transit zone width for different land-use types (e.g. an
industrial area may have a larger width than a residential area) when related infor-
mation is available. Another option is to specify the transit zone width proportional
to the average building size of the specific clusters.

The above-mentioned approach is based on the assumption that only multi-
spectral data and laser data are available. However, often a road map is avail-
able, which may help in obtaining better spatial partitioning results. If so, land-use
boundaries could be improved by incorporating the road network in the spatial par-
titioning process. A corresponding surface model would be as shown in Figure 5.28.
To consider roads as a separate land-use class and prevent the possible mixing of
roads and clusters, we can specify a narrow transit zone along both sides of roads
(e.g. 5 m). To avoid the transit surface across the road of a large transit zone from
a nearby cluster, the solid cores of clusters are subtracted first by means of a mask.
This mask is created by applying a morphological dilation operation to road pix-
els, using a circular structuring element with a reasonable radius (e.g. 40 m when
the transit zone width is 60 m). The relationship between road width (WidthRoad),
transit zone width for roads (WidthRoadT ransit), radius of the circular structuring
element (RadiusSE) and transit zone width for clusters (WidthClusterT ransit) should
be:

WidthRoad + 2 × WidthRoad Transit + RadiusSE ≤ WidthCluster Transit

When the minimum road width is 15 m, the proposed surface model is as pre-
sented in Figure 5.28.

5.7 Extraction of image-object properties at
the land-use level

When spatial units for land use are extracted, a number of land-use-related proper-
ties can be derived accordingly based on these spatial units. The following properties
are considered to be land-use-related features that play an important role in land-
use reasoning and identification. For instance, building density, floor area ratio and
green coverage ratio can be derived for each land-use image object; these are directly
associated with definitions of several land-use types. These and other properties can
be derived from image objects when their spatial units are determined.

5.7.1 Numerical and categorical properties
In the following, several meaningful numerical and categorical properties are listed,
which can be derived for each land-use image object from image and laser data and
can play an important role in land-use classification.
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Figure 5.19: Three clusters. Figure 5.20: Cluster cores.

Figure 5.21: Transit zone:
cluster 1.

Figure 5.22: Transit zone:
cluster 2.

Figure 5.23: Transit zone:
cluster 3.

Figure 5.24: Transit zone: in-
tegrated.

Figure 5.25: Spatial partition-
ing using the watershed algo-
rithm.

Figure 5.26: Three clusters
and the corresponding parti-
tions.
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Solid core of cluster

80 m

Transit zone for cluster

Local minima (watershed in reversed surface)

Solid core of cluster

80 m

Transit zone for cluster

Figure 5.27: Profile of a proposed surface model for delineation of cluster
land-use units without using road map.

Road Solid core of cluster

5 m5 m road
width

60 m

Transit zone for road Transit zone for cluster

40 m

Local minima (watershed in reversed surface)

Figure 5.28: Profile of a proposed surface model for delineation of cluster
land-use units by using road network.
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• Type and proportional composition of land-cover objects a land-use object con-
tains

• Number of buildings

• Average building size

• Average building height

• Building density

Building density =
Total area of buildings
Size of the spatial unit

• Floor area ratio (FAR)

FAR =
Total area of building floor space

Size of the spatial unit

• Green coverage ratio (GCR)

GCR =
Total area of green space
Size of the spatial unit

• Water coverage ratio (WCR)

WCR =
Total area of water surfaces

Size of the spatial unit

• Open-space coverage ratio (OCR)

OCR =
Total area of built-up area− Total area of building footprints

Size of the spatial unit

(Note: built-up area is the complement of vegetation and water in a spatial
unit)

5.7.2 Geometric properties
Location, size, shape and orientation are the geometric properties of an image object.
These geometric properties can be described by several indicators (van der Heijden,
1994; Shufelt, 2000) as introduced in Section 4.5.

5.7.3 Structural properties
The spatial distribution of land-cover objects over the space of a land-use object is
an essential element that can be derived based on the geometric properties of land-
cover objects, as presented in Section 4.5. These geometric properties can also be
used to identify land-use objects and can be treated as structural properties of land-
use objects.
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Several structural indicators, which are useful measures for the spatial distri-
bution of specific land-cover objects in a land-use unit and can be extracted directly
from images, are proposed as follows. Spatial coverage ratio (SCR), spatial mixture
ratio (SMR), and spatial bias ratio (SBR) are useful for characterising the spatial
distribution of features and determining if further subdivision of a land-use unit is
required.

• Spatial coverage ratio (SCR)

SCR =
SizeConvexhull

SizeSpatial unit

SCR indicates the spatial distribution of a certain land-cover feature in a spa-
tial unit.

• Spatial mixture ratio (SMR)

SMR =
∩s

n
i=1(Convex hulli)

∪s
n
i=1(Convex hulli)

SMR measures the degree of overlay in the spatial distribution of different
features and can be used to check out if different types of features are mixed
in a space.

• Spatial bias ratio (SBR)

SBR =
2 · |CentreLC-O − CentreLU-O|

EquivDiameterLU-O

SBR is calculated as the distance between the gravity centre of land-cover
objects (CentreLC-O) and the gravity centre of the land-use object (CentreLU-O)
divided by the equivalent radius of a spatial unit, and can be used to check
out if land-cover objects are equally distributed over a space or concentrated
in certain parts of space.

5.8 Land-use classification
Land-use classification is based on the delineated spatial units and their proper-
ties, as described in the previous sections. The possibilities of a spatial unit be-
longing to defined classes are evaluated based on fuzzy membership functions or
probabilities of each end-member class – a method called per-object fuzzy classifi-
cation. Fuzzy membership functions are often used to express existing knowledge
on relationships between selected features and defined classes. Probabilities can be
obtained by training or learning from samples. Since not all features can be derived
from images and laser data, in this research fuzzy membership functions and proba-
bilities are constructed based on features that are extracted from these data. Many
social-economic features such as population may be useful and can be included by
integrating remote sensing and GIS. In this research, only those features and mea-
sures that can be derived from high-resolution multi-spectral images and laser data
are under investigation.
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5.8.1 Selected features and their associations with end-
member classes

Features that make each land-use class distinguishable from other classes vary, and
are very much related to the local settings. Therefore it is necessary to select a
number of indicators that are robust in a general sense, such as building density and
percentage of green space, and can be derived from image analysis. A list of such
indicators and their associations with land-use classes is presented in Table 5.3.

5.8.2 Land-use classification
Based on rich features that can be derived from image and laser data as described
earlier in this chapter, many classifiers can be applied in land-use classification.
For instance, the fuzzy classifier, maximum likelihood classifier and neural network
classifier are suitable classifiers. For unsupervised classification, the tree-classifier,
k nearest neighbour, fuzzy c-means etc. are candidate classifiers. To incorporate
knowledge in land-use identification and make it more robust in different urban
areas, the fuzzy classifier is used, since the general knowledge used for designing
the fuzzy membership functions is not too sensitive to different locations. Fuzzy
membership functions can be adjusted by local knowledge obtained using samples
from the particular site.

5.8.3 Summary
In this chapter, a logical design for object-based land-cover and land-use classifica-
tion is proposed and discussed. It consists of three steps: land-cover classification,
land-use unit reasoning and delineation, and land-use classification. The proposed
approach incorporates per-pixel image processing techniques and per-object tech-
niques in different stages. Many per-object features can be derived in addition to
those that can be extracted by per-pixel approaches. Extracted objects can be di-
rectly compared with definitions of land-cover classes and land-use classes based
on the characteristics they share. The spatial extent of such objects can readily be
presented in a raster format in a GIS and can be converted to vector representation
if necessary. Another feature of this approach is that all types of information are
transparently preserved for each object, for example the average DN values for each
type of raw data such as spectral values, height data, fuzzy membership value for
each feature, characteristics used in land-cover classification, spatial clustering and
land-use classification. Such detailed information provides useful sources for quality
assessment and uncertainty analysis and allows different users to choose different
features and modify related parameters to run the system again in order to acquire
desired outputs. Based on the object-based land-cover and land-use classification
schema proposed in this chapter, detailed case studies for land-cover classification
are given in Chapter 6, structural analysis and the extraction of spatial units of
urban land use are presented in Chapter 7, land-use classification is provided in
Chapter 8, and quality assessment and uncertainty analysis are discussed in Chap-
ter 9.
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5.8. Land-use classification

Table 5.3: A list of indicators and their associations with land-use classes

Indicators Resi-
dential

Com-
mercial

Indus-
trial

Trans-
porta-
tion

Recrea-
tional

Non-
urban

Number
of build-
ings

⊕ ⊕ ⊕ �/	 �/	 �/	

Type and
propor-
tion

B: ⊕
G: �/⊕
W: �

B: ⊕
G: �
W: �/	

B: ⊕
G: �
W: �

B: �/	
G: �/	
W: 	

B: �/⊕
G: ⊕
W: �/⊕

B: �
G: �/⊕
W: �/⊕

Average
building
size (m2)

50 -
2000

200 -
2000

> 2000 0 - 500 0 -
2000

0 -
2000

Building
density

med. -
high

high med. very
low

low low

Floor
space
ratio

0.5 - 10 1 - 20 0.2 - 2 < 0.1 < 0.2 < 0.5

Green
coverage
ratio

0.1 -
0.8

0 - 0.3 0 - 0.5 0 - 0.3 > 0.3 0 - 1

Note: ⊕ indicates positive proportional
	 indicates negative proportional
� indicates the feature can be absent or discarded
B: building
G: green space or vegetation
W: water surfaces
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Chapter 6

Object-based land-cover
feature extraction∗

6.1 Introduction
Exploiting remote sensing in urban areas has been a challenge for quite some time
because of the complexity and fragmentation of objects and the combination of man-
made features and natural features. Airborne laser altimetry data offer possibilities
for feature extraction and spatial modelling in urban areas. There are many ap-
proaches for deriving buildings and other features reported in literature (Brunn and
Weidner, 1997; Hug and Wehr, 1997; Lemmens et al., 1997; Axelsson, 1999; Haala
and Brenner, 1999; Haala and Walter, 1999; Morgan, 1999). However, there are
many cases, where it is still difficult to extract particular features by using these
approaches – for instance, in an urban area where many roads are raised above
ground level, with special characteristics similar to those of buildings (surface profile
and spectral reflection, etc.). The reported approaches all seem to have their short-
comings for building extraction in such a complicated urban context. The proposed
object-based approach that we have developed tries to extract buildings through
reasoning in a slice-based layer space. In the proposed approach, the DSM from the
laser scanning in raster format is segmented into slices at 1 m increments in eleva-
tion. The resulting image regions of each slice are then labelled and treated as image
objects. Hence, a number of properties can be derived based on labelled segments
(image objects) such as location (centroid), size, shape, orientation. These properties
are used for reasoning in the layer space. The layer space is defined by elevation at
1 m intervals as the X-axis and the properties of an image region (as they change
throughout the slices) as the Y-axis. Image objects are linked and reasoned on ver-
tically. A tree structure is created using links between segments throughout the
different layers. Reasoning is based on the patterns of these properties on the paths

∗This chapter is based on the following papers: Zhan et al. (2002b) and Zhan et al. (under
peer review (1)).
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6.2. Object-based building extraction

of each branch of the search tree in the layer space. Several experiments have been
performed in both study areas, southeast of Amsterdam and Ravensburg, Germany,
based on the proposed approach. The approach is very promising, also for features
other than buildings. Theoretical considerations, the detailed description of the ma-
jor steps, as well as experimental results, are presented in this chapter. Also the
methods of extracting other land-cover classes such as vegetation and water surface
are described in this chapter.

6.2 Object-based building extraction
One of the problems in automatically extracting buildings from the DSM lies in dis-
criminating between buildings and other protruding man-made structures such as
flyovers and driveways (see e.g. Brunn and Weidner (1997); Hug and Wehr (1997);
Axelsson (1999); Haala and Brenner (1999); Shufelt (2000)). Instead of trying to
solve the problem by pixel-based analysis of the DSM, we study the change in prop-
erties of image objects in elevation slices. We slice the DSM at a fixed vertical inter-
val (1 m in our test data) to obtain image objects at various levels of elevation, which
are then subjected to reasoning. The underlying assumption is that for a building
certain properties of its image object hardly change from one level to the next (see
Figure 6.1). In the present study we detect buildings based on two properties, i.e.
vertical change in size of an image segment and shift of its centre of mass. To this
end, we have to link the image objects at the different layers by a tree structure.
The degree of change from level to level also permits the production of uncertainty
estimates of extracted buildings. We have tested the approach using high-resolution
laser data of our Amsterdam and Ravensburg test sites.

6.2.1 Semantic and context analysis
Based on the characteristics of a building such as vertical wall, size and building
material as discussed in Chapter 5, we could try to describe a building by using
common-sense knowledge.

From the geometric perspective

• Size

Size of a building as projected in a plane should be larger than 10 m2 and
smaller than 5000 m2:

MFSize[Oi, Building] =

{
1, Oi ∈ [10, 5000] m2

0, otherwise

• Height
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Chapter 6. Object-based land-cover feature extraction

a

b

c

Figure 6.1: Profile of real world (a), laser image (b) and profile of image
segments for building reasoning (profile of segments at intervals of 1 m (c).

Buildings should be at least 3 m or more above surrounding ground:

MFHeight[Oi, Building] =

{
1, Oi ∈ [3, 300] m

0, otherwise

Height information is used intensively in this research. More detailed uses of
height information obtained by laser scanning are provided in later sections.

• Vertical wall

Most buildings should have vertical walls to support the building structure.
The features used for describing vertical walls can be reasoned based on the
size difference between image regions obtained at different elevation slices at
the same location. Same size or similar size of such vertically adjacent slices
indicates the existence of vertical walls. The locations of the centre of mass
of such slices can also be used for reasoning on possible vertical walls. In the
case of vertical walls, the centre of mass of vertically adjacent slices should
not have moved or should show only a minor movement. The first measure is
robust for building extraction. However, there may potentially be exceptions
when such slices are obtained at the terrain layers. There the proportional size
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6.2. Object-based building extraction

difference may also be very small and very similar to the situation found with
buildings, because the size of such image regions is very large. This potential
problem can be avoided by checking the size of the image region; if the image
region is too large, it will be rejected as a building / will not be identified as
a building. The second measure (i.e. height) can also be used to largely avoid
such cases. The shortcoming of the second measure is that it may not be able
to distinguish a tree canopy from a building since the centres of mass of such
image regions should not move across slices. Therefore, both measures should
be included for building reasoning in order to reduce possible uncertainties,
which may be caused by applying one of them alone.

From the building material perspective

Buildings are constructed using various building materials such as concrete,
brick, iron and steel, wood. However, most building roofs in our test sites are tiled
roofs and corrugated roofs using materials such as concrete, brick and metal. This
implies that building roofs are solid and that building roofs should not, in general,
contain vegetation or water.

• Normalised difference vegetation index (NDVI)

NDVI can be used to indicate whether a derived object contains vegetation. A
small NDVI value indicates absence of vegetation, which in turn refers to rock,
bare soil or concrete, such as roofs and roads. A large NDVI value suggests
the existence of vegetation, which indicates the existence of trees or lawn in
urban areas.

MFNDV I [Oi, Building] =

{
1, NDV I(Oi) → low

0, NDV I(Oi) → high

In implementation, we first obtain two cluster centres by using the fuzzy c-
means algorithm (fcm) from the histogram of NDV I based on the considera-
tion as discussed earlier.

Cluster cen = fcm(NDV I, 2)

A Z-shape fuzzy membership function (zmf ) is then constructed by using two
cluster centres, min(Cluster cen) and max(Cluster cen), as parameters to ob-
tain a membership function (MF) value for each pixel, indicating the degree to
which a pixel is likely to be part of buildings.

MFNDV I [p, Building] = zmf(NDV I, min(Cluster cen), max(Cluster cen))
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• Surface compactness

Surface compactness can be reasoned based on the difference between the dis-
tance measured by the first laser pulse and the second pulse, by subtracting
the DSM2 from the DSM1. A smaller dDSM value indicates a ‘harder’ surface,
which in turn refers to compact surfaces such as roofs and roads. A larger
dDSM value suggests a ‘softer’ surface, which likely refers to vegetation, par-
ticularly trees. We may expect large dDSM values also at the building edges.
Such edges can largely be eliminated by applying gray-scale morphological op-
erations such as opening to the dDSM, since such edges are thinner (width of
one or two pixels) than regions containing trees.

dDSM = DSM1−DSM2

The MF value of an object Oi is generally classified as a building.

MFSolidness[Oi, Building] =

{
1, dDSM(Oi) → small

0, dDSM(Oi) → large

In our cases, we first obtain two cluster centres by using the fuzzy c-means
algorithm (fcm) from the histogram of dDSM , which can be regarded as a
data-driven approach, in order to find parameters that fit the location situa-
tion without human intervention.

Cluster cen = fcm(dDSM, 2)

An Z-shape membership function (zmf ) is then constructed by using two clus-
ter centres, min(Cluster cen) and max(Cluster cen), as parameters to obtain
a MF value for each pixel, indicating the degree to which a pixel is likely to be
part of buildings.

MFSolidness[p, Building] = zmf(dDSM, min(Cluster cen), max(Cluster cen))

From an application perspective

From an application point of view, different disciplines may have different mean-
ings or understanding regarding these spatial entities. In such cases, additional
specifications are required at this stage. In applications such as landscape architec-
ture, urban design or transportation engineering, where the building ground floor
and forecourt should be included as part of the buildings, users can set a loose con-
dition, checking the size differences between two height layers of the same building.
In other applications, such as in the extraction of number of dwellings or population
assessment, the upper parts of buildings are essential and the forecourts tend to be
excluded. In this case, users can set more restricted conditions, checking the size
differences between several layers.
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Figure 6.2: Vertical image segmentation of laser data.

6.2.2 Formation of image objects and their properties

The result is a set of binary images as illustrated by Figure 6.2. Next, the image
segments (4-connection pixels) are uniquely labelled per image, thus obtaining iden-
tifiers of the image objects. To test our concept we consider two properties that we
expect to be very relevant: size and location.

The size of an object is calculated as the actual number of pixels of the segment
by using Formula 4.1. The location is computed as the centre of mass of the segment
by using Formulas 4.2 and 4.3.

The linking of image objects in a tree structure is accomplished in a table. The
first column records the identifier (ID) of a segment in a binary image at the lowest
layer, and the following columns record labels of its linked segments in the images
at higher layers. As shown in Table 6.1, the table provides information about the
tree structure and links, as well as recording other properties derived for each path.
The columns indicate the layer sequence from lowest to highest (-5 m to 50 m in the
case of our Amsterdam test site). A row indicates a branch of search paths. The
IDs in the table provide explicit links to corresponding image regions at the specific
layers as sequentially sorted by the columns. Extracted sizes of linked image objects
are recorded in a table such as shown in Table 6.2. The associated segments are
identified by their position in the multi-layer grid. Other tables are generated in
a similar manner for the size differences and location shifting of the image regions
between adjacent layers vertically at a location (row, column in image). Please note
that record nos. 270 and 300 presented as examples in these tables actually cor-
respond to image objects a and b respectively, as indicated in Figures 6.3 and 6.4.
These tables are used for detecting buildings in the ‘layer space’.
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Table 6.1: Region IDs of the linked regions segmented by using different
elevation based on the DSM for each branch of search paths

Search
path

Elevation values (in m) used to obtain image regions at different layers by
segmentation based on the DSM

-5 m -4 m -3 m -2 m -1 m 0 m 1 m
. . .
270 1 1 9 1 201 178 190
. . .
300 1 1 9 1 14 5 5
. . .

2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m . . .
. . .
228 191 177 164 147 133 124 116 0 0 . . .
. . .
127 118 169 156 142 128 120 0 0 0 . . .
. . .

Table 6.2: Region sizes (m2) of the linked regions segmented by using differ-
ent elevation based on the DSM for each branch of search paths

Search
path

Elevation values (in m) used to obtain image regions at different layers by
segmentation based on the DSM

-5 m -4 m -3 m -2 m -1 m 0 m 1 m
. . .
270 9000000 8649993 7445947 4077599 607 567 541
. . .
300 9000000 8649993 7445947 4077599 1951423 1533481 894627
. . .

2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m . . .
. . .
512 511 503 500 490 466 351 305 0 0 . . .
. . .

82706 63955 942 844 820 793 511 0 0 0 . . .
. . .

123



6.2. Object-based building extraction

6.2.3 Reasoning for building extraction
The layer space is defined by a plot of the property of an image object (e.g. size of
the object or percentage change of size by going up one layer) against layer altitude.
For every vertically linked image object a plot results. The reasoning is then based
on the patterns of a property as obtained from all the paths of each branch of the
search tree in the layer space.

Building identification

A fair assumption for the majority of buildings seems to be near-vertical walls
within a certain height range, and this may help to distinguish them from flyovers,
access ramps and the like. Accordingly, a requirement for identifying a building is
to find image objects that have little deviation in size and only a small shift in the
centre of mass between adjacent layers.

We consider the following indicators computed for layer i and layer i + 1:

∆Sizei =
Sizei − Sizei+1

Sizei

∆Loci =
√

(xi+1 − xi)2 + (yi+1 − yi)
2

The extracted ∆Size (see Table 6.3) and ∆Location (see Table 6.4) are also recorded
in the same manner as Tables 6.1 and 6.2.

Reasoning in finding buildings

To identify a building, we need to define thresholds for the tolerated change
between layers.

In a 2D image space Z2, a segment (S) or an image object (O) can be identified
as belonging to a building if it meets the following conditions:

Si =

{
Building, ∆Sizei , ∆Sizei+1 < TSize ∧∆Loci < TLoc ∧ Si ∈ [10, 5000] m2

Else.

where TSize and TLoc are the thresholds for size difference and location shifting
between two objects linked vertically. A small part of the laser range image used
in the case study and the extracted buildings are shown in Figures 6.3 and 6.4 re-
spectively. Buildings that are either lower or higher than the elevated roads are
extracted properly. The plot of relative size differences versus elevation is shown in
Figure 6.5 for two selected buildings (a and b). Building a is located on a lower part
of the ground whereas building b rises from the level of an elevated road. The curve
of building a shows a large size change from the bottom layer to the next layer of
the segmentation, which reflects the fact that at the bottom layer segments are very
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Table 6.3: The size differences of the linked regions segmented by using
different elevation based on the DSM for each branch of search paths

Search
path

Elevation values (in metre) used to obtain image regions at different layers
by segmentation based on the DSM

-5 m -4 m -3 m -2 m -1 m 0 m 1 m
. . .
270 0.039 0.139 0.452 0.999 0.066 0.046 0.053
. . .
300 0.039 0.139 0.452 0.521 0.214 0.417 0.908
. . .

2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m . . .
. . .

0.002 0.016 0.006 0.020 0.049 0.247 0.131 0 0 0 . . .
. . .

0.227 0.985 0.104 0.028 0.033 0.356 0 0 0 0 . . .
. . .

Table 6.4: The location shifting of the linked regions segmented by using
different elevation based on the DSM for each branch of search paths

Search
path

Elevation values (in metre) used to obtain image regions at different layers
by segmentation based on the DSM

-5 m -4 m -3 m -2 m -1 m 0 m 1 m
. . .
270 12.23 47.86 282.76 1261.20 0.18 0.12 0.31
. . .
300 12.23 47.86 282.76 353.06 71.14 54.52 1226.9
. . .

2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m . . .
. . .

0.05 0.11 0.01 0.06 0.15 0.98 0.26 0 0 0 . . .
. . .

48.09 526.44 0.50 0.22 0.18 5.63 0 0 0 0 . . .
. . .
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b

a

Figure 6.3: Original laser data.

a

b

Figure 6.4: Extracted buildings.

large in the case of horizontal ground (Amsterdam). The same holds for building b.
For building a, the curve then drops to small for the next level and remains stable,
indicating the near-vertical walls built on low ground. For building b, the decrease
in size difference is slow while climbing up from the bottom to the elevated road.
Once reached (at 2 m above sea level), the vertical walls cause the curve to remain
stable.

In most cases, the above reasoning can differentiate well between buildings and
other features. In cases where high trees are close to relatively low-rise houses, the
above reasoning is unlikely to differentiate well between buildings and high trees
(see Figure 6.1). Other information sources would have to be added (spectral in-
formation or first/last return of laser pulse) in order to refine the obtained image
regions.

Additional reasoning in a building

- Building ground floor

The lowest segment along the vertical line which meets the criteria of a building
will be treated as the ground floor (including forecourt) of the building.

- Building height

When a segment has been identified as the ground floor of a building, the dif-
ference between the average height of the ground surrounding the building ground
floor and the DSM as masked by the ground floor region can be taken as the height
of this building. The average height of the ground surrounding the building ground
floor is obtained by computing the average height values of all pixels from the sur-
rounding region of the building. The surrounding region of a building is derived by
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Figure 6.5: Plots of size differences for two buildings (a and b).

Figure 6.6: Outline differences of a building from ground floor to its upper
layers (from left to right).

using a dilation operation with a small structuring element (e.g. a 5 × 5 ’disk-shape’
structuring element is applied in our cases) on the building region. A surrounding
region of this type can be understood as a 5 m wide ring belt surrounding the spe-
cific building. Based on building height we can infer the number of floors, which is a
useful property for later land-use identification.

- Outline of a building

Since the lower segments in particular may contain noisy pixels caused by ad-
jacent vegetation or structures in gardens, as shown in Figure 6.6, it is up to the
user or application objectives to decide from which layer to extract the outline of the
building ground floor and forecourt. For a high-rise building, the upper layer may
give the better outline.
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Figure 6.7: Buildings extracted by using 15 % as the threshold for checking
the size differences.

6.2.4 Experimental results

Amsterdam test site

Based on DSM data acquired by the first-generation TopoSys laser scanner for the
Amsterdam test site, most buildings were successfully extracted by checking only
the size differences in the layer space, using 15 % as the threshold. Figure 6.7
shows the result of the building extraction from laser data, i.e. the DSM shown
in Figure 2.1. Figure 6.8 shows buildings digitised from the large-scale base map,
which was used as reference data. Per-pixel comparison of the extracted buildings
and reference data is shown in Figure 6.9. The extracted building heights above
ground level are shown in Figure 6.11, based on the building ground floor as shown
in Figure 6.7.
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Figure 6.8: Buildings digitised from the base map of scale 1:1,000.
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Figure 6.9: Comparison of extracted buildings (Figure 6.7) with the refer-
ence data (Figure 6.8).

Correct

Mistake

Missing

Legend

Figure 6.10: Comparison of extracted buildings after removal of changed
buildings with the reference data (Figure 6.8).
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Figure 6.11: Building height above ground level produced from the DSM
and outline of building ground floor (darker tone indicates higher building).
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Table 6.5: Accuracy assessment of extracted buildings from Amsterdam test
site based on the number of objects

Building (extracted) Building (from map)
Total Number 727 730
Correct Number 683 704
Mistake Number 44 26
Correct (%) 93.9 % 96.4 %
Mistake (%) 6.1 % 3.6 %

Ravensburg test site

Figures 6.12 and 6.13 show the results of the building extraction from laser data as
shown in Figures 2.3 and 2.4, and from multi-spectral data as shown in Figures 2.6
and 2.5, by applying different thresholds. Figure 6.14 shows buildings delineated
manually by visual interpretation based on images; This is used as reference data.

6.2.5 Quality assessment

Amsterdam test site

For the sake of comparison, we created a ‘reference image’, which contained ex-
clusively buildings (derived from image analysis and edited with reference to the
1:1000 scale cadastral maps). Accuracy assessment was made based on image-to-
image comparison between the result of building extraction and the ground truth
as shown in Table 6.5. The total number of buildings is different owing to differ-
ent interpretations as to what a building is (e.g. the map did not include the metro
stations and some other small buildings, while the extraction result did). On the
other hand, several parking garages have not been detected owing to the direct con-
nection with raised roads. In general, high-quality results have been obtained, as
can be seen from Table 6.5 and the map showing the extracted buildings, the exist-
ing buildings according to the reference map, and the differences between them as
shown in Figure 6.9. We can notice that two groups of buildings (19 buildings) have
been identified as mistakes, and are indicated by A and B in Figure 6.9. However, on
a field visit these buildings proved to be correctly extracted. The reason is that these
are new buildings and are not included in the reference. To make a fair comparison
of the proposed method, we mask these new buildings that are not presented in the
base map, as shown in Figure 6.10. Based on the modified data as shown in Fig-
ure 6.10, the correct figures for accuracy assessment as presented in Table 6.6 are
slightly higher than the original assessment as shown in Table 6.5.
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Figure 6.12: Building extracted by using 30 % as threshold for checking
the size differences and using fuzzy membership functions based on other
features, Ravensburg, Germany.

Table 6.6: Accuracy assessment of extracted buildings from Amsterdam test
site based on the number of objects with the updated map

Building (extracted) Building (from map)
Total Number 708 730
Correct Number 683 704
Mistake Number 25 26
Correct (%) 96.5 % 96.4 %
Mistake (%) 3.5 % 3.6 %
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Figure 6.13: Buildings extracted by using 50 % as threshold for checking
the size differences and using fuzzy membership functions based on other
features, Ravensburg, Germany.
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Figure 6.14: Reference data prepared by visual interpretation and manual
delineation, Ravensburg, Germany.
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Figure 6.15: Comparison of extracted buildings as shown in Figure 6.12
with the reference data of Figure 6.14, Ravensburg, Germany.
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Figure 6.16: Comparison of extracted buildings as shown in Figure 6.13
with the reference data of Figure 6.14, Ravensburg, Germany.
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Table 6.7: Quality assessment of extracted buildings from Ravensburg test
site based on the number of objects

Number of
extracted
buildings

Number of
buildings
from visual
interpretation

Total Number 157 Total number 177
Correct Number 150 Correctly detected 154
Mistake Number 7 Not detected 23

Correct (%) 95.5 % Correct (%) 87.0 %
Mistake (%) 4.5 % Mistake (%) 13.0 %

Note: Four buildings are spatially separate in reference data, but they
are merged in extracted results.

Ravensburg test site

For quality assessment, we created a ‘reference image’ containing exclusively build-
ings (obtained by screen digitising based on a high-resolution image). Accuracy as-
sessment is made based on image-to-image comparison between the result of build-
ing extraction and the ground truth, as shown in Table 6.7. The total number of
buildings is different because four buildings that are spatially separated in the ref-
erence data are merged in the extracted results. In general, high-quality results
have been obtained, as can be seen from Table 6.7 and the maps showing the ex-
tracted buildings, the existing buildings according to the reference map, and the
differences between them as shown in Figures 6.15 and 6.16.

6.2.6 Uncertainty assessment of extracted buildings
from the Amsterdam test site

For the uncertainty assessment, we indicate whether the defined criteria for a build-
ing are met for each segment and store this in a table with the same structure as
mentioned earlier (i.e. Table 6.1). Then we count the number of segments existing
above building basements, and the number of segments that met the criteria we
established for two adjacent layers. The uncertainty measure is expressed as the
percentage of segments that met the criteria from all the segments that exist in the
search path. The uncertainty assessment result is presented in Figure 6.17. Should
several building branches exist above a basement, the average is computed. By us-
ing the proposed uncertainty measure, buildings that have the dominant character-
istic (i.e. vertical wall), such as large and high-rise apartment buildings, are more
certain; buildings that do not have this characteristic, such as low-rise buildings,
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Figure 6.17: Uncertainty assessment result (lower tone indicates higher
uncertainty, dark tone indicates higher certainty respectively).

buildings with gable roofs or buildings with multi-branches on the upper layers, are
more uncertain, as can be observed from Figure 6.17. By providing such uncertainty
assessment results, users can save time on quality inspection by concentrating on
uncertain objects only.

6.3 Object-based green space extraction
Green space is extracted based on the normalised difference vegetation index (NDVI)
from the IKONOS image, using the formula:

NDVI =
NIR− RED

NIR + RED
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To automatically or semi-automatically extract green space based on NDVI or in
a so-called data-driven approach, we apply the fuzzy c-means algorithm for k=2 to
NDVI values in the histogram space and obtain two cluster centres. As we know that
vegetation should have higher NDVI values, non-vegetation such as built-up areas
and water surfaces should have lower NDVI values. Therefore, two centres (Chigh

and Clow) can be used as estimators to represent vegetation and non-vegetation re-
spectively. The fuzzy membership function for vegetation extraction is formulated
by the S-shape function, using Clow and Chigh as the bounded points. The NDVI
image derived from the 4 m resolution IKONOS image of the Amsterdam test site
is shown in Figure 6.18. The histogram of NDVI values and the formulated fuzzy
membership function are shown in Figure 6.19. To avoid any additional distortion
that may be caused by resampling from 4 m resolution to 1 m resolution to meet the
resolution of rasterised laser data, we use the original DN values of the IKONOS
image to obtain the NDVI and transform it into fuzzy membership values relating
to two classes, vegetation and non-vegetation. Pixel resampling from 4 m resolution
to 1 m resolution is then made based on fuzzy membership values by the proposed
sub-pixel interpolation approach as introduced in Section 5.5. The extracted green
space is presented in Figure 6.20, which is based on the fuzzy membership values
at 1 m resolution, using 0.5 as the threshold. The extracted result is good for land-
cover mapping and for computing the green coverage ratio. However, many small
objects attributable to the fragmental distribution of the vegetation are considered
noise, and this may increase the complexity by presenting many small objects such
as vegetation in domestic gardens for land-use reasoning later on. When we con-
sider small objects to be noisy or too small to be considered as public green space in
land-use classification, we can remove them. Figure 6.21 shows the result obtained
after removing objects smaller than 1000 m2.

6.4 Object-based water surface extraction
In many cases, water surfaces can be extracted based on spectral information. How-
ever, when using multi-spectral data such as an IKONOS image alone, it is quite
difficult to separate water pixels from pixels falling in the shadow areas of buildings
and pixels in dark building roofs because of their similarity in spectral space, as il-
lustrated and discussed in Chapter 5. Therefore we propose an integrated approach
to extract water surfaces by using multi-spectral data and laser data to eliminate
such mixtures.

6.4.1 Enhanced normalised difference water index
(eNDWI)

For the extraction of water surfaces from multi-spectral data, the eNDWI was ap-
plied in this research (see details in Chapter 5). The eNDWI image derived from the
IKONOS image is shown in Figure 6.22.

Extracted water surfaces as presented in Figure 6.24 were extracted based on the
S-shape fuzzy membership function in the range 0 to the highest fuzzy cluster cen-
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Figure 6.18: NDVI image (4 m resolution) derived from IKONOS image.
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Figure 6.19: Histogram of NDVI image and fuzzy membership function.
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Figure 6.20: Green space extracted based on NDVI using fuzzy membership
function.
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Figure 6.21: Green space after removal of objects smaller than 1000 m2.
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Figure 6.22: eNDWI image derived from IKONOS image.
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Figure 6.23: Histogram of eNDWI image and fuzzy membership function
for water extraction.

tre (three clusters in the histogram using fuzzy c-means), as shown in Figure 6.23,
and resampled from 4 m resolution to 1 m resolution using the proposed sub-pixel
method. In this result, there may be other objects that have a spectral reflectance
very similar to water surfaces, such as shadows and dark buildings. Such non-water
objects will be detected and removed by using height information contained in the
DSM.

6.4.2 Extraction of shadow areas and building relief
displacement

Shadow areas in a scene are extracted from the simulation, using the DSM, sun an-
gle azimuth and sun angle elevation as input. Building relief displacement caused
by slightly oblique viewing in imaging is derived from simulation based on the DSM,
using nominal collection azimuth and nominal collection elevation. These simula-
tions are implemented in ArcView using the hillshade analysis for shadow and build-
ing relief displacement respectively. The simulated image for shadow areas appear-
ing in the IKONOS image is made based on laser data using the sun angle azimuth
(150.9920 degrees) and the sun angle elevation (58.17625 degrees), as shown in Fig-
ure 6.25. The simulated image for building relief displacement is made based on
laser data using the nominal collection azimuth (200.9442 degrees) and the nominal
collection elevation (69.52011 degrees), as shown in Figure 6.26. These meta data
are attached to the IKONOS image provided by the company Space Imaging. The
black areas in these simulated images are shadow areas, and building roofs that are
caused by relief displacement in the corresponding images.

6.4.3 Removal of non-water areas
Extracted water objects possibly mixed with other objects are refined by masking
shadow areas, building roofs caused by relief displacement, as well as buildings
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Figure 6.24: Water areas extracted based on fuzzy membership function
and sub-pixel interpolation.
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Figure 6.25: Simulated shadow areas of buildings by hillshade analysis
based on laser data.
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Figure 6.26: Simulated building relief displacement by hillshade analysis
based on laser data.
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Figure 6.27: Water bodies after removal of objects that are masked by sim-
ulated shadow and buildings.

themselves as extracted based on laser data. The refined water objects are presented
in Figure 6.27.

There may be some unexpected objects existing among the water objects. The
DSM is used again to check if most pixels in water objects are similar in height
value. The refined result is used for land-cover mapping and for computing the
water coverage ratio. We consider that many small water objects are noise or are too
small to be presented as water bodies for land-use reasoning. Therefore we remove
such small objects in the final stage. The final result, as shown in Figure 6.28 is
obtained by removing objects smaller than 400 m2 and those that have a standard
deviation of height values (DSM) larger than 3.

148



Chapter 6. Object-based land-cover feature extraction

Figure 6.28: Water bodies after removal of objects that are smaller than 400
m2 and those that have a standard deviation of height values (DSM) larger
than 3.
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6.4.4 Water surface extraction based on missing pixels
from laser data

Water surfaces can also be extracted from laser scanning data. In some cases,
smooth water surfaces may cause the mirror reflection of the omitted laser beam,
which can result in not receiving a return signal. The water surfaces extracted from
laser data are likely to give better identification and sharper boundaries than those
based on multi-spectral information, as shown in Figure 6.29. To make sure those
’missing-value’ pixels are parts of water surfaces, spectral information should be
checked as to whether they have the spectral properties of water. It should be noted
that noisy pixels and flight gaps should be removed in the data preparation phase.

The water surfaces extracted from laser data can be treated as reference data.
We observe by comparing Figure 6.28 and Figure 6.29 that the water objects ex-
tracted from IKONOS and laser data are very similar. This is despite some changes
that took place between acquiring the laser data in 1998 and capturing the IKONOS
image in 2000 and despite some narrow canals that are missing from the IKONOS
image owing to the coarser resolution.

6.5 Summary
The test results show that the proposed image-object-based approach is robust and
reliable for building extraction for our purposes. It works well in a complicated ur-
ban context, such as the Amsterdam test site, where elevated roads have a similar
profile to buildings. It also works quite well in a difficult area, such as the Ravens-
burg test site, where there are small buildings with gable roofs and high trees very
close to buildings and the terrain is undulating. In such cases, multi-spectral data
are needed for additional efforts in refining buildings extracted based on laser data.

It is relatively easier to extract the vegetation areas, using the NDVI. Water ar-
eas are very difficult to extract using multi-spectral data alone, because of the very
similar spectral reflectance of shadow and dark buildings. Thus, an enhanced NDWI
is proposed for water extraction in urban areas and this performed better in our test
sites. In addition, buildings, the displaced building roofs caused by oblique image
acquisition, and shadow areas are derived. These non-water objects are used to re-
fine water objects that are derived using spectral information alone. Such additional
data can be extracted based on laser data.

The highly successful extraction of land-cover objects such as buildings, vege-
tation, water surfaces and other built-up areas provides us with a very promising
basis for structural analysis toward extracting spatial units of land-use and land-
use classification, which will be presented in the coming chapters.
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Figure 6.29: Water surface extracted based on missing pixels in laser data.
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Chapter 7

Object-based structural
analysis and spatial units
of urban land use∗

7.1 Introduction
Land-use mapping can be understood as the mapping of land features into a spa-
tial partition of categorical land-use units in a 2D space. A land-use map is a spa-
tial tessellation of categorical land-use types in a 2D reference space. This implies
that the land-use classification process can be subdivided into two interactive and
interrelated components: the spatial tessellation of categorical land-use types ap-
pearing in a given 2D bounded space, and the identification of land-use types for
each spatial unit. These two components should be processed alternately in a par-
allel manner. By taking certain land-cover features into account in the first step,
an approximate spatial partition can be made. The procedure continues by alter-
nately taking into account other land-cover features and spatially partitioning until
the given 2D space has been tesselated. When spatial tessellation is supported by
evidence that suggests certain land-use functions may hold in a certain location and
indicates their likely spatial extent in the given space, final land-use identification
can be made based on the characteristics that each land-use spatial unit contains.
Object-based structural analysis and extraction of spatial units are the central is-
sues of this chapter. Following the logical design and discussions of Chapter 5, a
number of techniques are investigated for spatial clustering and spatial partition-
ing in order to find spatial units for land use. Delaunay triangulation is deployed
to acquire spatial proximity relationships between land-cover objects in the 2D ref-
erence space; mathematical morphology is applied to find the solid core of a spatial
unit in 2D space; distance transformation and fuzzy membership function are used

∗This chapter is based on the paper Zhan et al. (2002c).
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together to model and create the spatial transit zones surrounding the solid core of
each spatial unit. The watershed algorithm is proposed for deriving explicit bound-
aries between spatially adjacent land-use units. Experimental results are presented
and discussed in this chapter. Land-use identification based on such spatial units
will be described in Chapter 8.

7.2 Extraction of proximity relationship and
the shortest links between adjacent land-
cover objects

Land-cover classification leaves us with buildings, vegetation, water and other open
surfaces. Spatial analysis of the land-cover objects is an essential step toward iden-
tifying land use. Proximity of objects is an important measure for finding spatial
clusters. Delaunay triangulation applied to the raster image of a land-cover type
(e.g. buildings) is a good tool for finding adjacent buildings and the shortest distance
between them. To do so, we must eliminate triangle edges that link two pixels of
one and the same object. The remaining edges indicate adjacent objects. Thus the
shortest edge between two adjacent objects can be extracted for representing the
proximity relationship and how close these objects are situated (i.e. proximity).

7.2.1 Delaunay triangulation and Voronoi diagram

Delaunay triangulation and its dual Voronoi diagram have been receiving increas-
ingly attention because of the ability to produce tessellation of space (Gold, 1991,
1992; Gold and Edwards, 1992; Pilouk and Tempfli, 1992; Okabe et al., 1994; Li et al.,
1999; Li and Huang, 2002; Estivill-Castro and Lee, 2002). Detailed mathematical
formulation and description of Delaunay triangulation and the Voronoi diagram can
be found in Okabe et al. (2000) and de Berg et al. (2000). Detailed description of the
Quickhull algorithm applied in this research can be found in Barber et al. (1996).
The Delaunay triangulation links up the natural neighbours in a point set by trian-
gle edges; the edges of such triangles indicate the proximity relationship between
linked points. If applied to the centres of pixels that represent image objects, we get
triangle edges between adjacent pixels of one and the same image object and trian-
gle edges that link up two pixels of adjacent image objects, the two pixels satisfying
the natural neighbour criterion. Thus the shortest links between two adjacent im-
age objects can be derived based on the length of the edges that link two adjacent
image objects. In triangulation, we use the row and column number of a pixel to
represent a point vector, as shown in Figure 7.1, and use the object ID as the ID of
the point. To extract adjacent image objects, we deploy Delaunay triangulation for
all pixels that constitute image objects such as buildings. Thanks to the properties
of Delaunay triangulation, each triangle edge indicates proximal points (pixels), as
shown in Figure 7.2.
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Figure 7.1: Pixels (points) em-
bedded by image objects such as
buildings.

Figure 7.2: Delaunay triangula-
tion deployed in all building pix-
els.

7.2.2 Extraction of proximity relationship between ob-
jects

Since each pixel has an ID that indicates the object to which it belongs (see object-
based land-cover feature extraction described in Chapters 5 and 6), the internal
edges that link pixels of the same object can be identified and removed. The remain-
ing edges are links between adjacent objects, as shown in Figure 7.3.

7.2.3 Extraction of the shortest links between adjacent
objects

By comparing the lengths of all edges linking two objects, we can easily determine
the shortest edges that link adjacent objects. Figure 7.4 shows the shortest links
between adjacent objects (buildings). The shortest links between adjacent objects
provide useful information for the spatial clustering of objects, as discussed earlier
in Section 5.6.2. A matrix is created which indicates adjacent buildings and the
shortest distance between them. A detailed description of this approach can be found
in Zhan et al. (2002c) and Zhan et al. (2002d).

7.2.4 Spatial clustering by checking the shortest links
between adjacenct objects

Two simple spatial clustering examples are shown in Figures 7.5 and 7.6. They
illustrate the result of clustering when using the shortest links as the only indicator
and 40 m and 20 m as the thresholds respectively. The shortest links that are longer
than the specified threshold are removed. The remaining edges are then used to
indicate that their corresponding objects are believed to be parts of the same cluster.
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Figure 7.3: Edges between pixels
of different buildings.

Figure 7.4: The shortest links be-
tween different buildings.

Figure 7.5: Adjacent buildings
with links shorter than 40 m.

Figure 7.6: Adjacent buildings
with links shorter than 20 m.
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Figure 7.7: Convex hull of clus-
tered buildings.

Figure 7.8: A raster presentation
of clustered buildings.

7.2.5 Convex hull and representation of clusters
When objects are spatially clustered, the convex hull of each cluster can be extracted
and delineated to indicated objects that belong to this cluster. An example of such
a result, using the threshold of 40 m, is shown in Figure 7.7. Objects belonging to
a cluster can also be presented by assigning different colours to objects that belong
to different clusters in a raster (image). An example of such a result, using the
threshold of 40 m, is shown in Figure 7.8.

7.3 Extraction of spatial clusters for land-use
classification

To test the ideas of spatial clustering and similarity measures as discussed in Sec-
tions 5.6 and 7.2, we studied them in respect to the Amsterdam test site. This test
site has one peculiarity. Some corridors that connect buildings in Amsterdam have
been extracted as parts of extracted buildings in the previous stage (see Figure 6.7);
thus the actual data indicates the spatial relation. To counteract this – as it may not
occur in other places – and test our approach in more general circumstances, we use
digitised buildings from the base map as test data for spatial clustering.

7.3.1 Extraction of the shortest links between adjacent
objects

Buildings extracted in the previous stage, as presented in Chapter 6 (digitised build-
ings in this case), are used as indicators for spatial clustering in order to find spatial
units of land use. The shortest links between adjacent buildings are extracted as
shown in Figure 7.9, based on methods discussed earlier. The shortest distances
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Figure 7.9: Linked buildings by the shortest distance between objects.

and the properties of linked objects are used for reasoning whether linked buildings
belong to the same cluster.

7.3.2 Reasoning for spatial clustering based on the
shortest links between adjacent objects

Finding spatial clusters in an urban area is much more complicated than illustrated
by the simple examples in the previous figures. A crucial decision has to be made as
to what is the best threshold that can be used to find spatial clusters, since it will
have significant impact on the results. In order to find a way to obtain an optimised
threshold, we need to observe a number of proposed cluster parameters and see how
they react to a specific threshold. Thus we carry out the following experiments that
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use the threshold as a variable in order to find out how good the results we obtain
actually are and how cluster parameters may reflect such differences when different
thresholds are applied.

The threshold (MaxDist) is defined as the largest possible distance between adja-
cent buildings considered to be in the same cluster (spatial unit of a land-use type).
All links between adjacent buildings will be broken or removed if their length is
greater than the threshold. The remaining links indicate that those objects should
stay in the same cluster.

In order to find suitable measures that can be used to determine the optimal
threshold, a sequential spatial clustering is done in a loop, using trial thresholds
from 5 m to 250 m, spaced at 10 m intervals. For the Amsterdam test site, the 5 m
threshold will generate a cluster for each building. The 250 m threshold will group
all buildings in only one cluster. An optimised threshold must be somewhere be-
tween these two extremes. To determine the optimised threshold, we propose the
following cluster-related measures: the number of spatial clusters, the maximum
number of buildings in a cluster, the minimum number of buildings in a cluster, the
number of isolated buildings, and the average number of buildings per cluster. In
the following, we define and briefly explain these measures.

- Number of spatial clusters (NoCluster)

The number of spatial clusters is counted according to the number of separated
clusters (no link between them) when a threshold is applied. When the threshold
increases, the number of spatial clusters decreases.

- Maximum number of buildings in a cluster (MaxNoObjects)

The maximum number of buildings in a cluster indicates the largest number of
buildings among all clusters. When the threshold increases, the maximum number
of buildings in a cluster increases.

- Minimum number of buildings in a cluster (MinNoObjects)

The minimum number of buildings in a cluster indicates the smallest number of
buildings among all clusters. When the threshold increases, the minimum number
of buildings in a cluster also increases but not at the same rate as the maximum
number of buildings in a cluster.

- Number of isolated buildings (NoIsolatedObjects)

The number of isolated buildings is taken from the number of clusters that con-
sist of only one building. When the threshold increases, the number of isolated
buildings decreases.

- Average number of buildings per cluster (AvNoObjectsPerCluster)
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Figure 7.10: Proposed measures change corresponding to different thresh-
olds for reasoning the optimal threshold.

The average number of buildings per cluster is calculated as the total number of
buildings divided by the number of clusters. When the threshold increases, the aver-
age number of buildings per cluster increases. The rate of increase ranges between
the rates relating to the maximum and minimum number of buildings in a cluster.

By comparing the clusters obtained by using a series of thresholds ranging from
5 m to 250 m as discussed earlier, we observed that the result obtained with the
threshold equal to 40 m was the best according to our visual interpretation. The
results are shown in Figures 7.12, 7.13 and 7.14. Therefore, we consider 40 m the
optimal threshold for the test site. So interpreting Figure 7.10, which plots out the
above-described properties in the function of the threshold, we discover NoCluster
and MaxNoObjects are possibly good measures for optimising the threshold.

Based on this experiment, we propose a model for reasoning the optimal thresh-
old for spatial clustering according to the shortest distances between adjacent ob-
jects by using NoCluster and MaxNoObjects as measures.

Toptimal = arg min250
i=5 |NoClusteri − MaxNoObjectsi|

In this model, the threshold (MaxDist) is used as a variable (i) for reasoning on
the optimal threshold (Toptimal) by minimising the differences between NoCluster
and MaxNoObjects (|NoClusteri − MaxNoObjectsi|). The optimal threshold, 40
m, is obtained by reasoning based on the proposed model, as shown in Figure 7.11.
This approach seeks a global solution using the shortest distance between adjacent
objects as a measure and using the optimal threshold to separate different clusters.
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Figure 7.11: Result of proposed model for reasoning the optimal threshold.

7.3.3 Spatial clustering based on the shortest links be-
tween adjacent objects and the optimised thresh-
old

Using 40 m as the threshold, the following results are obtained. The linked build-
ings are shown in Figure 7.12. The clustered buildings are presented in different
colours in Figure 7.13. The clustered buildings and their convex hulls are shown in
Figure 7.14.

Based on the obtained results, we can observe that most buildings are correctly
clustered according to our visual interpretation. However, this method has its limits;
for instance, the globally selected optimal threshold may still cause some mistakes
at certain locations, as indicated by A, B and C in Figures 7.12, 7.13 and 7.14. Using
the shortest links between objects as the only indicator for spatial clustering may be
good for regular spatial patterns, but it may not suffice for complicated cases such
as our test site. Therefore, additional measures are needed in order to obtain better
results in spatial clustering.

7.3.4 Integration of the shortest distance and feature
similarity

Buildings may vary in size, height, etc. even within a small neighbourhood. Such
internal dissimilarity in a cluster has to be minimised before combining feature sim-
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Figure 7.12: Linked buildings where the shortest edges are shorter than 40
m.
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Figure 7.13: Clustered buildings where the shortest links are shorter than
40 m.
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Figure 7.14: Clustered buildings and convex hulls where the shortest links
are shorter than 40 m.
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ilarity with the shortest distance measure. This is achieved by introducing an inter-
mediate step that produces natural clusters with the nearest neighbours. Clustering
with the nearest neighbour is to link an object to its nearest neighbour among all
adjacent objects by comparing the edge length created by Delaunay triangulation.
Clusters created by the nearest neighbours form natural clusters that can be con-
sidered as fundamental clusters for possible further grouping. Further clustering
is based on the shortest distance between natural clusters and feature similarity
between linked natural clusters. Therefore, the integration of the shortest distance
and feature similarity between objects that are linked by Delaunay triangulation
edges is implemented in two stages: spatial clustering with the nearest neighbour
to create natural clusters, and applying the feature similarity measured between
natural clusters in addition to the shortest links between natural clusters.

Natural clusters consisted by the nearest neighbours

The nearest neighbour is detected from Delaunay triangulation edges that link an
object with its adjacent objects by checking the edge length. In some cases an iso-
lated object may have a long edge with its nearest neighbour, such as a petroleum
station or an individual building in a park. Therefore a threshold is needed to
avoid such isolated objects being clustered by the nearest neighbour. To determine
a threshold for all the links between objects that should be grouped in a cluster, we
compute the average distance and the standard deviation of the distances between
the objects that we have identified as the nearest neighbours. We keep those links
that are shorter than the average distance plus three times the standard deviation.
The histogram of link length for all the nearest neighbours is shown in Figure 7.15.
Objects linked by the remaining edges after thresholding are used for finding the
natural clusters. Extracted triangle edges that link the nearest neighbours and are
shorter than the threshold are shown in Figure 7.16. The natural clusters extracted
by this approach are presented in Figure 7.17.

Integration of shortest distance and feature similarity

As we discussed earlier, using the shortest distance alone is not sufficient for spatial
clustering in a complicated urban area, so feature similarity is proposed for further
consideration. We observe that adjacent buildings of similar size or similar height
are more likely to be in the same cluster most, but adjacent buildings of different
size or different height may still belong to the same cluster in some cases. A simi-
lar observation can also be made based on extracted natural clusters. The feature
similarity between linked natural clusters is likely to be higher than the feature
similarity between the individual buildings at the cluster links. Thus, first find-
ing natural clusters and then considering the feature similarity is likely to produce
the wanted grouping. Therefore, feature similarity is considered after natural clus-
ters are formed. The similarity measures are calculated based on features (average
building size and building height in this case) between adjacent natural clusters,
using Formula 5.5. Due to the complexity of an urban scene, there is no simple rule
that determines whether two objects should be in the same cluster or not. By con-
sidering relationships discussed earlier and by taking a limited number of samples
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Figure 7.15: A histogram of edge length for all the nearest neighbours.

(edges and linked clusters by these edges) that should or should not be in the same
cluster, we derive the following rules based on the shortest distance and the similar-
ity in size and height.

Clusteri,j =



SD ≤ 20 or
SD ≤ 30 and Sim Size ≥ 0.3 and Sim Height ≥ 0.5 or

1, SD ≤ 40 and Sim Size ≥ 0.5 and Sim Height ≥ 0.6 or
SD ≤ 50 and Sim Size ≥ 0.6 and Sim Height ≥ 0.7 or
SD ≤ 70 and Sim Size ≥ 0.8 and Sim Height ≥ 0.8;

0, else.

where SD denotes the shortest distance or the edge length; SimSize denotes sim-
ilarity in building size; SimHeight denotes similarity in building height; code 1 in-
dicates that the linked clusters should be combined; and code 0 indicates that the
linked clusters should be separated.

Applying these rules to our test site, we could achieve a significant improvement
as compared with the clustering obtained by using the shortest distance alone, as
shown in Figures 7.18, 7.19 and 7.20. Objects that appear only partially near the
edges of the image may cause dissimilarity problems. We can admire the fact that
the improved results are very similar to what we may interpret visually – although
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Figure 7.16: Linked buildings by the nearest neighbours closer than the
threshold of 78.3 m.
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Figure 7.17: The initial clusters created by the nearest neighbours (clusters
are presented by colours).
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different people may have different interpretations, especially when they have dif-
ferent professional backgrounds.

7.3.5 Quantitative analysis toward rule extraction for
spatial clustering based on the shortest distance
and feature similarity

As presented earlier, clustering is improved by considering the shortest distance and
feature similarity based on rules obtained by visual observation. To confirm such
rules quantitatively and obtain explicit relationships between the distance measure
and the similarity measures, a quantitative analysis is carried out based on the data
obtained in the previous stage. Some 410 edges are extracted from the Amsterdam
test data, which link 217 adjacent natural clusters; 302 edges link clusters that
should be combined, the other 108 edges should be removed according to the visual
interpretation that we consider as reference data. The need for further merging of
obtained clusters will be up to users, according to their application requirements.

Relationship between measures proposed for spatial clustering and
the decision to combine or separate linked clusters

The relationship between the shortest distance between adjacent natural clusters
and the decision to combine or separate linked clusters is presented in a scatter plot
that indicates 410 edges includes edge length and the decision (1 for combination,
0 for separation) as well as a linear relationship estimated by linear regression, as
shown in Figure 7.21. This figure shows that the possibility of linked clusters that
should be combined declines as the edge length increases. The result confirms our
observation that the shorter the link edge, the higher the possibility that the linked
objects (buildings or clusters) should be combined. The frequency curves (blue and
red curves as shown in Figure 7.21) also show this tendency.

The relationship between similarity in building size between adjacent natural
clusters and the decision to combine or separate linked clusters is presented in a
scatter plot that indicates 410 edges and includes edge length and the decision (1
for combination, 0 for separation) as well as a linear relationship estimated by lin-
ear regression, as shown in Figure 7.22. This figure shows that the possibility of
linked clusters that should be combined increases as the similarity measure based
on building size increases. The result confirms our observation that the more similar
the linked objects (buildings or clusters), the higher the possibility that the linked
objects (buildings or clusters) should be combined. The frequency curves (blue and
red curves as shown in Figure 7.22) also show such a tendency.

The relationship between similarity in building height between adjacent natu-
ral clusters and the decision to combine or separate linked clusters is presented in
a scatter plot that indicates 410 edges and includes edge length and the decision
(1 for combination, 0 for separation) as well as a linear relationship estimated by
linear regression, as shown in Figure 7.23. This figure shows that the possibility of
linked clusters that should be combined increases as the similarity measure based
on building size increases. The result confirms our observation that the more similar
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Figure 7.18: Linked buildings by the shortest distance and feature similar-
ity.
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Figure 7.19: Clustered buildings by shortest links and feature similarity.
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Figure 7.20: Clustered buildings and convex hulls by the shortest links and
feature similarity.
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Figure 7.21: Relationship between the shortest distance and the binary de-
cision (1 for combination, 0 for separation).
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Figure 7.22: Relationship between similarity in building size and the binary
decision (1 for combination, 0 for separation).
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Figure 7.23: Relationship between similarity in building height and the
binary decision (1 for combination, 0 for separation).

the linked objects (buildings or clusters), the higher the possibility that the linked
objects (buildings or clusters) should be combined. The frequency curves (blue and
red curves as shown in Figure 7.23) also show such a tendency.

Relationship between the measures proposed for spatial clustering
and the decision to combine or separate linked clusters

Based on 410 edges that link 217 natural clusters, the relationship between edge
length and similarity in building size with respect to deciding whether to combine
or separate linked clusters is shown in Figure 7.24. We can observe that most edges
that should remain are located in the upper-left corner (i.e. shorter distance and
more similar in building size) and most edges that should be removed are located
in the lower-right corner (i.e. longer distance and less similar in building size). The
frequency of edges that should be linked among all edges over the shortest distance
declines when the shortest distance increases (see the green curve in Figure 7.24).

The relationship between edge length and similarity in building height is shown
in Figure 7.25. We can observe that most edges that should remain are located in
the upper-left corner (i.e. shorter distance and more similar in building height) and
most edges that should be removed are located in the lower-right corner (i.e. longer
distance and less similar in building height). The frequency of edges that should
be linked among all edges over the shortest distance declines when the shortest
distance increases (see the green curve in Figure 7.25).
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Figure 7.24: Relationship between the shortest distance and similarity in
size with respect to the decision to combine or separate linked clusters (the
green curve indicates the frequency of edges that should be linked).

The relationship between similarity in building size and similarity in building
height is shown in Figure 7.26. We can observe that most edges that should remain
are located in the upper-right corner (i.e. more similar in both building size and
height) and most edges that should be removed are located in the lower-left corner
(i.e. less similar in both building size and height). The frequency of edges that
should be linked among all edges over the similarity in building size increases when
the similarity in building size increases (see the green curve in Figure 7.26).

Similarity change between linked objects and linked natural clus-
ters with the same links

When we select all edges (410) that link natural clusters and compare the build-
ings linked by these edges and the natural clusters linked by these edges, we find
measured similarity changes as follows.

For all edges that link natural clusters, the average similarity in building size
increases from 0.5653 (buildings) to 0.6226 (natural clusters); the average similarity
in building height increases from 0.6941 (buildings) to 0.7442 (natural clusters).
These changes indicate that the natural clusters created by the nearest neighbour
can yield larger similarity values for both building size and building height of the
edges that link them.

For all edges that link natural clusters which should remain linked, the average
similarity in building size increases from 0.6593 (buildings) to 0.7238 (natural clus-
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Figure 7.25: Relationship between the shortest distance and similarity in
height with respect to the decision to combine or separate linked clusters
(the green curve indicates the frequency of edges that should be linked).

ters), and the average similarity in building height increases from 0.7534 (buildings)
to 0.8113 (natural clusters).

For all edges that link natural clusters which should be removed, the average
similarity in building size increases from 0.3652 (buildings) to 0.4072 (natural clus-
ters) and the average similarity in building height increases from 0.5680 (buildings)
to 0.6012 (natural clusters).

Changes in the average similarity of the linked buildings and the linked natural
clusters with the same links (410) are compared in Figure 7.27. We can observe that
similarity in both building size and building height increases for linked clusters
compared with linked buildings (see a and a’ in Figure 7.27). Similarity in both
building size and building height of objects (buildings and natural clusters) linked
by edges that should remain (see b and b’ in Figure 7.27) is larger than that which
should be removed (see c and c’ in Figure 7.27). This confirms that buildings and
clusters that should be combined are more similar to each other than those that
should be separated.
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Figure 7.26: Relationship between similarity in size and height with respect
to the decision of combining or separating linked clusters (the green curve
indicates the frequency of edges that should be linked).
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Figure 7.27: Comparison of similarity changes between linked objects and
linked natural clusters with the same links. Blue colour indicates the aver-
age similarity of linked buildings. Red colour indicates the average similar-
ity of linked natural clusters. a: all edges that linked natural clusters; b: all
edges that linked natural clusters and should be retained; c: all edges that
linked natural clusters and should be removed.
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7.4 Spatial partitioning based on clustered
objects

When spatial clusters are extracted by spatial clustering as described in the pre-
vious section, a spatial partitioning process has to follow to achieve a tessellation.
As discussed earlier in Chapter 5, the spatial extent of a cluster can be regarded as
having two components, the core or interior and the transit zone or fuzzy boundary.
The core is the space delineated by objects belonging to this cluster. It can be ex-
tracted by using a convex hull or the morphological operation ‘closing’ (erosion after
dilation). Boundaries derived by using either the convex hull or the morphological
operation closing are considered too sharp and not a fit human perception of space.
To obtain a natural transit zone surrounding the clustered objects, we use a distance
transformation so that the fuzzy membership values decline toward the neighbour-
ing clusters. Finally, the watershed algorithm is applied to acquire explicit spatial
partitions in 2D space based on the simulated surfaces created for each cluster.

7.4.1 Morphological closing and the interior of a clus-
ter

To determine the interior of a cluster, both the convex hull and closing can be used.
The convex hull method is faster than the morphological closing, but it is more suit-
able for convex shapes or compact forms of clusters and not so good for concave
shapes. Therefore, we prefer the closing operation. For the closing operation, we
use a circular structural element (SE) and apply it to all pixels of the objects of each
cluster. The radius of the SE is determined based on the largest distance between
clustered objects, to make sure a solid core (without holes inside) is formed. In this
case, 100 m is used for the morphological closing operation and the result is pre-
sented in Figure 7.28.

7.4.2 Distance transformation

The fuzzy transit zones are modelled by the distance transformation based on solid
cores of clusters. A Z-shape fuzzy membership function is formulated in the range
of 0 to 80 m in this case. The results of distance transformation based on clustered
buildings are shown in Figure 7.29.

7.4.3 Watershed algorithm

The watershed algorithm (Vincent and Soille, 1991) is applied to obtain explicit spa-
tial partitions in 2D space based on the simulated surfaces created for each cluster.
The result is shown in Figure 7.30.
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Figure 7.28: The solid interiors of clusters created by the morphological
closing operation using 100 m as radius for the circular SE.
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Figure 7.29: Transit zones surface created by distance transformation based
on clustered buildings (superimposed on all buildings).
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Figure 7.30: Spatial partitioning using the watershed algorithm based on
the distance transformation (superimposed on all buildings).
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Figure 7.31: Road map of the Amsterdam test site.

7.4.4 Using a road network in spatial partitioning
As discussed in Chapter 5, a road map is often available, which may help in obtain-
ing a better spatial partitioning result. The road map is rasterised and used in our
partitioning process as shown in Figure 7.31.

To find space to insert the road network and create the watershed along roads,
the solid cores of clusters are subtracted first by a mask created by applying a mor-
phological dilation operation to road pixels, using a circular SE with a radius of 40
m, based on the discussion in Chapter 5. The distance transformation and the Z-
shape fuzzy membership function is then applied to the subtracted solid cores and
the road network with the transit zone widths of 60 m and 5 m respectively. The
transit zone surface is obtained as shown in Figure 7.32. The land-use units are de-
lineated after applying the watershed algorithm to the reversed surfaces as shown
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in Figure 7.33.

7.5 Summary
A structural analysis approach proposed in this chapter is tested on the Amsterdam
test site. The experimental results show that the proposed object-based approach
is powerful for spatial clustering. Delaunay triangulation is a good tool for extract-
ing proximity relations among disjoint objects such as buildings. The shortest links
between objects based on Delaunay triangulation allow us to form natural clusters.
The natural clusters consist of buildings that are identified as the nearest neigh-
bours. The natural clusters represent the elementary clusters of possibly larger
clusters that represent land-use units. Whether adjacent natural clusters should
be combined is decided based on the shortest edges (from Delaunay triangulation)
that link the natural clusters, by checking the edge length (the shortest distance
between clusters), and on similarity measured from features of linked clusters (i.e.
building size and building height). The experimental results and acquired relation-
ships show that the shortest distance between clusters and similarity measures in
terms of building size and building height are good measures. Rules for the com-
bination of linked clusters can be extracted based on these measures and checking
the effect of different settings on a limited number of representative sample edges
by visual interpretation. The spatial partitioning achieved by morphological closing,
distance transformation, Z-shape fuzzy membership function and the watershed al-
gorithm looks natural, i.e. closely corresponding to what a well trained interpreter
is likely to produce. The delineated regions are regarded as spatial units of land
use, thus describing the spatial extent of land-use image objects. The extraction of
land-use-related properties and land-use classification will be based on these spatial
units and will be presented in the next chapter.

Cities and metropolitan areas of all sizes provide many supportive functions for
their constituents – the residents, transients and employees that live, visit and gain
their livelihood there. In response to these roles, a complex pattern of land use
evolves. Generally, these land uses conform to a regular, predictable pattern, but
strong historically, culturally and technologically based traditions at work mean that
cities around the world exhibit tremendous differences in form (Hartshorn, 1992).
We cannot expect spatial clustering to be done best by using a single measure. The
proposed approach offers a high degree of automation in delineating land-use units
and reduces human intervention to rule specification and manual corrections of the
results if necessary. We observe that the proposed method works well in regular
scenes (with regular patterns and newly developed areas). For highly complex areas
such as city centres or historical urban districts, further investigation is needed.
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Figure 7.32: Transit zones surface created by the distance transformation
based on clustered buildings and the road network (superimposed on all
buildings).

184



Chapter 7. Object-based structural analysis and spatial units of urban land use

Figure 7.33: Spatial partitioning using the watershed algorithm based on
the distance transformation and the road network (superimposed on all
buildings).
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Chapter 8

Object-based land-use
classification

8.1 Introduction
Land-use classification is based on the spatial units of land use obtained by struc-
tural analysis and spatial clustering, as discussed in Chapter 7. Extracted regions
in spatial clustering can be seen as a representation of land-use objects in a 2D im-
age. Such regions are regarded as the spatial extent of land-use objects and make
the links between land-use objects and their locations in the image. Land-use clas-
sification can be treated as object classification based on object properties. Object
properties used for land-use classification are also extracted based on such spatial
units.

In a general sense, classification is a broad theme that indicates feature selection
and data reduction, feature or property extraction, classifier selection, sample and
classifier training, post-classification processing, as well as quality and uncertainty
assessment. However, the main focus of this research is the extraction of features
(object properties or object attributes) in a hierarchical structure based on high-
resolution remote sensing data. ’Object’ in this chapter refers to an object at land-
use level, so we also call it a land-use object. Land-use mapping is one of many
applications in which the extracted land-use objects and properties can be applied.
Instead of aiming at a land-use map as an end-product, we rather emphasise in this
thesis on the associations between extracted properties and urban land-use classes.
We mainly discuss properties derived at the land-use level in this chapter. The land-
use spatial units are the spatially bounded masks for property extraction and land-
use classification. There are many urban land use classification systems proposed
for various applications (see Appendix A). Classification, being a human abstraction
process, will depend on the purpose and the techniques applied much more than
on the intrinsic properties of the individual objects or object components that are
being classified. Thus the result of classification will depend on various factors,
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such as discipline, perception, techniques applied and classifier used. Urban land-
use classification issues are discussed in this chapter mainly with regards to the
needs of urban planning. In the following sections, we will present land-use property
extraction, relationships between extracted properties and urban land-use classes,
and fuzzy membership functions associated with land-use classification.

8.2 Extraction of object properties for urban
land-use classification

To classify an urban area into discrete classes in terms of their use, a number of
properties have to be extracted which should provide indications of land usage. In
the following we describe various numerical and categorical properties that we con-
sider meaningful, and which can be derived from image and laser data and can play
an important role in land-use classification. We consider the following measures to
be meaningful indicators for land-use classification. The definitions and formulae of
the measures are given and discussed in Chapter 5.

• Type and proportional composition of land-cover objects a land-use object con-
tains

• Number of buildings
• Average building size
• Average building height
• Building density
• Floor area ratio (FAR)
• Green coverage ratio (GCR)
• Water coverage ratio (WCR)
• Open-space coverage ratio (OCR)

8.2.1 Type and proportional composition of land-cover
objects which a land-use object contains

For land-use classification, we consider four types of land-cover objects, i.e. building,
green space, water, and open-surface (secondary road, footpath, parking space and
other concrete open space). These features are extracted from laser data and multi-
spectral data, as described in Chapters 5 and 6. The proportional composition of
land-cover features is extracted for each land-use unit as shown in Figure 8.1. The
proportional composition of land-cover components for each land-use unit is repre-
sented in the proportion map using a colour composition where the red colour com-
ponent represent the built-up proportion (percentage of building and open-surface),
the green colour component represents vegetation proportion and the blue colour
component represents water proportion. In the proportion map, the reddish colour
indicates a higher proportion of buildings and other sealed surfaces; the greenish
colour indicates a higher proportion of vegetation (trees and lawns); the bluish colour
indicates a higher proportion of water surfaces.

188



Chapter 8. Object-based land-use classification

Figure 8.1: Land-cover proportion: reddish, greenish and bluish colours
are proportional to the percentage of built-up area, green space and water
surface a land-use unit contains.

8.2.2 Size of a land-use unit
The size of a land-use unit is counted as the total number of pixels of a land-use unit
(each pixel represents 1 m2). In land-use classification we consider size as one of the
factors for formulating rules. For instance, large green space may be considered as
recreational use, but small green space may be merged into one of its adjacent units.
Some small objects, similar to sliver polygons in vector representation, produced by
distance transformation and the watershed algorithm need to be detected by check-
ing their size. In this case, we consider land-use objects that are smaller than 5000
m2 as small objects and not as an independent land-use unit, as shown in Figure 8.2.
Such small objects will be treated separately. If a small object is adjacent to one or
several large land-use objects, it should be merged with its largest neighbour, as this
is what people usually do in visual interpretation. If a small object is surrounded
only by roads, it will remain as a separate object and labelled as public green space
if its vegetation proportion is relatively high, say 50 %; otherwise it will be labelled
as others.

8.2.3 Number of buildings
The number of buildings in a land-use unit is an indirect indicator. A residential
area usually consists of many buildings of similar size. Few buildings are found in
a public green space such as a park. To obtain this measure, we mask all buildings
contained in a land-use object, label them, and count the total number of buildings
in a land-use unit.

189



8.2. Extraction of object properties for urban land-use classification

Figure 8.2: Objects smaller than 5000 m2 and not considered as land-use
objects (indicated in red colour).

8.2.4 Average building size
The average building size is a measure for certain land-use classes. For example,
commercial and industrial areas often consist of some large buildings, whereas res-
idential areas usually consist of relatively small buildings of uniform size. We first
extract all buildings contained in a land-use object, accounting for the total number
of building pixels. Average building size is obtained by dividing the total number of
building pixels times pixel size (1 m2 in this case) by the total number of buildings
for each land-use object.

8.2.5 Average building height
High-rise buildings are distributed mainly in the central business district (CBD),
as well as in some residential areas (apartment buildings). Schools and public fa-
cilities are very often low-rise buildings. Average building height is also a measure
used to subdivide residential areas into residential sub-classes such as low-rise res-
idential areas, multi-storey apartment areas and high-rise apartment areas. Since
different countries, different regions, or even different cultures may have different
intentions toward building height, local knowledge is needed for building classifica-
tion rules based on building height. Average building height for each land-use object
is obtained by extracting all buildings with building height information (extracted
as described in Chapter 6) contained in a land-use object and taking the average.
By dividing the average building height by 3 (average floor height in metres), we
can estimate the average number of floors, which is useful information for land-use
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Figure 8.3: Extracted average building height.

classification. An extracted map that shows the average building height is shown in
Figure 8.3.

8.2.6 Building density

Building density provides indications on the degree of concentration and intensity in
terms of urban development, and is often used as a measure for building control in
urban planning and management. In general, building density increases toward the
city centre. Density itself is a key identifier of sub-classes of residential area, such as
high-density, medium-density and low-density residential areas. Building density is
calculated by dividing the total area of buildings by the size of the spatial unit for
each land-use object. An extracted building density map is shown in Figure 8.4.

8.2.7 Floor area ratio (FAR)

Floor area ratio is a comprehensive indicator often used by planners to estimate
development intensity or intensity of use of urban space and it is often used as a
measure for building control in urban planning and management. In general, com-
mercial areas have high FAR values. Parks and other open space have low FAR
values. Furthermore, FAR is considered proportional to population density in res-
idential areas. FAR is computed as the total area of building floor space (building
size times number of floors) divided by the size of the spatial unit. The extracted
result is presented in Figure 8.5.
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Figure 8.5: Extracted floor space ratio (FAR).
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Figure 8.6: Extracted green coverage ratio (GCR).

8.2.8 Green coverage ratio (GCR)
Green space (trees and lawns) is a major indication of environmental quality. A high
green coverage ratio indicates a better living environment. This is a good indicator
for reasoning whether an area is likely to be a public park. In some cases, the green
coverage ratio is combined with the percentage of water surface in order to assess a
living environment. In general, parks and other open spaces, as well as low-density
residential areas, have high GCR values. Commercial and industrial areas usually
have low GCR values. The GCR or the proportion of green space is calculated as
the total area of green space divided by the size of the spatial unit. The result of
extraction is shown in Figure 8.6.

8.2.9 Open-surface coverage ratio (OCR)
The open-surface coverage ratio or proportion of open space is calculated as the com-
plement of the total of buildings, green space and water surface in the spatial unit,
based on spectral information. The major OCR components in an urban area are
parking spaces and squares. Construction sites and industrial areas may cause
high OCR values as well. This is a good indicator for reasoning whether an area is
a public gathering place such as a commercial centre, an office area, public facilities
or roads and footpaths inside a land-use unit. This is a key indicator for detecting
construction sites or newly developed areas. Residential areas usually have a low
OCR ratio. The computed OCR for Amsterdam is shown in Figure 8.7.

The derived object properties are stored in a table for each land-use object, as
shown in Figure 8.8. These object properties are used as object attributes and will
be used for object-based classification. The location and spatial extent of land-use
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Figure 8.7: Extracted open-surface coverage ratio (OCR).

objects are defined by corresponding image regions. Thus the proposed object-based
land-use classification is more similar in its (per-object) approach to most vector-
based GIS than to the (per-pixel) methods of most remote sensing image processing
systems.

8.3 Characteristics of different land-use
classes and responses from the extracted
properties

To examine and build up quantitative relationships between the proposed measures
and land-use classes, we manually select 25 known land-use objects and examine
how the proposed measures (land-use object properties) behave for different land-
use classes, in order to design the discriminating functions toward designating land-
use classes based on the extracted land-use object properties. In this section, we
will also examine the robustness and sensitivity of the extracted land-use object
properties identifying different land-use classes.

8.3.1 Class discrimination based on extracted proper-
ties

To classify land-use objects, we need to explore and establish the relationships be-
tween extracted properties and designated land-use classes. Some 25 known sam-
ples have been selected manually from different land-use classes of the Amsterdam
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Figure 8.8: A table for recording object IDs and attributes (object properties)
for land-use image objects.

test site. The relationships between extracted properties and designated land-use
classes are presented in a matrix of scatter plots, as shown in Figures 8.9 and 8.10.
The difference between Figure 8.9 and Figure 8.10 is that the measured values pre-
sented in the former are obtained from extracted buildings based on laser data,
whereas the measured values given in the latter are acquired from buildings in the
base map. Based on Figures 8.9 and 8.10, we can observe that several land-use
classes are well identified by these properties, such as commercial and public green
space (see rows and columns associated with building density (B.Den), FAR and
GCR in Figures 8.9 and 8.10), whereas facilities are mixed with residential areas
because of the existence of different sub-classes such as schools, hospitals and com-
munity centres that are included in the class called public facility. We may also note
that among these properties, building density, FAR and GCR are better measures
for class discrimination in general (see also the enlarged version in Figures 8.11 and
8.12).
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Figure 8.9: Class discrimination based on selected properties (based on ex-
tracted buildings). Each scatter shows distribution of samples in terms of
two corresponding properties.
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Figure 8.12: Class discrimination based on FAR and OCR using extracted
buildings (left) and buildings digitised from map (right).

When we take a close look at these relationships as shown in Figures 8.11 and
8.12, some linear discriminating functions can be derived for certain classes based
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Figure 8.10: Class discrimination based on selected properties (based on
buildings from map). Each scatter shows distribution of samples in terms
of two corresponding properties.

on these properties, while additional properties may be needed for mixed classes.
Object properties obtained at land-use level, such as building density, FAR, GCR,
OCR are discriminative features for land-use classification and are also meaningful
to urban planners. We may not be able to extract such properties at the land-cover
level and certainly not at the pixel-level. Therefore we draw the general conclusion
that the proposed hierarchical object-based approach is a better option for urban
land-use classification than the conventional per-pixel based approaches.

8.3.2 Robustness and sensitivity of extracted proper-
ties

When comparing Figures 8.9 and 8.10, we can observe that the extracted properties
are quite robust, despite the fact that the derived values of object properties may
be slightly different owing to some errors inherited from land-cover object extrac-
tion (see also Figures 8.11 and 8.12). This means that small errors and mistakes
made during land-cover object extraction (see details in Chapter 6) do not have a
significant impact on the proposed measures for land-use objects.
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Figure 8.11: Class discrimination based on building density and GCR using
extracted buildings (left) and buildings digitised from map (right)

Another interesting issue is how these properties respond to changes in the real
world. As we mentioned earlier in Chapter 2, the base map of the Amsterdam test
site was updated before 1998 (buildings appearing in laser data and the IKONOS
image were not mapped), laser data were acquired in 1998, and the IKOKOS scene
was obtained in 2000. Based on our knowledge and indications from the data, we
found that this study area was in the process of dynamic innovation during this
period. Quite a lot of changes have taken place in certain locations in the study area.
We have selected two changed sites and take a close look at them in Figures 8.13 and
8.14. The extracted properties are given in Tables 8.1 and 8.2 respectively. These
examples demonstrate that not only can land-cover changes be mapped but also the
extracted properties reflect these changes well. Since we have acquired only one
IKONOS image, we cannot make a comparison for the GCR.

Table 8.1: Properties derived from changed site 1 (Figure 8.13)

Object properties
Based on build-
ings digitised from
base map

Based on build-
ings extracted
from image

Building density 0 0.22
Average building height (m) 0 12.35
FAR 0 0.91

We are also interested in how these properties respond to areas that have not
changed in the real world. We have selected two unchanged sites and take a close
look at them in Figures 8.15 and 8.16. The extracted properties are given in Ta-
bles 8.3 and 8.4 respectively. These examples demonstrate that these properties are
quite stable as regards unchanged sites, as compared with object properties derived
based on buildings digitised from the map and buildings extracted from images, de-
spite some noisy pixels that exist along the edges of extracted buildings. A similar
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Figure 8.13: Changed site 1: according to the base map (left) and extracted
buildings (right).

Table 8.2: Properties derived from changed site 2 (Figure 8.14)

Object properties
Based on build-
ings digitised from
base map

Based on build-
ings extracted
from image

Building density 0 0.11
Average building height (m) 0 13.58
FAR 0 0.50

observation can also be made regarding the cases presented in the next section.
These examples show that the proposed properties are sensitive in reflecting big
changes that are taking place in reality, and are robust in respect to small errors
made during building extraction.

8.4 Characteristics of different land-use
classes

To specify discriminating features based on extracted object properties and to de-
sign the fuzzy membership functions for land-use classes, we need to investigate the
characteristics of each land-use class. In this section, we select several samples of
known land-use classes, determine by which object properties they can be identified,
and check whether derived properties are robust and reliable in describing class
characteristics based on data derived from different sources.
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Figure 8.14: Changed site 2: according to the base map (left) and extracted
buildings (right).

Table 8.3: Properties derived from unchanged site 1 (Figure 8.15)

Object properties
Based on build-
ings digitised from
base map

Based on build-
ings extracted
from image

Building density 0.13 0.11
Average building height (m) 2.93 3.33
FAR 0.13 0.13

8.4.1 Commercial area
The extracted properties as presented in Table 8.5 are derived for a commercial
area on the Amsterdam test site, based on buildings digitised from the map and
extracted buildings from the image as shown in Figure 8.17. By comparing these
two images, we see that, despite some noisy pixels along building edges, several
building forecourts at ground floor have been extracted from the image by using
the proposed method, whereas they have not been mapped in the base map. Such
building forecourts may have been ignored in the field survey or in the cartographic
process of map production. These building forecourts have been confirmed by field
visits. They are the main cause of different results being derived from different
data sources. Such differences have an impact on some derived properties, such
as building density and average building height. We believe that object properties
derived from the image are better in describing the reality in this case.
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Figure 8.15: Unchanged site 1: according to the base map (left) and ex-
tracted buildings (right).

Figure 8.16: Unchanged site 2: according to the base map (left) and ex-
tracted buildings (right).

In general, the main characteristics of a commercial area are high building den-
sity (> 0.2), high FAR value (>1), but low GCR value (< 0.3) as compared with other
land-use classes, as we can also see in Figures 8.10, 8.11 and 8.12. Since office area
and other facility areas share some common features that are similar to commer-
cial areas in our test site, we combine them in the commercial class or call them
commercial and other facilities.

8.4.2 Residential area
The extracted properties as presented in Tables 8.6, 8.7 and 8.8 are derived from
several types of residential areas on the Amsterdam test site, based on buildings
digitised from the map and the extracted buildings, as shown in Figures 8.18, 8.19
and 8.20 respectively. The major differences between buildings derived from dif-
ferent sources are that several covered corridors have been extracted as parts of
buildings, while they have been removed according to the base map despite some
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Table 8.4: Properties derived from unchanged site 2 (Figure 8.16)

Object properties
Based on build-
ings digitised from
base map

Based on build-
ings extracted
from image

Building density 0.16 0.19
Average building height (m) 9.35 8.03
FAR 0.50 0.50

Table 8.5: Properties derived from a commercial area

Object properties
Based on build-
ings digitised from
base map

Based on build-
ings extracted
from image

Building density 0.32 0.48
Average building height (m) 12.38 9.61
FAR 1.32 1.54
GCR 0.11 0.11
OCR 0.57 0.41

noisy pixels existing along the building edges. Such differences may have a slight
impact on the average building height for high-rise buildings.

In general, the main characteristics of a residential area are medium building
density (0.1 to 0.2), medium FAR value (0.2 to 1.0), but medium GCR value (0.3 to
0.7) as compared with other land-use classes, as we can also see in Figures 8.10, 8.11
and 8.12.

8.5 Land-use classification
Given the information obtained from the processes described earlier, several classi-
fication methods can be used in the final stage of land-use classification. The classi-
fiers, however, must not conflict with the nature of the data. Classifiers to consider
for land use include fuzzy logic, the nearest neighbour classifier and the tree-based
classifier. The relationships between extracted properties and land-use classes are
often fuzzy. For instance, a high percentage of green coverage ratio indicates the
high probability or possibility that a land-use object is likely to belong to a public
park or green space. (Here ‘high’ is a relative term or fuzzy.) Therefore, fuzzy classi-
fication is believed to be a more suitable approach for land-use classification. It has
special significance for remote sensing. Fuzzy logic permits partial membership, a
property that is especially significant in field remote sensing, as partial membership
translates closely to the problem of mixed pixels (Campbell, 2002). The same prop-
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Figure 8.17: Buildings in a commercial area based on map (left) and ex-
tracted from image (right).

Table 8.6: Properties derived from a residential area (multi-story apart-
ment)

Object properties
Based on build-
ings digitised from
base map

Based on build-
ings extracted
from image

Building density 0.14 0.15
Average building height (m) 19.28 17.68
FAR 0.88 0.88
GCR 0.50 0.50
OCR 0.32 0.31

Table 8.7: Properties derived from a residential area (multi-story apart-
ment)

Object properties
Based on build-
ings digitised from
base map

Based on build-
ings extracted
from image

Building density 0.13 0.16
Average building height (m) 6.62 5.54
FAR 0.30 0.30
GCR 0.13 0.13
OCR 0.63 0.60
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Figure 8.18: Residential area 1: buildings based on map (left) and extracted
from image (right).

Figure 8.19: Residential area 2: buildings based on map (left) and extracted
from image (right).
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Table 8.8: Properties derived from a residential area (multi-story apart-
ment)

Object properties
Based on build-
ings digitised from
base map

Based on build-
ings extracted
from image

Building density 0.15 0.15
Average building height (m) 4.52 4.79
FAR 0.23 0.23
GCR 0.54 0.54
OCR 0.28 0.29

Figure 8.20: Residential area 3 (multi-story apartment): buildings based on
map (left) and extracted from image (right).

205



8.5. Land-use classification

erty holds in our object-based cases, where problems of mixed objects are similar
to problems of mixed pixels. In addition, knowledge and rules can be easily repre-
sented by using fuzzy approaches. A land-use classification example based on fuzzy
logic can be found in Zhan et al. (2000).

8.5.1 Fuzzy classification

Fuzzy set theory (Zadeh, 1965) and fuzzy logic have been developed and used in
many research and application areas. Fuzzy set theory has been widely applied in
clustering and classification as well (Foody, 1996; Hoeppner et al., 1999; Zhan et al.,
2000; Tso and Mather, 2001). Fuzzy c-means is a well-known unsupervised classi-
fier. A fuzzy classifier assigns membership values to objects based upon a member-
ship function. Membership functions for classes are determined either by general
knowledge about the relationships between object properties and land-use classes
or by definitional rules describing the relationships between derived measures and
classes. Or, as is more likely in the instance of remote sensing classification, mem-
bership functions are derived from experimental data for the specific scene to be
examined (Campbell, 2002). In our object-based approach, derived object properties
rather than the spectral values of a pixel are used for designing the membership
functions. These properties are commonly used in planning practice. They are rela-
tively easier to associate with different classes and thus can be directly deployed in
forming membership functions.

8.5.2 Fuzzy membership functions for land-use classifi-
cation

There are many forms of membership functions, such as the triangular membership
function, the trapezoidal membership function, the Gaussian curve membership
function. In this experiment, we use the S-shaped and the Z-shaped curve mem-
bership functions for ‘one-end’ cases and the ‘π-shaped’ curve membership function
for ‘two-end’ cases, since the spline membership functions are more natural than the
linear membership functions for representing the transit zones. The parameters for
the spline membership functions can be easily specified by indicating the starting
and ending points of a spline curve.

Based on our observations with sample sites and planning knowledge, we design
fuzzy membership functions and use extracted object properties to classify land-use
objects. In fuzzy classification, we need to establish specific fuzzy membership func-
tions for each end-member class, based on extracted object properties. Number of
buildings, building density, average building height, FAR, GCR and OCR are se-
lected as such object properties for land-use classification in this case. Residential
and public green space and a combined class consisting of commercial, office and
public facilities (called commercial for short) are our end-member classes in this
test. Other land-use types do not exist on our test site.
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Fuzzy membership function according to the number of buildings
in a land-use unit

The number of buildings in a land-use unit is a weak association regarding land-
use classes, since we can hardly specify the actual building numbers a land-use unit
should contain. However, we could specify the range that a land-use unit of a par-
ticular class is likely to have, based on our observations and planning knowledge.
A residential area usually consists of a large number of houses. An area that con-
tains fewer buildings is unlikely to be considered a residential area; thus a fuzzy low
bound can be specified from 0 to 5. Commercial and other facilities may consist of
several buildings but not too many; thus a fuzzy high bound can be specified from
10 to 20. A public green space should not contain many buildings; thus a fuzzy high
bound can be specified from 0 to 5.

Fuzzy membership function according to building density

Building density is a measure of building control for specific land uses, particularly
for residential areas, and is usually enforced by the planning acts. This requirement
varies from country to country. In a developed country such as the Netherlands,
building density for a residential area is more restricted than in a developing coun-
try such as China, to ensure the higher quality of the living environment. Thus we
can specify a range with a fuzzy low bound of 0 to 0.1 and a fuzzy high bound of
0.3 to 0.4 for the Amsterdam test site. A likely range for the building density of a
residential area in China can be specified as 0.1 to 0.3 for a fuzzy low bound and
0.5 to 0.8 for a fuzzy high bound. Therefore local knowledge plays an essential role
in designing fuzzy membership functions for land-use classification. The building
density requirement for commercial and other facilities is not as restricted as for a
residential area. Thus we should specify a large range – for example, with a fuzzy
low bound of 0 to 0.1 and a fuzzy high bound of 0.5 to 0.8 in our case. As discussed
earlier, a public green space should not contain many buildings, so we give a fuzzy
high bound of 0.05 to 0.2 for a public green space.

Fuzzy membership function according to average building height

The building height may vary even within a land-use class such as a residential
area. The average building height may vary as well from place to place; thus it is
a relatively weak measure. We can design fuzzy membership functions based on
the general knowledge that it is unlikely that high-rise buildings will be found in a
public green space, and building height for a residential area may have a relatively
larger range than commercial and public facilities.

Fuzzy membership function according to floor area ratio (FAR)

Floor area ratio (FAR) is a measure of building control for specific land uses, partic-
ularly for residential areas, and is usually enforced by the planning acts. For some
areas such as city centres or commercial areas, it is often preferred to take a high
FAR to allow efficient use of space. Therefore we specify a fuzzy low bound of 0.05 to
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0.15 for commercial and other public facilities use, a range with a fuzzy low bound
of 0.05 to 0.15 and a fuzzy high bound of 1.0 to 1.2 for residential areas, and a fuzzy
high bound of 0.2 to 0.25 for public green spaces.

Fuzzy membership function according to green coverage ratio
(GCR)

The green coverage ratio (GCR) is a key indicator for a living environment. It is
obvious that GCR should be high for public green space; thus a fuzzy low bound of 0
to 0.5 is specified. A residential area should have a reasonable range for GCR as a
living space and is specified using a fuzzy low bound of 0.05 to 0.10 and a fuzzy high
bound of 0.7 to 0.8. GCR for commercial and public facilities may vary over a large
range; therefore a weak fuzzy low bound of 0 to 0.3 and a weak fuzzy high bound of
0.5 to 1.0 is given.

Fuzzy membership function according to open-space coverage ratio
(OCR)

The open-space coverage ratio (OCR) can be interpreted as the percentage of sealed
ground surface, and mainly consists of roads and footpaths at the neighbourhood
level, parking spaces and playgrounds. It is also a relatively weak measure for land-
use classification. In general, a public green space should not have a high OCR; thus
a weak fuzzy high bound of 0.5 to 1.0 is given. Commercial and other facilities are
likely to contain large parking spaces and other sealed surfaces such as squares;
thus a relatively large range is specified by using a fuzzy low bound of 0 to 0.1 and
a weak fuzzy high bound of 0.6 to 1.0. Residential areas are specified by using a
relatively smaller range (a fuzzy low bound of 0.5 to 0.1 and a weak fuzzy high
bound of 0.4 to 0.8).

The fuzzy membership functions proposed for land-use classification of the Am-
sterdam test site is presented in Figure 8.21.

8.5.3 Computation of the normalised overall member-
ship values for each end-member land-use class

The normalised overall membership function of a land-use class for each land-use
object is proposed and calculated as follows. The normalised overall membership
function will have a value in the range from 0 to 1.

MFk(Oi) =

√∑n
j=1 MFk

j (Oi)2

n
, k = 1, ..., m

k denotes the kth land-use class designated in classification
i denotes a land-use object (image-object)
j denotes object properties that the fuzzy membership function is based upon
m denotes the total number of land-use classes designated in classification
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Figure 8.21: Fuzzy membership functions designed for land-use classifica-
tion of Amsterdam test site (red colour denotes commercial class, yellow
colour residential class, green colour green space).

n denotes the total number of object properties involved.

This formula assumes equal weight for each object property that is applied in
this case. If the user can specify the weights to reflect the degree of importance
among object properties, the following formula should apply.

MFk(Oi) =

√√√√∑n
j=1 Wj ·MFk

j (Oi)2∑n
j=1 Wj

, k = 1, ..., m

Wj denotes the weight for jth object property involved.

The class which receives the highest overall fuzzy membership value for a par-
ticular object is assigned to the object to obtain the ‘hard’ classification result – the
land-use map. The difference (subtraction) between the highest and second to high-
est overall fuzzy membership values is used as an uncertainty measure. More de-
tailed uncertainty assessment will be discussed in Chapter 9.
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8.5.4 Land-use classification of Amsterdam test site

Due to the peculiarities of the developed modelling for creating the transit zones
and the used watershed algorithm for delineation of land-use objects, some small
sliver-like objects were created. In addition, objects smaller than 5000 m2 were
not considered as independent land-use objects. They should be merged with ad-
jacent objects after classification. Therefore, the actual classification was based on
102 objects (larger than 5000 m2) out of a total of 192 objects. The classification
result shown in Figure 8.22 is obtained by applying the above-mentioned member-
ship functions to extracted object properties. By comparing this with the reference
land-use map which was prepared by visual interpretation and a field visit (see Fig-
ure 8.23), we find that most land-use objects are correctly classified (90 out of 102
objects). Some 12 objects are misclassified. Most of misclassifications (11 out of 12
objects) occur between commercial and residential, owing to the similarity between
these two classes. Only one facility was misclassified. This was caused by a mistake
made in building extraction, where a metro station had been extracted as a building.
We can also observe that of the 12 misclassified objects, seven are located in the edge
of image. Partially cut objects are more likely to be misclassified since most object
properties may have been seriously damaged by edge-cutting, such as the number of
buildings, building density, FAR, GCR, OCR. The remaining five misclassifications
were mainly caused by a mixture of residential buildings and facility buildings. De-
tailed quality assessment of the land-use classification result will be quantitatively
measured and analysed in Chapter 9.

Residential

Commercial

Green space

Legend

Roads

Figure 8.22: Classification result obtained by applying the proposed fuzzy
membership functions.
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Figure 8.23: Classification based on visual interpretation and field visit.

8.5.5 Summary
In this chapter, we have proposed a number of meaningful object properties that
are commonly used in urban planning and can be extracted from laser data and
multi-spectral data. Several investigations have been made to find out the rela-
tionships between these properties and land-use classes. A fuzzy classification ap-
proach is applied, with fuzzy membership function based mainly on object defini-
tions and local knowledge. The classification result obtained by using the proposed
approach is promising. Such a result is unlikely to be achieved by the conventional
per-pixel-based approaches, as much useful information and many object properties
that can be extracted by the per-object approach cannot be derived by the per-pixel
approaches. Urban areas are very complicated. The proposed approach has been
tested in a relatively easy area where urban patterns are regular, and the test site is
comparatively small. Further research is needed for applying the proposed methods
in more complicated urban areas. However, this research can be regarded as one
step forward toward automatic land-use extraction and classification from images
in urban areas.
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Chapter 9

Quality and uncertainty
assessment ∗

9.1 Introduction
Many per-pixel classification approaches have been developed, such as the MLC,
the k nearest neighbour classifier (k-NN), the neural network classifier (NN). In
these approaches, the individual pixel is treated as a fundamental unit throughout
the whole process: sample selection, classifier training, classification, preparation of
reference data, accuracy and uncertainty assessment, etc. Many efforts have been
made in accuracy and uncertainty assessment regarding the per-pixel approaches
(Congalton and Mead, 1983; Janssen, 1994; Skidmore, 1999; Foody, 2000). In these
approaches only uncertainty at a particular location for the variable has been dis-
cussed. Many applications, however, require predictions about multi-pixel regions,
and issues of uncertainty become more complicated in such circumstances (Dungan,
2002). So far not much attention has been paid to accuracy and uncertainty assess-
ment with regard to features extracted from images by object-based approaches.

The error matrix or confusion matrix is often used to compute quality measures
such as user’s accuracy, producer’s accuracy, overall accuracy and the Kappa coef-
ficient for quality assessment of classification results obtained by visual interpre-
tation or per-pixel approach (Congalton and Mead, 1983; Janssen, 1994; Skidmore,
1999; Foody, 2000). In the case of visual interpretation, operators usually interpret
an object and delineate the object boundaries, and then label it according to a des-
ignated class. To assess the interpretation quality, a field visit is made to check
whether the assigned classes are correct for some randomly selected sample objects,
and to count the number of objects that are correctly classified and the number of
objects that are misclassified for each class. Quality assessment results are rep-
resented as an error matrix in order to compute the mentioned quality measures.

∗This chapter is based on the following papers: Zhan et al. (2003) and Zhan et al. (under
peer review (2)).
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In the case of digital image classification by computer, quality assessment results
are also represented by an error matrix in order to compute the mentioned quality
measures, but often using randomly selected sample pixels. In the former case, the
obtained quality measures indicate the classification quality in terms of objects (per-
object) from the object perspective. In the latter case, the obtained quality measures
indicate the classification quality related to object locations (per-pixel).

In our object-based land-cover and land-use classification, acquired objects (im-
age objects) may have both classification errors and location errors. Quality assess-
ment concerning classification errors can be divided into two aspects: correctness
and completeness. Correctness measures the percentage of extracted objects that
are correctly classified. Completeness measures the percentage of existing objects
that are correctly explained by the classification of all existing objects (in the ref-
erence data). Location errors can be divided into two categories: errors in terms of
object position (per-object location errors) and errors in terms of the spatial extent of
an object (per-pixel location errors). Per-object location errors indicate the positional
difference between the centre of mass of an extracted object and the centre of mass
of the same object in the reference data.

In the following sections of this chapter, we will discuss both the per-object qual-
ity measures with regard to different object properties and the per-pixel quality mea-
sures concerning the spatial extent of objects. A short review of the error matrix and
related measures, as well as certain limitations, is presented and discussed in Sec-
tion 9.2. The proposed framework that is expected to utilise per-object and per-pixel
quality measures is presented and discussed in Section 9.3. The quality assessment
of land-cover objects is presented in Section 9.4. The uncertainty assessment of
extracted buildings from the Amsterdam test site was presented in Section 6.2.6.
Some efforts proposed for acquiring more compact objects and experimental results
are presented and discussed in Section 9.5. The quality and uncertainty assessment
of derived land-use objects is discussed in Section 9.6. The chapter closes with a
general discussion and considers the outlook for the future.

9.2 The known methods of quality
assessment

Quality is a very broad issue that may relate to a variety of properties but most fre-
quently the property of interest is map or classification accuracy (Foody, 2000). Clas-
sification accuracy is typically taken to mean the degree to which the derived image
classification or thematic map agrees with reality (Campbell, 1996). The error ma-
trix or confusion matrix is a popular means for quality assessment of classification
results (Congalton and Mead, 1983; Janssen, 1994; Skidmore, 1999; Foody, 2000), as
shown in Table 9.1. Based on the error matrix, a number of quality measurements
can be derived, such as overall accuracy, user’s accuracy, producer’s accuracy and
the Kappa coefficient.

Overall accuracy =
1

n

m∑
k=1

nkk
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Table 9.1: Error matrix for quality assessment

Reference data

A B C Total User’s
accuracy

Classified
data

A nAA nAB nAC nA+ nAA/nA+

B nBA nBB nBC nB+ nBB/nB+

C nCA nCB nCC nC+ nCC/nC+

Total n+A n+B n+C n
Producer’s
accuracy

nAAn+A nBBn+B

nCCn+C

Kappa coefficient =

n
m∑

k=1

nkk −
m∑

k=1

nk+n+k

n2 −
m∑

k=1

nk+n+k

Dungan (2002) stated that when new observational evidence is acquired that
is incompatible with the results of the currently accepted model, uncertainty will
be increased. Uncertainty may change when one is talking about a single pixel
or multiple pixels. A confidence statement about the limited area represented by a
single pixel may be different from a confidence statement about a large area of which
that pixel forms only a part. This statement implies that the current per-pixel-
based quality assessment measures may not be sufficient for quality assessment in
the case of objects derived from images. This is because our spatial unit has been
changed from an individual pixel to an individual object or multi-pixel region, while
in image processing the error matrix and related measures are usually location-
based (per-pixel). Additional per-object measures are needed to assess the quality
and uncertainty of extracted objects from different perspectives such as position,
size, shape, correctness, completeness. Detailed discussions on such measures follow
in the coming sections. In the remaining part of this section, we will demonstrate
the limitation of existing per-pixel quality measures by using the following example.

To examine whether known quality measures are still applicable in our object
case, we compute them for the Ravensburg test site, using sampling at random loca-
tions. To this end we generate 100,000 samples from random locations by randomly
generating a number ∈ [0, 1], which is then scaled to represent the x coordinate, and
randomly generating a number, which is then scaled to represent the y coordinate.
We take the extracted buildings as an example of a classification. The elements of
the error matrix are computed as shown in Table 9.2. A problem can be observed
from the figures presented in this table, in that a very large number of pixels are
found in the cell representing non-building in both classified data and reference data
(e in Table 9.2). This indicates that the objects of interest only cover a small portion
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Table 9.2: Error matrix for quality assessment of extracted buildings from
the Ravensburg test site, based on 100,000 random samples

Reference data

Building Not Total User’s
building accuracy

Classified
data

Building 3177 (a) 479 (b) 3656 86.9 % (c)

Not building 699 (d) 95645 (e) 96344 99.3 % (f )

Total 3876 96109 100000
Producer’s 82.0 % (g) 99.5 % (h)
accuracy

Overall accuracy: 98.8 %, Kappa: 83.7 %, Overall quality: 73.0 %

of the scene. Samples falling in areas that do not contain objects will not make much
sense for quality assessment, since we are only interested in the extracted objects.
As a consequence, the error matrix shows an overestimated user’s accuracy and pro-
ducer’s accuracy for non-building (f and h in Table 9.2), as well as an overestimated
overall accuracy. The user’s accuracy and the producer’s accuracy for building (c and
g in Table 9.2), however, can still be considered as reasonable measures for quality
assessment since they have not been corrupted by the large number of pixels which
exist in non-object areas. We also consider the Kappa coefficient to be valid since the
Kappa coefficient takes into account the agreement contributed by chance. Kappa
considers that the frequency of a sample appearing in a class is proportional to the
percentage of locations (pixels) this class covers among all possible locations (the
total size of the image). Therefore, we need to have a different interpretation of the
figures in the error matrix. We can observe that user’s accuracy and producer’s accu-
racy for the object-related cells (c and g in Table 9.2) are calculated based on pixels
falling in the object-related cells (a, b and d in Table 9.2). They can be understood
as correctly classified (a in Table 9.2), wrongly detected (b in Table 9.2) and unde-
tected (d in Table 9.2). In the coming section, we try to provide a united framework
for quality assessment that utilises per-object and per-pixel measures. In the new
framework, we expect to be able to suggest a number of new measures, as well as to
solve the problems as presented in this section.

9.3 Quality measures for object properties
and spatial extent

The generic meaning of uncertainty deals with the subjective. While two individuals
may arrive at the same answer to a question, one individual may be more certain
than the other about that answer. Given that measures of uncertainty, Bayesian or
Frequentist, are important for gauging progress, they should be agreed upon with
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some degree of consensus and shown to be used over time (Dungan, 2002). We will
explain in the following why a united framework is needed for quality assessment
from different aspects.

9.3.1 Initiatives for a united framework for quality as-
sessment from different aspects

Need for quality assessment of the single-class cases

As demonstrated in the previous section, simple pixel-based quality measures are
biased because of the existence very large samples that do not make much sense for
quality assessment of the single-class cases, such as quality assessment of extracted
buildings. A similar problem may also occur in the multi-class cases. For instance,
when classification results are obtained by per-pixel classification in a coastal area
where the water surface covers a very large portion of the image, an overestimated
overall accuracy is likely to obtained. A very large number of samples are likely to be
selected from water areas by the random sampling approach. Most of these samples
will easily have been classified correctly, based on a clear and compact cluster in the
feature space, whereas other classes may be classified with low accuracy because of
a certain degree of mixture in the feature space. In such cases, the Kappa coefficient
is likely to produce a reasonable figure for a per-pixel classification result. But we
still need a per-object overall quality measure for the single-class cases, since we
cannot produce the Kappa coefficient when the number of objects not belonging to
the designated class is not available or is not of interest to us, as shown in Tables 9.3
and 9.2.

Differences between per-object and per-pixel measures

We explain the difference in quality assessment by per-object and per-pixel measures
in the following way: per-pixel measures assess how good the classification is at lo-
cations (pixels) while per-object measures assess how good the classification is of a
multi-pixel grouping (image object), using the objects as a counting unit. Therefore,
they can be seen as measures concerned with different aspects. To apply per-object
measures, we must solve the object matching problem. In this research, we consider
an extracted object (such as a building) as matching an object in the reference data
if the two overlap by at least 50 % and the overlapping part is larger than or equal
to 10 pixels. We have chosen these values considering that the ratio criterion of 50 %
may not be sufficient for small objects that consist of only a few pixels. Figure 9.1
illustrates various constellations of two matched objects. Objects that match accord-
ing to the above criteria are then considered as being classified correctly. All four
cases, which are shown in Figure 9.1, are considered as being classified correctly
irrespective of their spatial extent. The per-object measures, however, should also
be able to assess the differences in the spatial extent of matching objects.
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Need for quality assessment of other object properties

In many cases, we may be interested in the quality in terms of object properties such
as object size and the position of extracted objects, in addition to simply assessing
correct object classification. A per-object quality measure related to object size can be
used to assess situations, as presented in cases C and D in Figure 9.1. Case C is an
example of the extracted object being smaller than the reference object while in case
D the extracted object is larger than the corresponding object in the reference data.
In both cases there is no error of position. A per-object quality measure related to
position can be used to assess situations such as that in case B in Figure 9.1, where
the extracted object is not in the same position as the corresponding reference object,
while their sizes are identical. This measure can be associated with a registration
error between image and reference map.

Figure 9.1: Four matched cases of an extracted object (orange colour indi-
cates the matched region; blue colour indicates extracted region that is not
explained by the reference data; green colour indicates a region in reference
data that was not extracted): A - more than 50 % matched; B - matched,
with the same size but different position; C and D - matched, with the same
position but different spatial extent.

9.3.2 A united framework for quality assessment based
on the feature contrast model

To develop a united framework for quality assessment, we consider the use and
extension of Kversky’s feature contrast model (Tversky, 1977) to measure the degree
of similarity between classification results and reference data from different aspects,
and to use them as quality measures suitable for both per-object and per-pixel cases.
The more features that match between the classification results and the reference
data supposedly representing reality, the higher we consider the quality of those
results to be – this also applies when reality is subjectively described by definitions
such as land-use classes.

Similarity =
f(C ∩R)

f(C ∩R) + α · f(C−R) + β · f(R−C)

The similarity between classified data (C) and reference data (R) based on a
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specific feature is expressed as a function (f ) of the three arguments: f(C ∩R), the
features that are common to both C and R; f(C − R), the features that belong to C
but not to R; f(R − C), the features that belong to R but not to C. α and β denote
weights for f(C − R) and f(R − C) respectively. α = β if C and R are symmetric.
α 6= β if C and R are asymmetric. We can relate this model to the error matrix. For
an error matrix of those classes (see Table 9.1), nAA can be regarded as f(C ∩ R).
nAB and nAC can be treated as f(C−R). nBA and nCA can be treated as f(R−C).
This similarity ratio model can be extended and applied to assess the quality of
extracted objects since many features can be selected for such comparison. We will
now explain the existing quality measures and propose some new measures within
the framework of feature similarity.

9.3.3 Explanation of the existing quality measures in
the new framework

The two parameters, α and β, as presented in the feature contrast model can be
regarded as weights for two aspects of mismatch. In most cases, we consider α =
β = 1. Within the framework of feature similarity, the figures in the diagonal cells
of an error matrix are regarded as matched features, i.e. f(C∩R); the figures in off-
diagonal cells of an error matrix are regarded as mismatched features, i.e. f(C−R)
and f(R−C). For the single-class assessment, we introduce the overall quality (OQ)
(please note this is different from overall accuracy as defined before). The overall
quality can be understood as a percentage of the number of matched objects among
the total number of objects in the classification result and the reference data.

OQk =
f(Ck ∩Rk)

f(Ck ∩Rk) + f(Ck −Rk) + f(Rk −Ck)
, k = 1, ..., m,

where k denotes a designated class (land-cover or land-use) and m denotes the
total number of designated classes. Thus the overall quality for both visual inter-
pretation results (per-object) and for computer image classification (per-pixel) can be
expressed as:

OQ for class k = N(Ck∩Rk)

N(Ck∩Rk)+N(Ck−Rk)+N(Rk−Ck)

= nkknkk+(nk+−nkk)+(n+k−nkk)
,

where N is a function of object numbers (number of objects (No) in visual inter-
pretation cases, number of pixels (Np) in computer image classification), n denotes
the actual the number of objects, and k denotes a designated class.

Similarly the user’s accuracy (UA) and producer’s accuracy (PA) can be expressed
as follows:
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UA for class k = N(Ck∩Rk)

N(Ck∩Rk)+N(Ck−Rk)

= nkknkk+(nk+−nkk)

= nkknk+

PA for class k = N(Ck∩Rk)

N(Ck∩Rk)+N(Rk−Ck)

= nkknkk+(n+k−nkk)

= nkkn+k

In the proposed framework, the overestimation problem in quality assessment
when using the error matrix for a single class (the example presented in Section 9.2)
can be solved as follows. Both user’s accuracy and producer’s accuracy are useful
measures for assessing the quality of a single class, and so is the overall quality that
combines the user’s accuracy and the producer’s accuracy.

Per-pixel OQ for extracted buildings =
Np(Cb∩Rb)

Np(Cb∩Rb)+Np(Cb−Rb)+Np(Rb−Cb)

= nbbnbb+(nb+−nbb)+(n+b−nbb)

= nbbnb++n+b−nbb

= 73.0 %

nbb is the number of matching pixels (within the random samples).

UA for extracted buildings =
Np(Cb∩Rb)

Np(Cb∩Rb)+Np(Cb−Rb)

= nbbnb+

= 86.9 %

PA for extracted buildings =
Np(Cb∩Rb)

Np(Cb∩Rb)+Np(Rb−Cb)

= nbbn+b

= 82.0 %
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The overall quality can also be produced based on UA and PA:

OQ =
1

1

UA + 1

PA − 1

The quality assessment results obtained in this case are considered as quality
measures in terms of spatial extent or location since pixels with random locations
are used in computing the results. Following the same line of thinking, quality as-
sessment can be applied by counting the number of objects to produce per-object
overall quality, correctness and completeness. Per-object quality assessment can be
assessed according to various object properties of extracted objects, such as object
size and object position. In the remaining part of this section, we will define a num-
ber of per-object quality measures based on object properties. Similar measures have
also been proposed by Heipke et al. (1997); Wiedemann et al. (1998).

9.3.4 Per-object quality measures based on object prop-
erties

Per-object overall quality

The formula remains the same for per-object overall quality but counting the num-
ber of objects instead of the number of pixels. The per-object overall accuracy will
produce the same figure as when measuring the accuracy of a visual interpretation.

Overall qualityObject = No(Ck∩Rk)

No(Ck∩Rk)+No(Ck−Rk)+No(Rk−Ck)

= nkknkk+(nk+−nkk)+(n+k−nkk)

= nkknk++n+k−nkk

nkk is now the number of matching objects.

Per-object user’s accuracy - correctness

The per-object user’s accuracy can be regarded as the correctness of obtained results
and can be computed by using the same formula as user’s accuracy.

Correctness = No(Ck∩Rk)

No(Ck∩Rk)+No(Ck−Rk)

= nkknk+

Per-object producer’s accuracy - completeness

The per-object producer’s accuracy can be regarded as the completeness of obtained
results and can be computed by using the same formula as producer’s accuracy.
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Completeness = No(Ck∩Rk)

No(Ck∩Rk)+No(Rk−Ck)

= nkkn+k

Per-object quality measure defined in terms of similarity in object
size (SimilaritySize)

In many cases, we may wish to find out how good or how similar the extracted objects
are in terms of object size as compared with the reference data. A quality measure
in terms of object size is proposed that measures similarity between the size of an
extracted object and the size of the corresponding object presented in the reference
data.

SimilaritySize(Oi) =
min(SizeC(Oi), SizeR(Oi))

max(SizeC(Oi), SizeR(Oi))

MeanSimilaritySize
=

1

n

n∑
i=1

SimilaritySize(Oi)

StdSimilaritySize
=

1

n

√√√√ n∑
i=1

(SimilaritySize(Oi)−MeanSimilaritySize
)2

where SizeC(Oi) denotes the size of the extracted object Oi and SizeR(Oi) de-
notes the size of the corresponding object presented in the reference data. The
function min(a, b) returns the smaller value of the two arguments. If min(a, b) is
a, then max(a, b) is b. SimilaritySize(Oi) measures similarity in terms of object size
for object Oi. MeanSimilaritySize

is a measure that indicates the average similarity
in terms of object size for all extracted objects. StdSimilaritySize

is the standard
deviation of similarity in terms of object size for all extracted objects.

Per-object quality measure defined in terms of object location
(QualityLocation)

In many cases, we may wish to find out how good the extracted objects are in terms
of object location as compared with the reference data. A quality measure in terms
of individual object location is proposed that is measured based on the distance be-
tween the centres of mass of an extracted object and the corresponding object in the
reference data.

QualityLocation(Oi) =
√

(XC(Oi)−XR(Oi))2 + (YC(Oi)− YR(Oi))2
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MeanQualityLocation
=

1

n

n∑
i=1

QualityLocation(Oi)

StdQualityLocation
=

1

n

√√√√ n∑
i=1

(QualityLocation(Oi)−MeanQualityLocation
)2

where XC(Oi) and YC(Oi) denote the x and y coordinates of the centre of mass of
extracted object Oi. XR(Oi) and YR(Oi) denote the x and y coordinates of the centre
of mass of the corresponding object presented in the reference data.

MeanQualityLocation
is a measure that indicates an average quality in terms of

object location for all extracted objects. StdQualityLocation
is the standard deviation

of quality measure in terms of object location for all extracted objects.

9.4 Quality assessment of extracted buildings
(land-cover objects)

Based on the proposed framework for quality assessment, we obtain quality assess-
ment results for various aspects of extracted buildings from the Amsterdam test site
and Ravensburg test site.

9.4.1 Quality assessment of spatial extent of buildings
by using randomly generated sample pixels

The per-pixel overall quality computed for extracted buildings from the Amsterdam
test site, based on 100,000 sample pixels, is 76.4 % according to the figures shown
in Table 9.3. These figures are obtained based on the reference map shown in Fig-
ure 6.10. Based on the same figures, the Kappa coefficient, user’s accuracy and
producer’s accuracy are calculated as 85.5 %, 81.8 % and 92.0 % respectively for
the Amsterdam test site. The main causes of error in terms of the spatial extent of
buildings on the Amsterdam test site are several large parking garages. These have
not been extracted because they are directly connected to the nearby road and do
not show the desired characteristic of vertical walls. Moreover, a number of metro
stations have been extracted as buildings but are not shown on the reference map.

The per-pixel overall quality computed for extracted buildings from the Ravens-
burg test site, based on 100,000 sample pixels, is 73.0 % according to figures shown
in Table 9.2. These figures are obtained based on the reference map shown in Fig-
ure 6.15. Based on the same figures, the Kappa coefficient, user’s accuracy and
producer’s accuracy are calculated as 83.7 %, 86.9 % and 82.0 % respectively for
the Ravensburg test site. The main causes of error in terms of the spatial extent of
buildings on the Ravensburg test site are the existence of many small houses with
gable roofs and high trees that are very close to low-rise buildings.
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Table 9.3: Error matrix for quality assessment of extracted buildings from
the Amsterdam test site, based on 100,000 random samples

Reference data

Building Not Total User’s
building accuracy

Classified
data

Building 9123 2032 11155 81.8 %
Not building 789 88056 88845 99.1 %

Total 9912 90088 100000
Producer’s 92.0 % 97.7 %
accuracy

Overall accuracy: 97.2 %, Kappa: 85.0 %, Overall quality: 76.4 %

9.4.2 Quality assessment by counting numbers of ob-
jects

Per-pixel measures can provide information on quality, but they are basically dealing
with quality at an ‘individual’ location for the variables. Quality measures are still
needed in an object perspective. Quality assessment by counting the number of
objects that are correctly detected, the number of objects that are wrongly detected
and the number of objects that are not detected can provide quality information
about extracted objects, as shown in Tables 9.4 and 9.5.

Amsterdam test site

The error matrix shown in Table 9.4 is obtained for per-object quality assessment ac-
cording to figures presented in Table 6.6, which are obtained based on the reference
map shown in Figure 6.10. The overall quality of extracted buildings from the Am-
sterdam test site is calculated as 683

683+25+26
= 93.1%. Correctness and completeness

of the extracted buildings are computed as 96.5 % and 96.3 % respectively.

Ravensburg test site

The error matrix shown in Table 9.5 is obtained for per-object quality assessment
according to figures presented in Table 6.7, which are obtained based on the refer-
ence map shown in Figure 6.15. The overall quality of extracted buildings from the
Ravensburg test site is calculated as 150

150+7+23
= 83.3%. Correctness and complete-

ness of the extracted buildings are computed as 95.5 % and 86.7 % respectively.
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Table 9.4: Error matrix for quality assessment of extracted buildings from
the Amsterdam test site in terms of the number of objects

Reference data
Building Others Total Correctness

Classified
data

Building 683 25 708 96.5 %
Others 26
Total 709

Completeness 96.3 %
Overall quality: 93.1 %

Table 9.5: Error matrix for quality assessment of extracted buildings from
the Ravensburg test site in terms of the number of objects

Reference data
Building Others Total Correctness

Classified
data

Building 150 7 157 95.5 %
Others 23
Total 173

Completeness 86.7 %
Overall quality: 83.3 %
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Figure 9.2: Impact of removing small objects on proposed measures.

Relationship between correctness and completeness in the case of
the Ravensburg test site

A test was made to see the responses of these measures to the removal of small
objects. When all small objects remain, the completeness figure is high, whereas
the correctness figure is lowered because of the existence of many small objects.
Many small objects are in fact non-building. When small objects are removed to a
certain degree, correctness figures climb but completeness figures drop, as shown
in Figure 9.2. The overall quality indicates a point of balance between correctness
and completeness, which may be useful for general cases such as using these data
in planning. In extreme cases, when we provide building data to locate people in
these buildings for a rescue operation, completeness is far more important than
correctness, since we do not want to miss any building under such circumstances.

9.4.3 Quality assessment in terms of similarity in object
size

In many cases, we may wish to find out how good or how similar extracted objects are
in terms of object size as compared with reference data. A per-object quality measure
in terms of similarity in object size as proposed earlier is obtained for extracted
buildings from the Amsterdam test site and the Ravensburg test site.

Amsterdam test site

The mean size similarity value 0.8765 and the standard deviation 0.1272 are cal-
culated based on the classification result and the reference data as shown in Fig-
ures 6.7 and 6.8 respectively. The mean size similarity 0.8765 in the scale of 0 to 1
shows high similarity in terms of building size, which means that the major parts
of extracted buildings match the corresponding buildings presented in the reference
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data. The low standard deviation 0.1272 shows consistent results are obtained for
extracted buildings.

Ravensburg test site

The mean size similarity value 0.8574 and the standard deviation 0.1133 are cal-
culated based on the classification result and the reference data as shown in Fig-
ure 6.12 and Figure 6.14 respectively. These figures show high similarity in terms of
building size; thus the major parts of extracted buildings match the corresponding
buildings presented in the reference data. The low standard deviation 0.1133 shows
consistent results are obtained for extracted buildings.

9.4.4 Quality assessment in terms of object location
The Euclidean distance between the centres of mass (gravity centres) of an extracted
object and the corresponding object presented in the reference data is computed as
a measure of the positional quality of the extracted objects.

The mean distance between the centres of mass of corresponding buildings and
the standard deviation computed for the Amsterdam test site are 1.9961 m and
4.4102 m. This means that the positions of extracted buildings have shifted about
two pixels on average from their positions in the reference data.

The mean distance between the centres of mass of corresponding buildings and
the standard deviation computed for the Ravensburg test site are 1.1474 m and
0.9387 m. This means that the positions of extracted buildings have shifted one to
two pixels on average from their positions in the reference data.

The results obtained for both test sites show that correctly extracted buildings
are very well located.

9.4.5 Quality comparison between buildings extracted
from the Amsterdam test site and buildings ex-
tracted from the Ravensburg test site

To make a more comprehensive comparison of the building extraction results ob-
tained for the two test sites, we list all quality assessment results obtained based
on the proposed quality measures, as shown in Table 9.6. Based on these figures,
we can conclude that the extracted result for the Amsterdam test site is generally
better than that obtained for the Ravensburg test site according to several overall
quality measures such as per-pixel and per-object overall quality and the Kappa co-
efficient. The main reason is that the Amsterdam test site has many large buildings,
which are relatively easier to extract than the many small residential buildings of
the Ravensburg test site, especially as these are mixed with trees. Quality measures
in terms of building size show that very similar results are obtained from both sites.
The quality measures in terms of object location show that the result obtained for
the Ravensburg test site is better than the result obtained for the Amsterdam test
site. The main reason is likely to be that the reference data for the Amsterdam test
site are obtained by digitising the large-scale base map. Many building forecourts
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Table 9.6: Comparison of quality assessment results for building extraction
obtained from two test sites

Quality measures Amsterdam Ravensburg

Per-pixel

Overall quality 76.4 % 73.0 %
Kappa coefficient 85.0 % 83.7 %
User’s accuracy 81.8 % 86.9 %

Producer’s accuracy 92.0 % 82.0 %

Per-object

Overall quality 93.1 % 83.3 %
Correctness 96.5 % 95.5 %

Completeness 96.3 % 86.7 %
Mean similaritySize 0.8765 0.8574
Std similaritySize 0.1272 0.1133

Mean qualityLocation 1.9961 1.1474
Std qualityLocation 4.4102 0.9387

were not delineated as parts of buildings in this base map, but they are extracted as
parts of buildings in the extracted result. The reference data for the Ravensburg test
site are acquired by visual interpretation and screen digitising based on the same
image used for building extraction.

9.5 Quality improvement by forming a more
compact object shape

A weighted smoothing filter convolution is proposed, and used to obtain a more com-
pact form of an object by applying this filter to overall fuzzy membership values.
The proposed weighted smoothing filter as shown in Figure 9.3 has the following
properties:

∑
p=1 to ensure that the result remains in the range [0, 1]; the cen-

tral pixel should play a dominant role; the four more closely adjacent pixels should
obtain higher weights (i.e. twice as high in this case) than the four corner pixels.
The expected role of the smoothing convolution is to improve object quality, obtain a
more compact form of an object and eliminate noise and unnecessary links between
objects. A test has been made with 100,000 randomly generated samples over the
test site to investigate its impact on the overall member function values of pixels
as parts of objects in different categories. The test results are shown in Tables 9.7
and 9.8. The mean value (MFOA) of pixels belonging to correctly classified buildings
slightly decreased from 0.8048 to 0.7805. The mean value (MFOA) of pixels belong-
ing to wrongly classified buildings significantly decreased from 0.7649 to 0.6679.
These figures show that the smoothing filter convolution can decrease the chance of
making mistakes in classifying pixels from non-building to building, while no major
negative impact is observed for the remaining parts of the figures, as shown in Ta-
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Figure 9.3: A weighted smoothing filter for a more compact form of objects.

Table 9.7: Mean and standard deviation (Std) of overall fuzzy membership
function values (MFOA) before applying the proposed smoothing filter con-
volution, based on 100,000 random samples

Reference data
Building Non-building

Mean Std Mean Std
Classified
data

Building 0.8048 0.0817 0.7649 0.0913
Non-building 0.1382 0.2250 0.0110 0.0622

bles 9.7 and 9.8. We can also observe by comparing histograms b and b’ in Figure 9.4
that the distribution has been turned to another direction, where higher frequency
is found to be close to 1 before applying the smoothing filter and close to 0.5 (0.5
is the threshold for object detection) after applying the smoothing filter for wrongly
detected objects. Both observations indicate that the proposed smoothing filter is
effective for our objectives mentioned earlier (more compact object shapes can be
found in the image).

9.6 Quality and uncertainty assessment of
land-use classification (land-use objects)

To assess the land-use classification result, the classified result as shown in Fig-
ure 8.22 is compared with the reference data as shown in Figure 8.23. Quantitative
assessment is made in terms of object number and with consideration of object size.
Uncertainty assessment is made by object-object comparison of the assigned class
labels in classified data and the reference data. Quality assessment regarding the
spatial extent of land-use units is discussed at the end of this section.
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Table 9.8: Mean and standard deviation (Std) of overall fuzzy membership
function values (MFOA) after applying the proposed smoothing filter convo-
lution, based on 100,000 random samples

Reference data
Building Non-building

Mean Std Mean Std
Classified
data

Building 0.7805 0.1034 0.6679 0.1058
Non-building 0.1230 0.1897 0.0098 0.0538
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Figure 9.4: Histogram plots for distributions of overall fuzzy mem-
bership function values (MFOA) within correct objects (a), mistaken
objects (b), undetected objects (c), non-object areas (d) and their
counterparts after applying the proposed smoothing filter (a’, b’, c’,
d’).
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Table 9.9: Error matrix of per-object land-use classification obtained from
Amsterdam test site

Reference data

Resid. Comm. Green Total User’s
accuracy

Classified
data

Residential 26 5 0 31 83.9 %
Commercial 6 21 1 28 75.0 %
Green space 0 0 43 43 100 %

Total 32 26 44 102
Producer’s
accuracy 81.3 % 80.8 % 97.7 %

Overall accuracy: 88.2 %; Kappa coefficient: 82.0 %

9.6.1 Quality assessment by counting numbers of ob-
jects

The figures obtained by counting the number of objects that are correct or incorrect
when compared with reference data using the per-object approach are presented in
Table 9.9. Based on these figures, we can conclude that most land-use objects are
correctly classified, with an overall accuracy of 88.2 % and a Kappa coefficient of
82.0 %. Public green space gains both the highest user’s accuracy (100 %) and the
highest producer’s accuracy (97.7 %). Residential area obtains slightly higher user’s
accuracy (83.9 %) and producer’s accuracy (81.3 %) than commercial does (75.0 %
and 80.8 %).

9.6.2 Quality assessment by considering object size
The quality assessment figures by considering the object size are acquired by the per-
pixel approach, which counts the number of pixels in each land-use unit and checks
class labels, as shown in Table 9.10. Based on these figures, we see that most land-
use objects are correctly classified taking object size as the criterion. The overall
accuracy is 95.3 % and the Kappa coefficient is 92.0 %. Green space gains both
the highest user’s accuracy (100 %) and the highest producer’s accuracy (99.5 %).
Residential obtains slightly higher user’s accuracy (94.6 %) and producer’s accuracy
(96.9 %) than commercial does (87.6 % and 81.3 %). The reason for the higher-quality
figures obtained by considering object size and using the per-pixel approach (overall
accuracy: 95.3 %; Kappa coefficient: 92.0 %), as compared with those obtained by the
per-object approach (overall accuracy: 88.2 %; Kappa coefficient: 82.0 %), is mainly
because large land-use objects such as large residential areas are more likely to
be classified correctly and most misclassified objects are small objects, as discussed
earlier in Chapter 8. The relationship between object size, certainty measure and
correctness as shown in Figure 9.6 also supports the above judgement.
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Table 9.10: Error matrix of per-object land-use classification by considering
object size

Reference data

Resid. Comm. Green
space Total

User’s
accuracy

Classified
data

Residential 4128568 234057 0 4362625 94.6 %

Commercial 130240 1015496 13272 1159008 87.6 %

Green space 0 0 2457512 2457512 100 %

Total 4258808 1249553 2470784 7979145
Producer’s
accuracy 96.9 % 81.3 % 99.5 %

Overall accuracy: 95.3 %; Kappa coefficient: 92.0 %

9.6.3 Uncertainty assessment of classification result

To acquire a ‘hard’ classification result in fuzzy classification, we normally label
the class according to the highest membership value among others. The difference
between the highest membership value and the second highest membership value
indicates how close these two membership values are for each land-use object. The
larger the difference is between the highest membership value and the second high-
est membership value, the more certain we consider the class assigned to an object.
Uncertainty assessment based on this difference is shown in Figure 9.5.

Based on Figure 9.5, we can observe that public green space obtains the highest
certainty values, which indicates that public green space is clearly separate from
other classes in general. Residential and commercial classes form a considerable
mixture.

The average certainty value of 90 correctly classified objects is 0.23; the value
for 12 misclassified objects is 0.05. Of 90 correctly classified objects, 26 residential
objects get the average certainty value of 0.079, 21 commercial objects get the aver-
age certainty value of 0.075, 43 green space objects get the average certainty value
of 0.39. These figures indicate that the proposed uncertainty measure based on the
difference between the highest and the second highest membership values can re-
flect the difference and support our observation that green space is easily separated
from other classes in general. Residential and commercial are mixed. Based on the
certainty values, the users can concentrate their attention on those objects that ob-
tain low certainty values and correct them manually. The relationship between the
size of land-use objects, the classification certainty measurement and correctness as
shown in Figure 9.6 suggests that the most misclassified objects are small objects
and that they received low classification certainty values.
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Figure 9.5: Uncertainty assessment measured based on difference between
the highest and the second highest fuzzy membership values for each land-
use object.

9.6.4 Quality assessment in terms of spatial extent of
land-use objects

As we had no authorised land-use map for comparative purposes, no quality as-
sessment has been carried out in terms of the spatial extent of land-use objects.
Land-use maps produced by individuals using the visual interpretation method are
highly subjective. Although agreement may be reached on assigning a specific class
label to a specific area, very often interpreters may not be able to reach agreement
on its spatial boundary, especially when no physical feature can be found in the im-
age and in reality to support such delineation. We observe that precision in terms
of the spatial extent of land-use units is not considered as important as assigning
the right class labels. For instance, in land-use mapping by visual interpretation,
people often use straight lines to delineate land-use areas in order to produce more
compact and visually attractive results, even in a case where a slightly curved line
is suggested by the physical features. In addition, a small area is often ignored and
simply delineated as part of a large land-use unit in the surrounding areas.
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Figure 9.6: Relationship between size of land-use objects, classification cer-
tainty and correctness.

9.7 Summary
Quality assessment of objects extracted directly from images is still in its initial
stage. We can simply provide users with a fuzzy result, with detailed overall fuzzy
membership function values that indicate the possibility of an object being present
or absent at a certain location, the spatial extents of objects and the magnitude of un-
certainties. Correct interpretation of such results requires solid technical knowledge
as well as knowledge about the application fields. Therefore, a crisp classified result
and associated quality measures are needed to avoid misunderstanding in the use
of such a fuzzy result. Several existing per-pixel-based measures have been tested
in the object environment and in the single-class cases. Some of them are no longer
valid, while others may be reused, but a different interpretation of these measures
is needed in an object environment. Thus a united framework for quality assess-
ment is proposed, utilising per-pixel and per-object quality measures and providing
quality measures for the single-class cases. In the united framework, several exist-
ing quality measures are explained, and a number of per-object quality assessment
measures are proposed. We have explained them for land-cover objects by taking
the example of buildings considering the properties, correct classification, size and
position. Several per-object quality assessment measures are proposed for land-use
objects in terms of ‘object number’ and considering object size. The difference be-
tween the highest membership value and the second highest membership value is
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proposed as a measure for uncertainty assessment of land-use classification results.
Testing was carried out on results obtained by an object-based approach for building
extraction and land-use classification from our test sites. The test results show that
the proposed measures can provide useful information from different perspectives
concerning uncertainties caused by different sources. These measures provide sev-
eral choices and allow the users to choose and judge them based on their application
requirements. Further investigation are needed, related to application range and
the sensitivity to different data sets.
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Chapter 10

Conclusions and future
research

10.1 Conclusions
1. In this research, several new sensor data have been used and examined for

urban land-cover and land-use classification. Triggered by the potential prob-
lems of high-resolution data, we have examined the most popular pixel-based
classifier, the maximum likelihood classifier, as an example of the behaviour
of traditional classifiers toward high-resolution data. A number of problems
have been observed and highlighted, such as the existence of sub-clusters in
the feature space, which lead to misclassification in the end-member classes.
Several remedial measures for the observed problems have been proposed and
tested. Land-cover classification accuracy can be improved by modelling the
decision surface in the feature space and by selecting samples from both pure
pixels and mixed pixels. Spatial partitioning of decision surfaces, which are
estimated based on samples of end-member classes, has been the focus of the
proposed solutions. The increasing classification accuracy of the experimen-
tal results has confirmed the effectiveness of the proposed class integration
method using pure and mixed samples. However, other problems such as pix-
els in shadow areas and relief displacement caused by non-vertical observa-
tion remain untouched by the proposed solutions. As pixels in shadow areas
have a very similar spectral reflectance to pixels of water surfaces, the spec-
tral responding curve for shadow pixels lies between the spectral responding
curves for large water surfaces such as lakes and small water surfaces such
as canals as – observed from the IKONOS image of the Amsterdam test site.
The shadow problem becomes a real issue when we use high-resolution data
(1 m to 4 m) for urban areas, although it can be ignored when using coarse-
resolution data or dealing with non-urban sites. This problem is difficult to
solve using spectral data alone and per-pixel approaches. This problem has
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been largely solved by using spectral data and laser data in our per-object ap-
proach.

Although the proposed modifications improve the land-cover classification ac-
curacy of the MLC, we consider the attainable results insufficient for a de-
tailed urban land-use classification because of the complexity of urban en-
vironments. Based on our knowledge and experiences obtained from visual
image-interpretation, the key features for image-interpretation, such as size,
shape, colour, orientation, pattern, association, are directly associated with
explicit objects, which are at higher abstraction levels than pixels. These key
features should continue to play a key role in image analysis and land-use
classification. For instance, we need to check how buildings are spatially dis-
tributed in space in order to find out if they belong to the same residential
area. We need to know the number of floors of a building to achieve better
understanding and classification. We need to know if buildings are similar in
size, height or orientation, etc. We need to explore the surrounding features of
specific objects. Such information cannot be acquired by per-pixel approaches
because they are directly associated with objects, not pixels. Therefore, object-
based image processing techniques are considered better for image analysis at
higher levels than the pixel level, which provides additional tools and methods
for image analysis at higher abstraction levels. Thus an object-based image
analysis approach has become the main focus of this research.

2. The combination of high spatial resolution airborne LIDAR data and multi-
spectral imagery such as IKONOS, QuickBird and SPOT 5 offers great appli-
cation opportunities, especially in urban areas. With the remarkable capaci-
ties provided by the second generation of airborne scanners that enable both
height and spectral information to be acquired simultaneously by laser scan-
ner and multi-spectral scanner, many meaningful features can be derived by
combining these two types of data rather than using one type of data alone.
With respect to extracting image objects and per-object properties, and iden-
tifying explicit topological relations between image objects, several concepts,
methods as well as other fundamental issues concerning the object-based ap-
proach have been proposed and discussed, such as object hierarchy, image
object, the hybrid-raster data model, methods of identifying topological rela-
tionships between image objects, and methods of extracting various per-object
properties. The hybrid-raster data model has been applied to enable topologi-
cal relationships between image objects to be explicitly identified. These con-
cepts and methods have been tested and successfully applied in urban land-
cover and land-use classification for two test sites. We consider the test results
to be promising and to confirm the effectiveness of the proposed per-object ap-
proach.

3. A hierarchical object-based approach for urban land-use classification based
on high-resolution remote sensing data has been proposed in this research.
Three types of hierarchical objects have been outlined: fundamental objects
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at pixel level, land-cover objects at the land-cover level and land-use objects
at the land-use level. The proposed method consists of three steps: land-cover
classification, land-use unit reasoning and delineation, and land-use classifi-
cation. It incorporates per-pixel-based image processing techniques and per-
object-based techniques at different stages. Various techniques have been pro-
posed and tested for object extraction at different aggregation levels. The
experimental results produced for various stages, from pixels to land-cover
objects and from land-cover objects to land-use objects, show the success of
applying hierarchical image objects and structural image analysis techniques
in urban land-cover and land-use classification. The experiments show that
hierarchically formed image objects are useful tools for image analysis and
spatial modelling and are more successful than pixel-based approaches based
on aggregation hierarchies. A spatial modelling approach has been proposed
for spatial modelling at the sub-pixel level. The test results have confirmed
that the proposed sub-pixel approach can be applied to improve classification
accuracy, obtain finer class boundaries, and achieve better spatial interpola-
tion.

4. Structural information derived from hierarchical image objects plays an im-
portant role in land-use classification of urban areas. Delaunay triangulation
has been successfully applied to spatially disjoint objects such as buildings
in order to obtain the spatial adjacency relationship and a proximity mea-
surement – useful information for spatial clustering to find spatial land-use
units. Several similarity measures have been proposed and tested for similar-
ity measurement based on object properties such as building size and building
height. Similarity measurements have proved to be useful information for
spatial clustering, in addition to the spatial adjacency relationship and the
proximity measurement.

5. Several object properties have been proposed and extracted as object attributes
of land-use objects for our two test sites. Fuzzy membership functions have
been designed to establish the relationships between extracted land-use object
properties and designated land-use classes. A fuzzy classifier has been applied
for per-object classification based on extracted land-use units and their object
properties. The obtained results show that the proposed per-object land-use
classification approach is promising. The extracted land-use object properties
are also useful information for urban studies, planning and management.

6. A united framework for quality assessment has been proposed and tested,
based on similarity measures between classified data and reference data. This
framework utilises per-object and per-pixel measurements, and is also suitable
for the quality assessment of single-class cases. The proposed per-object qual-
ity measures provide the possibility of obtaining additional quality assessment
based on various object properties. The proposed uncertainty measures for ex-
tracted land-cover objects and classified land-use objects have been tested, and
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proved to be useful information that enables users to concentrate their atten-
tion on those uncertain objects.

7. The developed concepts and methods have been implemented by programming
in MatlabTM . The implemented system allows different users to express their
wishes by specifying characteristics that can be extracted from laser data and
spectral data, and related parameters, in order to obtain the desired results.
This feature offers planners and other users the opportunity to produce results
according to their specific wishes and applications from a detailed data set,
and to share the relatively high costs of acquiring high-resolution laser data
and spectral data.

10.2 Future research
1. The current image-object concept is defined for representing image regions or

area objects in image space. Further research is needed regarding the repre-
sentation of other types of objects, such as linear objects, in image space. Topo-
logical relationships between image objects are defined and extracted based
on the hybrid-raster data model for crisp image regions. Additional effort is
needed as regarding topological relationships between fuzzy image regions,
and linear and point objects.

2. As regards spatial clustering and reasoning for finding spatial land-uses units,
the shortest distances between adjacent land-cover objects (buildings), as well
as similarity measures in terms of building size and building height, are used
as measures in this research. Additional measures may be needed, such as
similarity in terms of object shape and orientation, that are considered useful
information for obtaining better clustering results. Since similarity measures
for shape and orientation are more complicated to formulate and apply, and
have not been included in the current research, additional investigation is
needed in this respect. It may be worthwhile to derive a more comprehensive
measure based on different object properties; additional investigation is re-
quired here too.

3. In this research, we have limited ourselves to using laser data and spectral
data only, and to extracting as much as possible from these data. It is expected
that some more useful products may be produced when additional data such
as demographic data, economic data and other GIS data are available. We
have demonstrated the successful use of a digitised road map for obtaining re-
fined spatial land-use units. Additional investigation is needed on integrating
high-resolution data with other data. Road extraction itself is another inter-
esting research area that is not covered by the current research. We believe
our object-based approach can be extended to the extraction of linear features
such as roads.
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4. Urban areas are complicated. Additional efforts are needed and different set-
tings have to be investigated in order to find out whether additional features
are needed and how to specify parameters for situations that may appear in
different types of urban areas and different types of cities.

5. Buildings, green spaces, water surfaces and sealed-ground surfaces have been
successfully extracted at the land-cover level. Land-use spatial units have
been obtained by spatial reasoning based on the extracted land-cover objects.
Per-object land-use classification has been made with high accuracy. These
achievements have been accomplished using the developed semi-automatic
approaches based on high-resolution data. Further research is needed toward
fully automatic image interpretation.

241



10.2. Future research

242



References

American Planning Association, 2001. Land-based classification standards (avail-
able from http://www.planning.org/lbcs).

Anderson, J. R., Hardy, E. E., Roach, J. T., Witmer, R. E., 1976. A land use and
land cover classification system for use with remote sensor data. Tech. rep., U.S.
Geological Survey, Professional Paper 964.

Aplin, P., Atkinson, P. M., 2001. Sub-pixel land cover mapping for per-field classifi-
cation. International Journal of Remote Sensing 22 (14), 2853–2858.

Aplin, P., Atkinson, P. M., Curran, P. J., 1999a. Fine spatial resolution simulated
sensor imagery for land cover mapping in the United Kingdom. Remote Sensing
of Environment 68, 206–216.

Aplin, P., Atkinson, P. M., Curran, P. J., 1999b. Per-field classification of land use
using the forthcoming very fine spatial resolution satellite sensors: problems and
potential solutions. In: Atkinson, P. M., Tate, N. J. (Eds.), Advances in Remote
Sensing and GIS Analysis. John Wiley and Sons, Chichester etc., pp. 219–239.

Atkinson, P. M., 1997. Mapping sub-pixel boundaries from remotely sensed images.
In: Kemp, Z. (Ed.), Innovations in GIS 4. Taylor and Francis, London, pp. 166–
180.

Atkinson, P. M., Cutler, M. E. J., Lewis, H. G., 1997. Mapping sub-pixel proportional
land cover with AVHRR imagery. International Journal of Remote Sensing 18 (4),
917–935.

Axelsson, P., 1999. Processing of laser scanner data - algorithms and applications.
ISPRS Journal of Photogrammetry and Remote Sensing 54 (2-3), 138–147.

Ballard, D. B., Brown, C. M., 1982. Computer Vision. Prentice-Hall, Englewood,
Cliffs, NJ.

Barber, C. B., Dobkin, D. P., Huhdanpaa, H. T., 1996. The quickhull algorithm for
convex hulls. ACM Transactions on Mathematical Software 22 (4), 469–483.

243



REFERENCES

Barnsley, M. J., Barr, S. L., 1997. Distinguishing urban land-use categories in fine
spatial resolution land-cover data using a graph-based, structural pattern recog-
nition system. Computer, Environment and Urban Systems 21 (3/4), 209–225.

Barr, S. L., Barnsley, M. J., 1997. A region-based, graph-theoretic data model for
the inference of second-order thematic information from remote-sensed images.
International Journal of Geographical Information Science 11 (6), 555–576.

Bastin, L., 1997. Comparison of fuzzy c-means classification, linear mixture mod-
elling and MLC probabilities for unmixing coarse pixels. International Journal of
Remote Sensing 18 (17), 3629–3648.

Beaulieu, J.-M., Goldberg, M., 1989. Hierarchy in picture segmentation: a stepwise
optimization approach. IEEE Transactions on Pattern Analysis and Machine In-
telligence 11 (2), 150–163.

Bian, L., Butler, R., 1999. Comparing effects of aggregation methods on statistical
and spatial properties of simulated spatial data. Photogrammetric Engineering
and Remote Sensing 65 (1), 73–84.

Bishr, Y., 1997. Semantic Aspects of Interoperable GIS. PhD Dissertation, Wagenin-
gen Agricultural University and ITC.

Booch, G., 1993. Object - Oriented Analysis and Design: with Applications, 2nd
Edition. Benjamin Cummings, Redwood City etc.

Borges, K. A. V., Davis Jr., C. A., Laender, A. H. F., 2001. OMT-G: an object-oriented
data model for geographic applications. GeoInformatica 5 (3), 221–260.

Bradley, P. S., Fayyard, U. M., Reina, C. A., 1998. Scaling EM (Expectation Max-
imization) clustering to large databases. Microsoft Research Report 98-35, Mi-
crosoft.

Brunn, A., Weidner, U., 1997. Extracting buildings from digital surface models. In-
ternational Archives of Photogrammetry and Remote Sensing 32 (Part 3-4W2),
27–34.

Burrough, P. A., McDonnell, R. A., 1998. Principles of Geographical Information
Systems. Oxford University Press, Oxford.

Campbell, B. J., 1981. Spatial correlation effects upon accuracy of supervised classi-
fication of land cover. Photogrammetric Engineering and Remote Sensing 47 (3),
355–363.

Campbell, B. J., 1996. Introduction to Remote Sensing, 2nd Edition. Guilford Press,
New York.

Campbell, B. J., 2002. Introduction to Remote Sensing, 3rd Edition. Guilford Press,
New York.

244



REFERENCES

Chen, B., Song, X., Lin, C., 1989. The study of microcomputer-based urban planning
and management information system. In: International Conference on Computers
in Urban Planning and Urban Management. Hong Kong: Centre of Urban Studies
and Urban Planning, University of Hong Kong, Hong Kong, pp. 119–121.

Coad, P., Yourdon, E., 1990. Object-Oriented Analysis, 2nd Edition. Prentice-Hall,
Englewood Cliffs.

Congalton, R. G., Mead, R. A., 1983. A quantitative method to test for consistency
and correctness in photo-interpretation. Photogrammetric Engineering and Re-
mote Sensing 49, 69–74.

Cook, R. G., 2001. Hierarchical stimulus processing by pigeons. In: R. G. Cook, (Ed.),
Avian Visual Cognition [On-line]. Available: www.pigeon.psy.tufts.edu/avc/cook/.

Couclelis, H., 1992. People maniputate objects (but cultivate fields): beyond the
raster-vector debate in GIS. In: Frank, A. U., Campari, I. (Eds.), Theories and
Methods of Spatio-Temporal Reasoning in Geographic Space. Lecture Note in
Computer Science 639. Springer-Verlag, Berlin etc., pp. 65–77.

Cova, T. J., Goodchild, M., 2002. Extending geographical representation to include
fields of spatial objects. International Journal of Geographical Information Sci-
ence 16 (6), 509–532.

Curran, P. J., 1985. Principles of Remote Sensing. Longman, New York.

Cushine, J. L., 1987. The interactive effects of spatial resolution and degree of inter-
nal variability within land-cover types on classification accuracies. International
Journal of Remote Sensing 8 (1), 15–29.

de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O., 2000. Computational
Geometry: Algorithms and Applications, 2nd Edition. Springer-Verlag, Berlin etc.

Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society, Series B
39, 1–38.

Dungan, J. L., 2002. Toward a comprehensive view of uncertainty in remote sensing
analysis. In: Foody, G. M., Atkinson, P. M. (Eds.), Uncertainty in Remote Sensing
and GIS. John Wiley and Sons, Chichester etc., pp. 25–35.

Egenhofer, M. J., 1989. A formal definition of binary topological relationships. In:
Litwin, W., Schek, H. J. (Eds.), The Third International Conference on Founda-
tions of Data Organization and Algorithms (DODO), Paris, France. Vol. 367 of
Lecture Notes in Computer Science. Springer-Verlag, New York etc., pp. 457–472.

Egenhofer, M. J., 1993. A model for detailed binary topological relationships. Geo-
matica 47 (3 and 4), 261–273.

Egenhofer, M. J., Franzosa, R. D., 1991. Point-set topological spatial relations. Inter-
national Journal of Geographical Information Systems 5 (2), 161–174.

245



REFERENCES

Egenhofer, M. J., Herring, J. R., 1991. Categorizing binary topological relations be-
tween regions, lines, and points in geographic databases. Tech. rep., Department
of Surveying Engineering, University of Maine.

Egenhofer, M. J., Sharma, J., 1993. Topological relations between regions in R2 and
Z2. In: Abel, D., Ooi, B. C. (Eds.), Advances in Spatial Databases - Third Inter-
national Symposium on Large Spatial Databases, SSD ‘93, Singapore. Vol. 692 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin etc., pp. 316–336.

Ehlers, M., Schiewe, J., Tufte, L., 2002. Urban remote sensing: new development
and challenges. In: Maktav, D., Jürgens, C., Erbek, F. S., Akgün, H. (Eds.), The
3rd International Symposium on Remote Sensing of Urban Areas. Vol. 1. Istanbul
Technical University, Istanbul, Turkey, pp. 130–137.

Estivill-Castro, V., Lee, I., 2002. Multi-level clustering and its visualization for ex-
ploratory spatial analysis. GeoInformatica 6 (2), 123–152.

Fisher, P., 1997. The pixel: a snare and a delusion. International Journal of Remote
Sensing 18 (3), 679–685.

Foody, G. M., 1996. Approaches for the production and evaluation of fuzzy land cover
classification from remotely-sensed data. International Journal of Remote Sens-
ing 17 (17), 1317–1340.

Foody, G. M., 1998. Sharpening fuzzy classification output to refine the representa-
tion of sub-pixel land cover distribution. International Journal of Remote Sensing
19 (13), 2593–2599.

Foody, G. M., 2000. Accuracy of thematic maps derived from remote sensing. In:
Heuvelink, G. B. M., Lemmens, M. J. P. M. (Eds.), Proceedings of 4th International
Symposium on Spatial Accuracy Assessment in Natural Resources and Environ-
mental Sciences. Delft University Press, Amsterdam, pp. 217–224.

Foody, G. M., Campbell, N. A., Trodd, N. M., Wood, T. F., 1992. Derivation and
applications of probabilistic measures of class membership from the maximum-
likelihood classification. Photogrammetric Engineering and Remote Sensing
58 (9), 1335–1341.

Foody, G. M., Lucas, R. M., Curran, P. J., Honzak, M., 1997. Non-linear mixture
modelling without end-members using an artificial neural network. International
Journal of Remote Sensing 18 (4), 937–953.

Fowler, M., Scott, K., 1999. UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 2nd Edition. Addison-Wesley, Boston etc.

Geo-Loket, 2002. AHN: Actual height model of the Netherlands,
http://www.minvenw.nl/rws/mdi/geoloket/overig.html.

Gold, C. M., 1991. Problems with handling spatial data - the Voronoi approach.
CISM Journal 45, 65–80.

246



REFERENCES

Gold, C. M., 1992. The meaning of ‘neighbour’. In: Frank, A. U., Campari, I., Formen-
tini, U. (Eds.), Theories and Methods of Spatio-Temporal Reasoning in Geographic
Space. Vol. 39 of Lecture Notes in Computer Science. Springer-Verlag, Berlin etc.,
pp. 220–235.

Gold, C. M., Edwards, G., 1992. The Voronoi spatial model: two- and three-
dimentional applications in image analysis. ITC Journal 1992 (1), 11–19.

Gong, P., Howarth, P. J., 1990. An assessment of some factors influencing multispec-
tral land-cover classification. Photogrammetric Engineering and Remote Sensing
56 (5), 597–603.

Goodchild, M. F., 1992. Geographical data modeling. Computer and Geosciences
18 (4), 401–408.

Goodchild, M. F., 1997. Representing Fields, NCGIA Core Curriculum in GIScience,
http://www.ncgia.ucsb.edu/giscc/units/u054/u054.html.

Haala, N., Brenner, C., 1999. Extraction of buildings and trees in urban environ-
ments. ISPRS Journal of Photogrammetry and Remote Sensing 54 (2-3), 130–137.

Haala, N., Walter, V., 1999. Automatic classification of urban environment for
database revision using LIDAR and color aerial imagery. International Archives
of Photogrammetry and Remote Sensing 32 (Part 7-4-3 W6), 76–82.

Hall, P., 2002. Urban and Regional Planning, 4th Edition. Routledge, London etc.

Han, J., Kamber, M., Tung, A. K. H., 2001. Spatial clustering methods in data min-
ing. In: Miller, H. J., Han, J. (Eds.), Geographic Data Mining and Knowledge
Discovery. Research Monographs in GIS Series. Taylor and Francis, London etc.,
pp. 188–217.

Haralick, R. M., Shapiro, L. G., 1985. Survey - image segmentation techniques. Com-
puter Vision, Graphics, and Image Processing 29, 100–132.

Harrison, A., Garland, B., 2001. The national land use database: building new na-
tional baseline data of urban and rural land use. In: AGI Conference 2001.

Hartshorn, T. A., 1992. Interpreting the City: An Urban Geography, 2nd Edition.
John Wiley and Sons, Chichester etc.

Heipke, C., Mayer, H., Wiedemann, C., Jamet, O., 1997. Evaluation of automatic
road extraction. International Archives of Photogrammetry and Remote Sensing
32 (3-2W3), 47–56.

Hoeppner, F., Klawonn, F., Kruse, R., Runkler, T., 1999. Fuzzy Cluster Analysis:
Methods for Classification, Data Analysis and Image Recognition. John Wiley and
Sons, Chichester etc.

247



REFERENCES

Hug, C., Wehr, A., 1997. Detecting and identifying topographic objects in imaging
laser altimeter data. The International Archives of Photogrammetry and Remote
Sensing 32 (Part 3-4W2), 19–26.

Janssen, L. L. F., 1994. Methodology for Updating Terrain Object Data from Re-
mote Sensing Data: The Application of Landsat TM Data with Respect to Agri-
cultural Fields. PhD Dissertation. Wageningen Agricultural University and ITC,
Enschede, The Netherlands.

Kainz, W., Egenhofer, M. J., Greasley, I., 1993. Modelling spatial relations and op-
erations with partially ordered sets. International Journal of Geographical Infor-
mation Systems 7 (3), 215–229.

Kaufman, L., Rousseeuw, P. J., 1990. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley and Sons, New York etc.

Kovalevski, V. A., 1989. Finite topology as applied to image analysis. Computer Vi-
sion, Graphics, and Image Processing 46, 141–161.

Le Clercq, F., 1990. Information management within the planning process. In:
Scholten, H. J., Stillwell, J. C. H. (Eds.), Geographical Information Systems for
Urban and Regional Planning. Kluwer Academic, Dordrecht etc., pp. 59–68.

Lemmens, M. J. P. M., Deijkers, H., Looman, P. A. M., 1997. Building detecting
fusing airborne laser-altimeter DEMs and 2D digital maps. The International
Archives of Photogrammetry and Remote Sensing 32 (Part 3-4W2), 42–49.

Li, C., Chen, J., Li, Z., 1999. A raster-based method for computing Voronoi diagrams
of spatial objects using dynamic distance transformation. International Journal
of Geographical Information Science 13 (3), 209–225.

Li, Z., Huang, P., 2002. Quantitative measures for spatial information of maps. In-
ternational Journal of Geographical Information Science 16 (7), 699–709.

Liu, Y., Molenaar, M., Kraak, M. J., 2002. Semantic similarity evaluation model in
categorical database generalization. International Archives of Photogrammetry
and Remote Sensing 34, Part 4, 279–285.

Lobovitz, M. L., Masuoka, E. J., 1984. The influence of autocorrelation in signature
extraction - an example from a geobotanical investigation of Cotter Basin, Mon-
tana. International Journal of Remote Sensing 5 (2), 315–332.

MacQueen, J., 1967. Some methods for classification and analysis of multivariate ob-
servation. In: Proceedings of the Fifth Berkeley Symposium on Maths and Statis-
tics Problems. pp. 281–297.

Marble, D. F., Amundason, S. E., 1988. Microcomputer based geographical infor-
mation systems and their role in urban and regional planning. Environment and
Planning B: Planning and Design 15, 305–324.

248



REFERENCES

Marques de Sa, J. P., 2001. Pattern Recognition: Concepts, Methods and Applica-
tions. Springer-Verlag, Berlin etc.

Mather, P. M., 1999. Computer Processing of Remotely-Sensed Images: An Introduc-
tion, 2nd Edition. John Wiley and Sons, Chichester etc.

McFeeters, S. K., 1996. The use of the Normalized Difference Water Index (NDWI)
in the delineation of open water feature. International Journal of Remote Sensing
17 (7), 1425–1432.

McLoughlin, J. B., 1969. Urban and Regional Planning: A System Approach. Faber,
London.

Mertikas, P., Zervakis, M. E., 2001. Exemplifying the theory of evidence in re-
mote sensing image classification. International Journal of Remote Sensing 22 (6),
1081–1095.

Molenaar, M., 1998. An Introduction to the Theory of Spatial Object Modelling for
GIS. Taylor and Francis, London etc.

Morgan, M. F., 1999. Building extraction from laser scanning data. Msc thesis, ITC.

Okabe, A., Boots, B., Sugihara, K., 1994. Nearest neighbourhood operations with
generalized Voronoi diagrams: a review. International Journal of Geographical
Information Systems 8 (1), 43–71.

Okabe, A., Boots, B., Sugihara, K., Chiu, S. N., 2000. Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams, 2nd Edition. Wiley Series in Probability
and Statistics. John Wiley and Sons, Chichester etc.

OMG, 2001. Unified Modeling Language (UML), Specification, version 1.4 [On-
line]. Available: http://www.omg.org/technology/documents/formal/uml.htm. last
update: September 2001.

Osborne, H. R., Bridge, D. G., 1996. A case base similarity framework. In: Smith, I.,
Faltings, B. (Eds.), Advances in Case-Based Reasoning. Vol. 1168 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin etc., pp. 309–323.

Osborne, H. R., Bridge, D. G., 1997a. Models of similarity for case-based reasoning.
In: Proceedings of the Interdisciplinary Workshop on Similarity and Categorisa-
tion. pp. 173–179.

Osborne, H. R., Bridge, D. G., 1997b. Similarity metrics: a formal unification of car-
dinal and non-cardinal similarity measures. In: Leake, D. B., Plaza, E. (Eds.),
Case-Based Reasoning Research and Development, Proceedings of the 2nd Inter-
national Conference on Case-based Reasoning (ICCBR-97). pp. 235–244.

Parker, J. R., 1997. Algorithms for Image Processing and Computer Vision. John
Wiley and Sons, New York etc.

249



REFERENCES

Pilouk, M., Tempfli, K., 1992. A digital image processing approach to creating DTMs
from digitized contours. The International Archives of Photogrammetry and Re-
mote Sensing 29, Part 4(B), 956–961.

Richards, J. A., Jia, X., 1999. Remote Sensing Digital Image Analysis: An Introduc-
tion, 3rd Edition. Springer-Verlag, Berlin etc.

Rodrı́guez, M. A., Egenhofer, M. J., 2003. Determining semantic similarity among
entity classes from different ontologies. IEEE Transactions on Knowledge and
Data Engineering 15 (2), 442– 456.

Santini, S., Jain, R., 1995. Similarity matching. In: ACCV. pp. 571–580.

Santini, S., Jain, R., 1999. Similarity measures. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 21 (9), 871–883.

Schowengerdt, R. A., 1997. Remote Sensing: Model and Methods for Image Process-
ing, 2nd Edition. Academic Press, San Diego.

Shufelt, J., 2000. Geometric Constraints for Object Detection and Delineation.
Kluwer Academic, Dordrecht etc.

Skidmore, A. K., 1999. Accuracy assessment of spatial information. In: Stein, A.,
van der Meer, F., Gorte, B. (Eds.), Spatial Statistics for Remote Sensing. Kluwer,
Dordrecht etc., pp. 197–209.

Sonka, M., Hlavac, V., Boyle, R., 1999. Image Processing, Analysis and Machine
Vision, 2nd Edition. PWS Publ., an imprint of Brooks/Cole Publ, Pacific Grove,
CA [etc.].

Steinwendner, J., 1999. From satellite images to scene description using advanced
image processing techniques. In: RSS’99. Remote Sensing Society, Nottingham,
pp. 865–872.

Tatem, A. J., Lewis, H. G., Atkinson, P. M., Nixon, M. S., 2001a. Multi-class land-
cover mapping at the sub-pixel scale using a Hopfield neural network. Interna-
tional Journal of Applied Earth Observation and Geoinformation 3 (2), 184–190.

Tatem, A. J., Lewis, H. G., Atkinson, P. M., Nixon, M. S., 2001b. Super-resolution tar-
get identification from remotely sensed images using a Hopfield neural network.
IEEE Transactions on Geoscience and Remote Sensing 39, 781–796.

The MathWorks Inc., 2001. Image Processing Toolbox User’s Guide. The MathWorks,
Inc., Natick, MA, USA.

The Ministry of Construction P. R. China, 2001. National Standard for Urban Land
Use Classification, China (GBJ 137-90). Planning Publishing House, Beijing.

TopoSys, 2002. www.toposys.de. Last update: 19 Febuary 2002.

250



REFERENCES

Tso, B., Mather, P. M., 2001. Classification Methods for Remotely Sensed Data. Tay-
lor and Francis, London etc.

Tversky, A., 1977. Features of similarity. Psychological Review 84 (4), 327–352.

UML Bib, 22 October 2002. The UML Bibliography. http://www.db.informatik.uni-
bremen.de/umlbib/.

van der Heijden, F., 1994. Image Based Measurement Systems: Object Recognition
and Parameter Estimation. John Wiley and Sons, Chichester etc.

Verhoeye, J., De Wulf, R., 2000. Sub-pixel mapping of Sahelian wetlands using multi-
temporal SPOT VEGETATION images. In: 28th International Symposium on Re-
mote Sensing of Environment, Information for Sustainable Development. CSIR
Satellite Applications Centre, Cape Town, pp. category 4, 14–19.

Vincent, L., Soille, P., 1991. Watersheds in digital spaces: an efficient algorithm
based on immersion simulations. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 13 (6), 583–598.

Wiedemann, C., Heipke, C., Mayer, H., Jamet, O., 1998. Empirical evaluation of
automatically extracted road axes. In: Bowyer, K., Phillips, P. (Eds.), Empirical
Evaluation Techniques in Computer Vision. IEEE Computer Society, Los Alami-
tos, pp. 172–187.

Winter, S., 1995. Topological relations between discrete regions. In: Egenhofer, M. J.,
Herring, J. R. (Eds.), Advances in Spatial Databases. Vol. 951 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin etc., pp. 310–327.

Winter, S., Frank, A. U., 1999. Functional extensions of a raster representation for
topological relations. In: Vckovski, A., Brassel, K. E., Schek, H. J. (Eds.), Interop-
erating Geographic Information Systems. Vol. 1580 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin etc., pp. 293–304.

Winter, S., Frank, A. U., 2000. Topology in raster and vector representation. GeoIn-
formatica 4 (1), 35–65.

Worboys, M. F., 1995. GIS: A Computing Perspective. Taylor and Francis, London.

Worboys, M. F., Hearnshaw, H. M., Maguire, D. J., 1990. Object-oriented data mod-
elling for spatial dadabases. International Journal of Geographical Information
Systems 4 (4), 369–383.

Yeh, A. G.-O., 1988. Microcomputer in urban planning: application, constraints, and
impacts. Environment and Planning B: Planning and Design 15, 241–254.

Yeh, A. G.-O., 1991. The development and applications of geographical information
systems for urban and regional planning in developing countries. International
Journal of Geographical Information Systems 5 (1), 5–27.

251



REFERENCES

Yu, D., Chatterjee, S., Sheikholeslami, G., Zhang, A., 1998. Efficiently detecting
arbitrary shaped clusters in very large datasets with high dimentions. Computer
Science Technical Report 98-08. SUNY Buffalo.

Zadeh, L. A., 1965. Fuzzy set. Information and Control 8, 338–353.

Zhan, Q., Molenaar, M., Gorte, B., 2000. Urban land use classes with fuzzy member-
ship and classification based on integration of remote sensing and GIS. Interna-
tional Archives of Photogrammetry and Remote Sensing 33 (Part B7), 1751–1758.

Zhan, Q., Molenaar, M., Lucieer, A., 2002a. Pixel unmixing at the sub-pixel scale
based on land cover classes probabilities: application to urban areas. In: Foody,
G. M., Atkinson, P. M. (Eds.), Uncertainty in Remote Sensing and GIS. John Wiley
and Sons, Chichester etc., pp. 59–76.

Zhan, Q., Molenaar, M., Tempfli, K., 2002b. Building extraction from laser data by
reasoning on image segments in elevation slides. The International Archives of
Photogrammetry and Remote Sensing 34, Part 3(B), 305–308.

Zhan, Q., Molenaar, M., Tempfli, K., 2002c. Finding spatial units for land use clas-
sification based on hierarchical image objects. The International Archives of Pho-
togrammetry and Remote Sensing 34, Part 4, 263–268.

Zhan, Q., Molenaar, M., Tempfli, K., 2002d. Hierarchical image object-based struc-
tural analysis toward urban land use classification using high-resolution imagery
and airborne LIDAR data. In: Maktav, D., Jürgens, C., Erbek, F. S., Akgün, H.
(Eds.), The 3rd International Symposium on Remote Sensing of Urban Areas.
Vol. 1. Istanbul, Turkey, pp. 251–258.

Zhan, Q., Molenaar, M., Tempfli, K., 2003. Uncertainty assessment for geo-spatial
objects derived from high-resolution airborne imagery and laser data. In: Shi,
W., Goodchild, M. F., Fisher, P. F. (Eds.), Proceedings of the 2nd International
Symposium on Spatial Data Quality ‘03. The Hong Kong Polytechnic University,
Hong Kong, pp. 79–88.

Zhan, Q., Molenaar, M., Tempfli, K., under peer review (1). Image-object based ap-
proach for building extraction from airborne LIDAR and multi-spectral data. Sub-
mitted to ISPRS Journal of Photogrammetry and Remote Sensing .

Zhan, Q., Molenaar, M., Tempfli, K., Shi, W., under peer review (2). Quality assess-
ment for geo-spatial objects derived from high-resolution airborne imagery and
laser data. Submitted to International Journal of Remote Sensing .

Zhan, Q., Molenaar, M., Xiao, Y., 2001. Hierarchical object-based image analysis of
high-resolution imagery for urban land use classification. In: IEEE - ISPRS Joint
Workshop on Remote Sensing and Data Fusion over Urban Areas. IEEE, Rome,
Italy, pp. 35–39.

Zobel, J., Moffat, A., 1998. Exploring the similarity space. SIGIR Forum 32 (1), 18–
34.

252



Author’s Bibliography

1. Zhan, Q., Molenaar, M., and Gorte, B., 2000. Urban land use classes with fuzzy
membership and classification based on integration of remote sensing and GIS.
In: The International Archives of Photogrammetry and Remote Sensing, Vol.
33, Part B7, Amsterdam, The Netherlands, pp. 1751-1758.

2. Zhan, Q., Molenaar, M., and Xiao, Y., 2001. Hierarchical object-based image
analysis of high-resolution imagery for urban land use classification. In: IEEE
- ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Ar-
eas, Rome, Italy, pp. 35-39.

3. Zhan, Q., Molenaar, M., and Lucieer, 2002. Pixel unmixing at the sub-pixel
scale based on land cover class probabilities: application to urban areas. In:
G. Foody and P. Atkinson (eds), Uncertainty in Remote Sensing and GIS, pp.
59-76. Chichester etc., John Wiley and Sons.

4. Zhan, Q., Molenaar, M., and Tempfli, K., 2002. Finding spatial units for land
use classification based on hierarchical image objects. In: The International
Archives of Photogrammetry and Remote Sensing, Vol. 34, Part 4, Ottawa,
Canada, pp. 263-268.

5. Zhan, Q., Molenaar, M., and Tempfli, K., 2002. Hierarchical image-object based
structural analysis toward urban land use classification using high-resolution
imagery and airborne LIDAR data. In: Proceedings of the 3rd International
Symposium on Remote Sensing of Urban Areas, Istanbul, Turkey, pp. 251-158.

6. Zhan, Q., Molenaar, M., and Tempfli, K., 2002. Building extraction from laser
data by reasoning on image segments in elevation slices. In: The International
Archives of Photogrammetry and Remote Sensing, Vol. 34, Part 3 (B), Graz,
Austria, pp. 305-308.

253



Author’s Bibliography

7. Zhan, Q., Molenaar, M., and Tempfli, K., 2003. Uncertainty assessment for geo-
spatial objects derived from high-resolution airborne imagery and laser data.
In: Proceedings of the 2nd International Symposium on Spatial Data Quality
‘03, Hong Kong, China, pp. 79-88.

8. Zhan, Q., Molenaar, M., and Tempfli K., Under peer review. Image-object based
approach for building extraction from airborne LIDAR and multi-spectral data,
Submitted to ISPRS Journal of Photogrammetry and Remote Sensing.

9. Zhan, Q., Molenaar, M., Tempfli, K., and Shi, W., Under peer review. Quality
assessment for geo-spatial objects derived from high-resolution airborne im-
agery and laser data, Submitted to International Journal of Remote Sensing.

254



Appendix A: Land-Use
Classification Systems

255



Appendix A: Land-Use Classification Systems

Table A.2: General land use classification system (Anderson et al., 1976)

1 Urban or Built-up Land 5 Water
11 Residential 51 Streams and Canals
12 Commercial and Services 52 Lakes
13 Industrial 53 Reservoirs
14 Transportation, Communications, 54 Bays and Estuaries

and Utilities
15 Industrial and Commercial 6 Wetland

Complexes 61 Forested Wetland
16 Mixed Urban or Built-up Land 62 Nonforested Wetland
17 Other Urban or Built-up Land

7 Barren Land
2 Agricultural Land 71 Dry Salt Flats
21 Cropland and Pasture 72 Beaches
22 Orchards, Groves, Vineyards, 73 Sandy Areas other than Beaches

Nurseries, and Ornamental 74 Bare Exposed Rock
Horticultural Areas 75 Strip Mines, Quarries, and Gravel

23 Confined Feeding Operations Pits
24 Other Agricultural Land 76 Transitional Areas

77 Mixed Barren Land
3 Rangeland
31 Herbaceous Rangeland 8 Tundra
32 Shrub and Brush Rangeland 81 Shrub and Brush Tundra
33 Mixed Rangeland 82 Herbaceous Tundra

83 Bare Ground Tundra
4 Forest Land 84 Wet Tundra
41 Deciduous Forest Land 85 Mixed Tundra
42 Evergreen Forest Land
43 Mixed Forest Land 9 Perennial Snow or Ice

91 Perennial Snowfields
92 Glaciers
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Table A.3: Land-based classification standards: function dimension, US

1000 Residential or accommodation
functions

6000 Education, public admin.,
health care, and other inst.

1100 Private household 6100 Educational services
1200 Housing services for elderly 6200 Public administration
1300 Hotels, motels, or accommodation 6300 Other government functions

services 6400 Public safety
2000 General sales or services 6500 Health and human services
2100 Retail sales or service 6600 Religious institutions
2200 Finance and insurance 6700 Death care services
2300 Real estate, and rental and leasing 6800 Associations, nonprofit
2400 Business, professional, scientific, organizations, etc.

and technical services 7000 Construction-related
2500 Food services businesses
2600 Personal services 7100 Building, developing, and general
2700 Pet and animal sales or service contracting

(except veterinary) 7200 Machinery-related
3000 Manufacturing and wholesale 7300 Special trade contractor

trade 7400 Heavy construction
3100 Food, textile, and related products 8000 Mining and extraction
3200 Wood, paper, and printing establishments

products 8100 Oil and natural gas
3300 Chemicals, and metals, machinery, 8200 Metals (iron, copper, etc.)

and electronics manufacturing 8300 Coal
3400 Miscellaneous manufacturing 8400 Nonmetallic mining
3500 Wholesale trade establishment 8500 Quarrying and stone cutting
3600 Warehouse and storage services establishment
4000 Transportation, communica-

tion, information, and utilities
9000 Agriculture, forestry, fishing

and hunting
4100 Transportation services 9100 Crop production
4200 Communications and information 9200 Support functions for agriculture
4300 Utilities and utility services 9300 Animal production including
5000 Arts, entertainment, and slaughter

recreation 9400 Forestry and logging
5100 Performing arts or supporting 9500 Fishing, hunting and trapping,

establishment game preserves
5200 Museums and other special pur-

pose recreational institutions
9900 Unclassifiable function

5300 Amusement, sports, or recreation
establishment

5400 Camps, camping, and related es-
tablishments

5500 Natural and other recreational
parks

Source: American Planning Association, http://www.planning.org/lbcs
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Table A.4: NLUD land-use classification v3.3, UK (Harrison and Garland,
2001)

1 Agricultural 7 Recreation
1.1 Field crops 7.1 Leisure and recreational buildings
1.2 Fallow land 7.2 Outdoor recreation
1.3 Horticulture and orchards 7.3 Allotments
1.4 Improved pasture
1.5 Field margins 8 Transport

8.1 Roads
2 Woodland 8.2 Public car parks
2.1 Conifer woodland 8.3 Railways
2.2 Mixed woodland 8.4 Airports
2.3 Broadleaved woodland 8.5 Docks
2.4 Undifferentiated young woodland
2.5 Scrub 9 Residential
2.6 Felled woodland 9.1 Residential
2.7 Land cultivated for afforestation 9.2 Institutional and communal

accommodation
3 Unimproved Grassland

and Heathland 10 Community Buildings
3.1 Unimproved grassland 10.1 Institutional buildings
3.2 Heathland 10.2 Educational buildings
3.3 Bracken 10.3 Religious buildings
3.4 Upland mosaics

11 Industrial and Commercial
4 Water and Wetland 11.1 Industry
4.1 Sea/estuary 11.2 Offices
4.2 Standing water 11.3 Retailing
4.3 Running water 11.4 Storage and warehousing
4.4 Freshwater marsh 11.5 Utilities
4.5 Salt marsh 11.6 Agricultural buildings
4.6 Bog

12 Vacant Land and Buildings
5 Rock and Coastal Land 12.1 Vacant land previously developed
5.1 Inland rock 12.2 Vacant buildings
5.2 Coastal rocks and cliffs 12.3 Derelict land and buildings
5.3 Inter-tidal sand and mud
5.4 Dunes 13 Defence Land and Buildings

6 Minerals and Landfill
6.1 Mineral workings and quarries
6.2 Landfill waste disposal
Source: http://www.nlud.org.uk/
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Table A.5: National standard for urban land-use classification, China

R Residential S Road and Street
R1 Good infrastructure and environ- S1 Street

ment with low-rise building ≤ 3
floors

S2 Square

R2 Good infrastructure and environ- S3 Parking space
ment with buildings > 3 floors

R3 Medium infrastructure and poor U Municipal Utilities
environment U1 Supplying facility

R4 Poor infrastructure, poor environ- U2 Traffic facility
ment and poor-quality buildings U3 Posts and telecommunications

U4 Environmental facility
C Commercial and Public Facilities U5 Construction and maintenance
C1 Government offices U6 Funeral facility
C2 Commercial and financial services U9 Others
C3 Cultural and recreational use
C4 Sport facilities G Green Space
C5 Medical treatment and health centre G1 Public green space
C6 Educational and research use G2 Productive or protective land
C7 Culture heritage and historic sites
C9 Others D Specially Designated

D1 Military
M Industrial, Manufacturing D2 Diplomatic (embassy or consulate)
M1 Non-pollution industrial D3 Prison and security place
M2 Light pollution industrial
M3 Heavy pollution industrial E Water Area and Others

E1 Water bodies
W Warehouse E2 Agricultural land
W1 Warehouse for normal material E3 Garden plot
W2 Warehouse for dangerous material E4 Forest land
W3 Open storage site E5 Rangeland

E6 Villages and small towns
T Transportation E7 Bare land
T1 Railway E8 Mining land
T2 Road
T3 Pipeline (e.g. water, oil, gas)

or conveyor belt
T4 Harbour
T5 Airport
Source: The Ministry of Construction, P. R. China, 1991
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Table A.6: Urban land use classification system used in this research

Land Use Classes Main Features
R Residential Uniformed building clusters
R1 Detached and semi-detached houses Small size (50 - 200 m2) and low rise

(1-3 story)
R2 Low-rise apartment buildings Medium size (50 - 200 m2) and low

rise (1-3 story)
R3 Medium- and high-rise apartment

buildings
Medium size, medium and high rise
(≥ 4 stories)

R4 Mixed settlements Vary in size or irregular distribution
C Commercial and Services
C1 Commercial or service district Buildings vary in size and height,

high proportion of concrete surfaces
C2 Educational and research complex Buildings vary in size and height
C3 Mixed
M Industrial and Warehouse Large buildings
S Road, Street and Square Linear concrete surfaces inside ur-

ban areas
T Transportation
T1 Road Linear concrete surfaces outside ur-

ban areas
T2 Railway Linear concrete surfaces outside ur-

ban areas
T3 Harbour High proportion of concrete surfaces

along coast or river bank
T4 Airport Very large concrete surfaces
G Green Space and Recreational
U Utilities
E Non-urban (Water Area and Oth-

ers)
E1 Water bodies Low tone in all bands
E2 Agricultural land Vegetation
E3 Rangeland Vegetation in hilly areas
E4 Forest land High vegetation
E5 Others
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the Carboniferous in the Calañas area, pyrite belt, SW Spain

23. Verweij, P., 1995, 90-6164-109-8, Spatial and temporal modelling of vegetation patterns: burn-
ing and grazing in the paramo of Los Nevados National Park, Colombia

24. Pohl, C., 1996, 90-6164-121-7, Geometric aspects of multisensor image fusion for topographic
map updating in the humid tropics

25. Jiang, Bin, 1996, 90-6266-128-9, Fuzzy overlay analysis and visualization in GIS

26. Metternicht, G., 1996, 90-6164-118-7, Detecting and monitoring land degradation features and
processes in the Cochabamba Valleys, Bolivia: a synergistic approach

27. Hoanh Chu Thai, 1996, 90-6164-120-9, Development of a computerized aid to integrated land
use planning (CAILUP) at regional level in irrigated areas: a case study for the Quan Lo Phung
Hiep region in the Mekong Delta, Vietnam

28. Roshannejad, A., 1996, 90-9009284-6, The management of spatio-temporal data in a national
geographic information system

29. Terlien, M., 1996, 90-6164-115-2, Modelling spatial and temporal variations in rainfall-triggered
Landslides: the integration of hydrologic models, slope stability models and GIS for the hazard
zonation of rainfall-triggered landslides with examples from Manizales, Colombia

30. Mahavir, J., 1996, 90-6164-117-9, Modelling settlement patterns for metropolitan regions: in-
puts from remote sensing

31. Al-Amir, S., 1996, 90-6164-116-0, Modern spatial planning practice as supported by the multi-
applicable tools of remote sensing and GIS: the Syrian case

32. Pilouk, M., 1996, 90-6164-122-5, Integrated modelling for 3D GIS

262



List of ITC PhD Theses

33. Duan, Zengshan, 1996, 90-6164-123-3, Optimization modelling of a river-aquifer system with
technical interventions: a case study for the Huangshui river and the coastal aquifer, Shandong,
China

34. Man, W.H. de, 1996, 90-9009-775-9, Surveys: informatie als norm: een verkenning van de insti-
tutionalisering van dorp - surveys in Thailand en op de Filippijnen

35. Vekerdy, Z., 1996, 90-6164-119-5, GIS-based hydrological modelling of alluvial regions: using
the example of the Kisaföld, Hungary
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Zhan, Q., 2003. Een hiërarchische, objectgeoriënteerde aanpak voor ste-
delijke landgebruik classificatie van remote sensing data. PhD disser-
tatie

Informatie over landbedekking en landgebruik is essentieel voor ste-
delijke planning en management. Traditionele landgebruik kartering
door middel van visuele interpretatie is duur, tijdrovend en vaak subjec-
tief. Onderzoekers zoeken sinds lange tijd naar automatische en semi-
automatische methodes. De combinatie van vliegtuig LIDAR data met
hoge ruimtelijke resolutie en multi-spectrale beelden zoals IKONOS,
QuickBird en SPOT 5, biedt uitstekende kansen voor toepassingen in
stedelijke gebieden. Uit de combinatie van dergelijke beelden kunnen
vele relevante objecten geëxtraheerd worden. De algemene doelstelling
van dit onderzoek is de ontwikkeling van automatische of semi-automat-
ische methoden voor de classificatie van landbedekking en landgebruik,
gebaseerd op laser hoogte data en multi-spectrale beelden en de ontwik-
keling van methoden voor de consistente aggregatie van elementaire
objecten tot samengestelde objecten op hoge abstractie niveaus.

In dit onderzoek zijn verschillende moderne typen sensor data ge-
bruikt voor de classificatie van stedelijke landbedekking en landgebruik.
We hebben de meest populaire pixel gebaseerde classificatie, de tradi-
tionele maximum likelihood classifier (MLC), toegepast op hoge resolu-
tie data. Een aantal problemen konden geı̈dentificeerd worden. Ver-
scheidene oplossingen zijn voorgesteld en getest. De nauwkeurigheid
van landbedekking classificatie kan verbeterd worden door de speci-
ficatie van een beslissingsvlak in de attribuutruimte en door het se-
lecteren van zowel pure als gemengde trainingspixels. De voorgestelde
oplossingen richten zich op de ruimtelijke partitionering van beslissings-
vlakken, aan de hand van referentie klassen. Experimentele resultaten
tonen de effectiviteit van de voorgestelde integratie methode aan. Deze
methode gebruikt zowel pure als gemengde monsters.

Ondanks deze verbetering van de landbedekking classificatie met
het MLC algoritme, beschouwen we de resultaten als onvoldoende voor
een gedetailleerde landgebruik classificatie. De belangrijkste kenmer-
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ken voor beeldinterpretatie, zoals grootte, vorm, kleur, oriëntatie, pat-
roon en associatie worden gezien als kenmerken van geaggregeerde ob-
jecten op een hoger abstractie niveau. Deze kenmerken hebben een be-
langrijke rol in beeldanalyse en landgebruik classificatie. Objectgeoriën-
teerde beeldanalyse technieken betreffen een abstractie niveau hoger
dan het pixel niveau. Daarom is een objectgeoriënteerde aanpak het
belangrijkste aandachtspunt van dit onderzoek.

Dit onderzoek ontwikkelt een hiërarchische objectgeoriënteerde aan-
pak voor stedelijk landgebruik classificatie gebaseerd op hoge resolutie
remote sensing. De methode bestaat uit drie stappen: de classificatie
van landbedekking, de definitie en identificatie van landgebruik een-
heden en de classificatie van landgebruik. Deze methode combineert
pixel en object gebaseerde technieken in verschillende fasen. Verschil-
lende technieken worden voorgesteld en getest voor object identificatie
op verschillende aggregatie niveaus.

Verschillende concepten en methoden worden voorgesteld and bedis-
cussieerd om objecten en object eigenschappen uit beelden af te leiden en
om expliciete topologische relaties tussen objecten te identificeren. Een
hybride raster model wordt toegepast om topologische relaties tussen
objecten te identificeren. Deze concepten en methoden zijn getest en
succesvol toegepast op stedelijke landbedekking en landgebruik classifi-
catie in twee test gebieden. We beschouwen de test resultaten als veel-
belovend. De resultaten bevestigen de effectiviteit van de voorgestelde
objectgeoriënteerde aanpak.

Structurele informatie afgeleid uit hiërarchisch geordende beeld ob-
jecten speelt een belangrijke rol in landgebruik classificatie van stedelij-
ke gebieden. Delaunay triangulatie toegepast op ruimtelijk verspreide
objecten levert een goede methode om topologische relaties en een na-
bijheidsmaat te definiëren. Verscheidene maten worden voorgesteld om
similariteit van gebouwen te testen. Deze similariteitsmaten in com-
binatie met de topologische relaties en nabijheidsmaten triangulatie
geven essentiële informatie voor de ruimtelijke clustering van objecten
die landgebruikseenheden vormen.

Verschillende landgebruik object eigenschappen worden voorgesteld
voor onze twee testgebieden. Fuzzy membership functies zijn ontworpen
om de relaties tussen deze eigenschappen en landgebruik klassen vast
te stellen. Een fuzzy object classificatie wordt toegepast, gebaseerd op
landgebruik eenheden en hun object eigenschappen. De verkregen re-
sultaten laten zien dat de voorgestelde objectgeoriënteerde landgebruik
classificatie veelbelovend is. De verkregen landgebruik object eigen-
schappen bieden nuttige informatie voor stedelijke studies, planning en
management.

Verder wordt voorgesteld en getest voor kwaliteitsbeoordeling, geba-
seerd op gelijkheidsmaten tussen geclassificeerde en referentie data.
Deze beoordeling maakt gebruik van object en pixel gebaseerde maten.
De voorgestelde kwaliteitsmaat geeft mogelijkheden om een additionele
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kwaliteitsbeoordeling te verkrijgen gebaseerd op verscheidene object ei-
genschappen. De voorgestelde onzekerheidsmaten voor de verkregen
landbedekking en landgebruik objecten zijn getest. Deze lijken bruik-
baar voor het controleren van het classificatieproces.

De ontwikkelde concepten en methoden zijn geı̈mplementeerd in Mat-
lab. Het systeem staat verschillende gebruikers toe om karakteristieken
te specificeren voor het verkrijgen van de gewenste resultaten. Dit
biedt planners en andere gebruikers de mogelijkheid om uit een gede-
tailleerde data set die informatie te halen die voldoet aan hun specifieke
wensen en eisen. Dit maakt meervoudig gebruik mogelijk van de relatief
dure hoge resolute laser data en spectrale data. De experimentele resul-
taten laten de mogelijkheden zien van hiërarchische objectmodellering
in combinatie met structurele beeld analyse technieken voor stedelijke
landbedekking en landgebruik classificatie.

Dit onderzoek laat zien dat gebouwen, groene ruimte, water lichamen
en dichte oppervlaktes succesvol geı̈dentificeerd kunnen worden op het
niveau van landbedekking. Landgebruik eenheden zijn verkregen door
combinatie en aggregatie van landbedekking objecten. De hoge kwaliteit
van de objectgeoriënteerde landgebruik classificatie werd vastgesteld
door vergelijking met resultaten van een visuele interpretatie.

Trefwoorden
Remote Sensing, GIS, Beeldbewerking, beeldclassificatie, kenmerk iden-
tificatie, object modellering, landgebruik, stedelijke planning, LIDAR.
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