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1.1 Preface

Advances in sensor technology are revolutionizing the way remotely sensed data are
collected, managed, and analyzed. The incorporation of latest-generation sensors to
airborne and satellite platforms is currently producing a nearly continual stream of
high-dimensional data, and this explosion in the amount of collected information
has rapidly created new processing challenges. In particular, many current and future
applications of remote sensing in Earth science, space science, and soon in exploration
science require real- or near-real-time processing capabilities. Relevant examples in-
clude environmental studies, military applications, tracking and monitoring of hazards
such as wild land and forest fires, oil spills, and other types of chemical/biological
contamination.

To address the computational requirements introduced by many time-critical appli-
cations, several research efforts have been recently directed towards the incorporation
of high-performance computing (HPC) models in remote sensing missions. HPC is
an integrated computing environment for solving large-scale computational demand-
ing problems such as those involved in many remote sensing studies. With the aim
of providing a cross-disciplinary forum that will foster collaboration and develop-
ment in those areas, this book has been designed to serve as one of the first available
references specifically focused on describing recent advances in the field of HPC
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applied to remote sensing problems. As a result, the content of the book has been
organized to appeal to both remote sensing scientists and computer engineers alike.
On the one hand, remote sensing scientists will benefit by becoming aware of the
extremely high computational requirements introduced by most application areas in
Earth and space observation. On the other hand, computer engineers will benefit from
the wide range of parallel processing strategies discussed in the book. However, the
material presented in this book will also be of great interest to researchers and prac-
titioners working in many other scientific and engineering applications, in particular,
those related with the development of systems and techniques for collecting, storing,
and analyzing extremely high-dimensional collections of data.

1.2 Contents

The contents of this book have been organized as follows. First, an introductory part
addressing some key concepts in the field of computing applied to remote sensing,
along with an extensive review of available and future developments in this area, is
provided. This part also covers other application areas not necessarily related to remote
sensing, such as multimedia and video processing, chemical/biological standoff de-
tection, and medical imaging. Then, three main application-oriented parts follow, each
of which illustrates a specific parallel computing paradigm. In particular, the HPC-
based techniques comprised in these parts include multiprocessor (cluster-based) sys-
tems, large-scale and heterogeneous networks of computers, and specialized hardware
architectures for remotely sensed data analysis and interpretation. Combined, the four
parts deliver an excellent snapshot of the state-of-the-art in those areas, and offer a
thoughtful perspective of the potential and emerging challenges of applying HPC
paradigms to remote sensing problems:

� Part I: General. This part, comprising Chapters 2 and 3, develops basic concepts
about HPC in remote sensing and provides a detailed review of existing and
planned HPC systems in this area. Other areas that share common aspects with
remote sensing data processing are also covered, including multimedia and
video processing.� Part II: Multiprocessor systems. This part, comprising Chapters 4–8, includes
a compendium of algorithms and techniques for HPC-based remote sensing
data analysis using multiprocessor systems such as clusters and networks of
computers, including massively parallel facilities.� Part III: Large-scale and heterogeneous distributed computing. The focus of
this part, which comprises Chapters 9–13, is on parallel techniques for re-
mote sensing data analysis using large-scale distributed platforms, with special
emphasis on grid computing environments and fully heterogeneous networks
of workstations.
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� Part IV: Specialized architectures. The last part of this book comprises Chapters
14–18 and is devoted to systems and architectures for at-sensor and real-time
collection and analysis of remote sensing data using specialized hardware and
embedded systems. The part also includes specific aspects about current trends
in remote sensing sensor design and operation.

1.2.1 Organization of Chapters in This Volume

The first part of the book (General) consists of two chapters that include basic concepts
that will appeal to both students and practitioners who have not had a formal education
in remote sensing and/or computer engineering. This part will also be of interest to
remote sensing and general-purpose HPC specialists, who can greatly benefit from
the exhaustive review of techniques and discussion on future data processing per-
spectives in this area. Also, general-purpose specialists will become aware of other
application areas of HPC (e.g., multimedia and video processing) in which the design
of techniques and parallel processing strategies to deal with extremely large com-
putational requirements follows a similar pattern as that used to deal with remotely
sensed data sets. On the other hand, the three application-oriented parts that fol-
low (Multiprocessor systems, Large-scale and heterogeneous distributed computing,
and Specialized architectures) are each composed of five selected chapters that will
appeal to the vast scientific community devoted to designing and developing efficient
techniques for remote sensing data analysis. This includes commercial companies
working on intelligence and defense applications, Earth and space administrations
such as NASA or the European Space Agency (ESA) – both of them represented in
the book via several contributions – and universities with programs in remote sens-
ing, Earth and space sciences, computer architecture, and computer engineering. Also,
the growing interest in some emerging areas of remote sensing such as hyperspectral
imaging (which will receive special attention in this volume) should make this book
a timely reference.

1.2.2 Brief Description of Chapters in This Volume

We provide below a description of the chapters contributed by different authors.
It should be noted that all the techniques and methods presented in those chapters
are well consolidated and cover almost entirely the spectrum of current and future
data processing techniques in remote sensing applications. We specifically avoided
repetition of topics in order to complete a timely compilation of realistic and suc-
cessful efforts in the field. Each chapter was contributed by a reputed expert or a
group of experts in the designed specialty areas. A brief outline of each contribution
follows:

� Chapter 1. Introduction. The present chapter provides an introduction to the
book and describes the main innovative contributions covered by this volume
and its individual chapters.
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� Chapter 2. High-Performance Computer Architectures for Remote Sens-
ing Data Analysis: Overview and Case Study. This chapter provides a re-
view of the state-of-the-art in the design of HPC systems for remote sensing.
The chapter also includes an application case study in which the pixel purity
index (PPI), a well-known remote sensing data processing algorithm included
in Kodak’s Research Systems ENVI (a very popular remote sensing-oriented
commercial software package), is implemented using different types of HPC
platforms such as a massively parallel multiprocessor, a heterogeneous network
of distributed computers, and a specialized hardware architecture.� Chapter 3. Computer Architectures for Multimedia and Video Analysis.
This chapter focuses on multimedia processing as another example application
with a high demanding computational power and similar aspects as those in-
volved in many remote sensing problems. In particular, the chapter discusses
new computer architectures such as graphic processing units (GPUs) and mul-
timedia extensions in the context of real applications.� Chapter 4. Parallel Implementation of the ORASIS Algorithm for Re-
mote Sensing Data Analysis. This chapter presents a parallel version of ORA-
SIS (the Optical Real-Time Adaptive Spectral Identification System) that was
recently developed as part of a U.S. Department of Defense program. The
ORASIS system comprises a series of algorithms developed at the Naval Re-
search Laboratory for the analysis of remotely sensed hyperspectral image
data.� Chapter 5. Parallel Implementation of the Recursive Approximation of an
Unsupervised Hierarchical Segmentation Algorithm. This chapter describes
a parallel implementation of a recursive approximation of the hierarchical image
segmentation algorithm developed at NASA. The chapter also demonstrates the
computational efficiency of the algorithm using remotely sensed data collected
by the Landsat Thematic Mapper (a multispectral instrument).� Chapter 6. Computing for Analysis and Modeling of Hyperspectral Im-
agery. In this chapter, several analytical methods employed in vegetation
and ecosystem studies using remote sensing instruments are developed. The
chapter also summarizes the most common HPC-based approaches used to
meet these analytical demands, and provides examples with computing clus-
ters. Finally, the chapter discusses the emerging use of other HPC-based tech-
niques for the above purpose, including data processing onboard aircraft and
spacecraft platforms, and distributed Internet computing.� Chapter 7. Parallel Implementation of Morphological Neural Networks
for Hyperspectral Image Analysis. This chapter explores in detail the uti-
lization of parallel neural network architectures for solving remote sensing
problems. The chapter further develops a new morphological/neural parallel
algorithm for the analysis of remotely sensed data, which is implemented using
both massively parallel (homogeneous) clusters and fully heterogeneous net-
works of distributed workstations.
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� Chapter 8. Parallel Wildland Fire Monitoring and Tracking Using
Remotely Sensed Data. This chapter focuses on the use of HPC-based re-
mote sensing techniques to address natural disasters, emphasizing the (near)
real-time computational requirements introduced by time-critical applications.
The chapter also develops several innovative algorithms, including morpholog-
ical and target detection approaches, to monitor and track one particular type
of hazard, wildland fires, using remotely sensed data.� Chapter 9. An Introduction to Grids for Remote Sensing Applications.
This chapter introduces grid computing technology in preparation for the chap-
ters to follow. The chapter first reviews previous approaches to distributed com-
puting and then introduces current Web and grid service standards, along with
some end-user tools for building grid applications. This is followed by a survey
of current grid infrastructure and science projects relevant to remote sensing.� Chapter 10. Remote Sensing Grids: Architecture and Implementation.
This chapter applies the grid computing paradigm to the domain of Earth remote
sensing systems by combining the concepts of remote sensing or sensor Web
systems with those of grid computing. In order to provide a specific example and
context for discussing remote sensing grids, the design of a weather forecasting
and climate science grid is presented and discussed.� Chapter 11. Open Grid Services for Envisat and Earth Observation
Applications. This chapter first provides an overview of some ESA Earth Ob-
servation missions, and of the software tools that ESA currently provides for
facilitating data handling and analysis. Then, the chapter describes a dedicated
Earth-science grid infrastructure, developed by the European Space Research
Institute (ESRIN) at ESA in the context of DATAGRID, the first large European
Commission-funded grid project. Different examples of remote sensing appli-
cations integrated in this system are also given.� Chapter 12. Design and Implementation of a Grid Computing Envi-
ronment for Remote Sensing. This chapter develops a new dynamic Earth
Observation system specifically tuned to manage huge quantities of data com-
ing from space missions. The system combines recent grid computing technolo-
gies, concepts related to problem solving environments, and other HPC-based
technologies. A comparison of the system to other classic approaches is also
provided.� Chapter 13. A Solutionware for Hyperspectral Image Processing and
Analysis. This chapter describes the concept of an integrated process for hyper-
spectral image analysis, based on a solutionware (i.e., a set of catalogued tools
that allow for the rapid construction of data processing algorithms and applica-
tions). Parallel processing implementations of some of the tools in the Itanium
architecture are presented, and a prototype version of a hyperspectral image
processing toolbox over the grid, called Grid-HSI, is also described.� Chapter 14. AVIRIS and Related 21st Century Imaging Spectrometers
for Earth and Space Science. This chapter uses the NASA Jet Propulsion
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Laboratory’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), one of
the most advanced hyperspectral remote sensing instrument currently available,
to review the critical characteristics of an imaging spectrometer instrument and
the corresponding characteristics of the measured spectra. The wide range of
scientific research as well as application objectives pursued with AVIRIS are
briefly presented. Roles for the application of high-performance computing
methods to AVIRIS data set are discussed.� Chapter 15. Remote Sensing and High-Performance Reconfigurable Com-
puting Systems. This chapter discusses the role of reconfigurable comput-
ing using field programmable gate arrays (FPGAs) for onboard processing of
remotely sensed data. The chapter also describes several case studies of re-
mote sensing applications in which reconfigurable computing has played an
important role, including cloud detection and dimensionality reduction of hy-
perspectral imagery.� Chapter 16. FPGA Design for Real-Time Implementation of Constrained
Energy Minimization for Hyperspectral Target Detection. This chapter
describes an FPGA implementation of the constrained energy minimization
(CEM) algorithm, which has been widely used for hyperspectral detection and
classification. The main feature of the FPGA design provided in this chapter
is the use of the Coordinate Rotation DIgital Computer (CORDIC) algorithm
to convert a Givens rotation of a vector to a set of shift-add operations, which
allows for efficient implementation in specialized hardware architectures.� Chapter 17. Real-Time Online Processing of Hyperspectral Imagery for
Target Detection and Discrimination. This chapter describes a real-time on-
line processing technique for fast and accurate exploitation of hyperspectral
imagery. The system has been specifically developed to satisfy the extremely
high computational requirements of many practical remote sensing applica-
tions, such as target detection and discrimination, in which an immediate data
analysis result is required for (near) real-time decision-making.� Chapter 18. Real-Time Onboard Hyperspectral Image Processing Using
Programmable Graphics Hardware. Finally, this chapter addresses the
emerging use of graphic processing units (GPUs) for onboard remote sensing
data processing. Driven by the ever-growing demands of the video-game indus-
try, GPUs have evolved from expensive application-specific units into highly
parallel programmable systems. In this chapter, GPU-based implementations
of remote sensing data processing algorithms are presented and discussed.

1.3 Distinguishing Features of the Book

Before concluding this introduction, the editors would like to stress several distin-
guishing features of this book. First and foremost, this book is the first volume that is
entirely devoted to providing a perspective on the state-of-the-art of HPC techniques
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in the context of remote sensing problems. In order to address the need for a con-
solidated reference in this area, the editors have made significant efforts to invite
highly recognized experts in academia, institutions, and commercial companies to
write relevant chapters focused on their vast expertise in this area, and share their
knowledge with the community. Second, this book provides a compilation of several
well-established techniques covering most aspects of the current spectrum of process-
ing techniques in remote sensing, including supervised and unsupervised techniques
for data acquisition, calibration, correction, classification, segmentation, model inver-
sion and visualization. Further, many of the application areas addressed in this book
are of great social relevance and impact, including chemical/biological standoff de-
tection, forest fire monitoring and tracking, etc. Finally, the variety and heterogeneity
of parallel computing techniques and architectures discussed in the book are not to
be found in any other similar textbook.

1.4 Summary

The wide range of computer architectures (including homogeneous and heteroge-
neous clusters and groups of clusters, large-scale distributed platforms and grid com-
puting environments, specialized architectures based on reconfigurable computing,
and commodity graphic hardware) and data processing techniques covered by this
book exemplifies a subject area that has drawn together an eclectic collection of par-
ticipants, but increasingly this is the nature of many endeavors at the cutting edge of
science and technology.

In this regard, one of the main purposes of this book is to reflect the increasing
sophistication of a field that is rapidly maturing at the intersection of many different
disciplines, including not only remote sensing or computer architecture/engineering,
but also signal and image processing, optics, electronics, and aerospace engineering.
The ultimate goal of this book is to provide readers with a peek at the cutting-edge
research in the use of HPC-based techniques and practices in the context of remote
sensing applications. The editors hope that this volume will serve as a useful reference
for practitioners and engineers working in the above and related areas. Last but not
least, the editors gratefully thank all the contributors for sharing their vast expertise
with the readers. Without their outstanding contributions, this book could not have
been completed.
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Advances in sensor technology are revolutionizing the way remotely sensed data are
collected, managed, and analyzed. In particular, many current and future applications
of remote sensing in earth science, space science, and soon in exploration science
require real- or near-real-time processing capabilities. In recent years, several efforts
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have been directed towards the incorporation of high-performance computing (HPC)
models to remote sensing missions. In this chapter, an overview of recent efforts in
the design of HPC systems for remote sensing is provided. The chapter also includes
an application case study in which the pixel purity index (PPI), a well-known remote
sensing data processing algorithm, is implemented in different types of HPC platforms
such as a massively parallel multiprocessor, a heterogeneous network of distributed
computers, and a specialized field programmable gate array (FPGA) hardware ar-
chitecture. Analytical and experimental results are presented in the context of a real
application, using hyperspectral data collected by NASA’s Jet Propulsion Laboratory
over the World Trade Center area in New York City, right after the terrorist attacks of
September 11th. Combined, these parts deliver an excellent snapshot of the state-of-
the-art of HPC in remote sensing, and offer a thoughtful perspective of the potential
and emerging challenges of adapting HPC paradigms to remote sensing problems.

2.1 Introduction

The development of computationally efficient techniques for transforming the mas-
sive amount of remote sensing data into scientific understanding is critical for
space-based earth science and planetary exploration [1]. The wealth of informa-
tion provided by latest-generation remote sensing instruments has opened ground-
breaking perspectives in many applications, including environmental modeling and
assessment for Earth-based and atmospheric studies, risk/hazard prevention and re-
sponse including wild land fire tracking, biological threat detection, monitoring of
oil spills and other types of chemical contamination, target detection for military and
defense/security purposes, urban planning and management studies, etc. [2]. Most of
the above-mentioned applications require analysis algorithms able to provide a re-
sponse in real- or near-real-time. This is quite an ambitious goal in most current remote
sensing missions, mainly because the price paid for the rich information available from
latest-generation sensors is the enormous amounts of data that they generate [3, 4, 5].

A relevant example of a remote sensing application in which the use of HPC
technologies such as parallel and distributed computing are highly desirable is hy-
perspectral imaging [6], in which an image spectrometer collects hundreds or even
thousands of measurements (at multiple wavelength channels) for the same area
on the surface of the Earth (see Figure 2.1). The scenes provided by such sen-
sors are often called “data cubes,” to denote the extremely high dimensionality
of the data. For instance, the NASA Jet Propulsion Laboratory’s Airborne Visi-
ble Infra-Red Imaging Spectrometer (AVIRIS) [7] is now able to record the vis-
ible and near-infrared spectrum (wavelength region from 0.4 to 2.5 micrometers)
of the reflected light of an area 2 to 12 kilometers wide and several kilometers
long using 224 spectral bands (see Figure 3.8). The resulting cube is a stack of
images in which each pixel (vector) has an associated spectral signature or ‘fin-
gerprint’ that uniquely characterizes the underlying objects, and the resulting data
volume typically comprises several GBs per flight. Although hyperspectral imaging
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is a good example of the computational requirements introduced by remote sensing
applications, there are many other remote sensing areas in which high-dimensional
data sets are also produced (several of them are covered in detail in this book). How-
ever, the extremely high computational requirements already introduced by hyper-
spectral imaging applications (and the fact that these systems will continue increasing
their spatial and spectral resolutions in the near future) make them an excellent case
study to illustrate the need for HPC systems in remote sensing and will be used in
this chapter for demonstration purposes.

Specifically, the utilization of HPC systems in hyperspectral imaging applications
has become more and more widespread in recent years. The idea developed by the
computer science community of using COTS (commercial off-the-shelf) computer
equipment, clustered together to work as a computational “team,” is a very attractive
solution [8]. This strategy is often referred to as Beowulf-class cluster computing [9]
and has already offered access to greatly increased computational power, but at a low
cost (commensurate with falling commercial PC costs) in a number of remote sensing
applications [10, 11, 12, 13, 14, 15]. In theory, the combination of commercial forces
driving down cost and positive hardware trends (e.g., CPU peak power doubling
every 18–24 months, storage capacity doubling every 12–18 months, and networking
bandwidth doubling every 9–12 months) offers supercomputing performance that can
now be applied a much wider range of remote sensing problems.

Although most parallel techniques and systems for image information processing
employed by NASA and other institutions during the last decade have chiefly been
homogeneous in nature (i.e., they are made up of identical processing units, thus sim-
plifying the design of parallel solutions adapted to those systems), a recent trend in the
design of HPC systems for data-intensive problems is to utilize highly heterogeneous
computing resources [16]. This heterogeneity is seldom planned, arising mainly as
a result of technology evolution over time and computer market sales and trends.
In this regard, networks of heterogeneous COTS resources can realize a very high
level of aggregate performance in remote sensing applications [17], and the pervasive
availability of these resources has resulted in the current notion of grid computing
[18], which endeavors to make such distributed computing platforms easy to utilize
in different application domains, much like the World Wide Web has made it easy to
distribute Web content. It is expected that grid-based HPC systems will soon represent
the tool of choice for the scientific community devoted to very high-dimensional data
analysis in remote sensing and other fields.

Finally, although remote sensing data processing algorithms generally map quite
nicely to parallel systems made up of commodity CPUs, these systems are generally
expensive and difficult to adapt to onboard remote sensing data processing scenarios,
in which low-weight and low-power integrated components are essential to reduce
mission payload and obtain analysis results in real time, i.e., at the same time as the
data are collected by the sensor. In this regard, an exciting new development in the
field of commodity computing is the emergence of programmable hardware devices
such as field programmable gate arrays (FPGAs) [19, 20, 21] and graphic processing
units (GPUs) [22], which can bridge the gap towards onboard and real-time analysis
of remote sensing data. FPGAs are now fully reconfigurable, which allows one to
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adaptively select a data processing algorithm (out of a pool of available ones) to be
applied onboard the sensor from a control station on Earth.

On the other hand, the emergence of GPUs (driven by the ever-growing demands
of the video-game industry) has allowed these systems to evolve from expensive
application-specific units into highly parallel and programmable commodity compo-
nents. Current GPUs can deliver a peak performance in the order of 360 Gigaflops
(Gflops), more than seven times the performance of the fastest ×86 dual-core proces-
sor (around 50 Gflops). The ever-growing computational demands of remote sensing
applications can fully benefit from compact hardware components and take advan-
tage of the small size and relatively low cost of these units as compared to clusters or
networks of computers.

The main purpose of this chapter is to provide an overview of different HPC
paradigms in the context of remote sensing applications. The chapter is organized as
follows:

� Section 2.2 describes relevant previous efforts in the field, such as the evo-
lution of cluster computing in remote sensing applications, the emergence of
distributed networks of computers as a cost-effective means to solve remote
sensing problems, and the exploitation of specialized hardware architectures in
remote sensing missions.� Section 2.3 provides an application case study: the well-known Pixel Purity
Index (PPI) algorithm [23], which has been widely used to analyze hyper-
spectral images and is available in commercial software. The algorithm is first
briefly described and several issues encountered in its implementation are dis-
cussed. Then, we provide HPC implementations of the algorithm, including a
cluster-based parallel version, a variation of this version specifically tuned for
heterogeneous computing environments, and an FPGA-based implementation.� Section 2.4 also provides an experimental comparison of the proposed imple-
mentations of PPI using several high-performance computing architectures.
Specifically, we use Thunderhead, a massively parallel Beowulf cluster at
NASA’s Goddard Space Flight Center, a heterogeneous network of distributed
workstations, and a Xilinx Virtex-II FPGA device. The considered application
is based on the analysis of hyperspectral data collected by the AVIRIS instru-
ment over the World Trade Center area in New York City right after the terrorist
attacks of September 11th.� Finally, Section 2.5 concludes with some remarks and plausible future research
lines.

2.2 Related Work

This section first provides an overview of the evolution of cluster computing architec-
tures in the context of remote sensing applications, from the initial developments in
Beowulf systems at NASA centers to the current systems being employed for remote
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sensing data processing. Then, an overview of recent advances in heterogeneous
computing systems is given. These systems can be applied for the sake of distributed
processing of remotely sensed data sets. The section concludes with an overview of
hardware-based implementations for onboard processing of remote sensing data sets.

2.2.1 Evolution of Cluster Computing in Remote Sensing

Beowulf clusters were originally developed with the purpose of creating a cost-
effective parallel computing system able to satisfy specific computational require-
ments in the earth and space sciences communities. Initially, the need for large
amounts of computation was identified for processing multispectral imagery with
only a few bands [24]. As sensor instruments incorporated hyperspectral capabilities,
it was soon recognized that computer mainframes and mini-computers could not pro-
vide sufficient power for processing these kinds of data. The Linux operating system
introduced the potential of being quite reliable due to the large number of developers
and users. Later it became apparent that large numbers of developers could also be a
disadvantage as well as an advantage.

In 1994, a team was put together at NASA’s Goddard Space Flight Center (GSFC)
to build a cluster consisting only of commodity hardware (PCs) running Linux, which
resulted in the first Beowulf cluster [25]. It consisted of 16 100Mhz 486DX4-based
PCs connected with two hub-based Ethernet networks tied together with channel
bonding software so that the two networks acted like one network running at twice
the speed. The next year Beowulf-II, a 16-PC cluster based on 100Mhz Pentium
PCs, was built and performed about 3 times faster, but also demonstrated a much
higher reliability. In 1996, a Pentium-Pro cluster at Caltech demonstrated a sustained
Gigaflop on a remote sensing-based application. This was the first time a commodity
cluster had shown high-performance potential.

Up until 1997, Beowulf clusters were in essence engineering prototypes, that is,
they were built by those who were going to use them. However, in 1997, a project was
started at GSFC to build a commodity cluster that was intended to be used by those
who had not built it, the HIVE (highly parallel virtual environment) project. The idea
was to have workstations distributed among different locations and a large number
of compute nodes (the compute core) concentrated in one area. The workstations
would share the computer core as though it was apart of each. Although the original
HIVE only had one workstation, many users were able to access it from their own
workstations over the Internet. The HIVE was also the first commodity cluster to
exceed a sustained 10 Gigaflop on a remote sensing algorithm.

Currently, an evolution of the HIVE is being used at GSFC for remote sensing data
processing calculations. The system, called Thunderhead (see Figure 2.2), is a 512-
processor homogeneous Beowulf cluster composed of 256 dual 2.4 GHz Intel Xeon
nodes, each with 1 GB of memory and 80 GB of main memory. The total peak perfor-
mance of the system is 2457.6 GFlops. Along with the 512-processor computer core,
Thunderhead has several nodes attached to the core with a 2 Ghz optical fibre Myrinet.

NASA is currently supporting additional massively parallel clusters for remote
sensing applications, such as the Columbia supercomputer at NASA Ames Research
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Figure 2.2 Thunderhead Beowulf cluster (512 processors) at NASA’s Goddard
Space Flight Center in Maryland.

Center, a 10,240-CPU SGI Altix supercluster, with Intel Itanium 2 processors,
20 terabytes total memory, and heterogeneous interconnects including InfiniBand net-
work and a 10 GB Ethernet. This system is listed as #8 in the November 2006 version
of the Top500 list of supercomputer sites available online at http://www.top500.org.

Among many other examples of HPC systems included in the list that are currently
being exploited for remote sensing and earth science-based applications, we cite
three relevant systems for illustrative purposes. The first one is MareNostrum, an
IBM cluster with 10,240 processors, 2.3 GHz Myrinet connectivity, and 20,480 GB of
main memory available at Barcelona Supercomputing Center (#5 in Top500). Another
example is Jaws, a Dell PowerEdge cluster with 3 GHz Infiniband connectivity,
5,200 GB of main memory, and 5,200 processors available at Maui High-Performance
Computing Center (MHPCC) in Hawaii (#11 in Top500). A final example is NEC’s
Earth Simulator Center, a 5,120-processor system developed by Japan’s Aerospace
Exploration Agency and the Agency for Marine-Earth Science and Technology (#14
in Top500). It is highly anticipated that many new supercomputer systems will be
specifically developed in forthcoming years to support remote sensing applications.

2.2.2 Heterogeneous Computing in Remote Sensing

In the previous subsection, we discussed the use of cluster technologies based on
multiprocessor systems as a high-performance and economically viable tool for
efficient processing of remotely sensed data sets. With the commercial availability
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of networking hardware, it soon became obvious that networked groups of machines
distributed among different locations could be used together by one single parallel
remote sensing code as a distributed-memory machine [26]. Of course, such networks
were originally designed and built to connect heterogeneous sets of machines. As a
result, heterogeneous networks of workstations (NOWs) soon became a very popular
tool for distributed computing with essentially unbounded sets of machines, in which
the number and locations of machines may not be explicitly known [16], as opposed
to cluster computing, in which the number and locations of nodes are known and
relatively fixed.

An evolution of the concept of distributed computing described above resulted
in the current notion of grid computing [18], in which the number and locations of
nodes are relatively dynamic and have to be discovered at run-time. It should be noted
that this section specifically focuses on distributed computing environments without
meta-computing or grid computing, which aims at providing users access to services
distributed over wide-area networks. Several chapters of this volume provide detailed
analyses of the use of grids for remote sensing applications, and this issue is not
further discussed here.

There are currently several ongoing research efforts aimed at efficient distributed
processing of remote sensing data. Perhaps the most simple example is the use of
heterogeneous versions of data processing algorithms developed for Beowulf clus-
ters, for instance, by resorting to heterogeneous-aware variations of homogeneous
algorithms, able to capture the inherent heterogeneity of a NOW and to load-balance
the computation among the available resources [27]. This framework allows one to
easily port an existing parallel code developed for a homogeneous system to a fully
heterogeneous environment, as will be shown in the following subsection.

Another example is the Common Component Architecture (CCA) [28], which has
been used as a plug-and-play environment for the construction of climate, weather,
and ocean applications through a set of software components that conform to stan-
dardized interfaces. Such components encapsulate much of the complexity of the
data processing algorithms inside a black box and expose only well-defined inter-
faces to other components. Among several other available efforts, another distributed
application framework specifically developed for earth science data processing is the
Java Distributed Application Framework (JDAF) [29]. Although the two main goals of
JDAF are flexibility and performance, we believe that the Java programming language
is not mature enough for high-performance computing of large amounts of data.

2.2.3 Specialized Hardware for Onboard Data Processing

Over the last few years, several research efforts have been directed towards the incor-
poration of specialized hardware for accelerating remote sensing-related calculations
aboard airborne and satellite sensor platforms. Enabling onboard data processing
introduces many advantages, such as the possibility to reduce the data down-link
bandwidth requirements at the sensor by both preprocessing data and selecting data
to be transmitted based upon predetermined content-based criteria [19, 20]. Onboard
processing also reduces the cost and the complexity of ground processing systems so
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that they can be affordable to a larger community. Other remote sensing applications
that will soon greatly benefit from onboard processing are future web sensor mis-
sions as well as future Mars and planetary exploration missions, for which onboard
processing would enable autonomous decisions to be made onboard.

Despite the appealing perspectives introduced by specialized data processing com-
ponents, current hardware architectures including FPGAs (on-the-fly reconfigurabil-
ity) and GPUs (very high performance at low cost) still present some limitations that
need to be carefully analyzed when considering their incorporation to remote sensing
missions [30]. In particular, the very fine granularity of FPGAs is still not efficient,
with extreme situations in which only about 1% of the chip is available for logic while
99% is used for interconnect and configuration. This usually results in a penalty in
terms of speed and power. On the other hand, both FPGAs and GPUs are still difficult
to radiation-harden (currently-available radiation-tolerant FPGA devices have two
orders of magnitude fewer equivalent gates than commercial FPGAs).

2.3 Case Study: Pixel Purity Index (PPI) Algorithm

This section provides an application case study that is used in this chapter to illustrate
different approaches for efficient implementation of remote sensing data processing
algorithms. The algorithm selected as a case study is the PPI [23], one of the most
widely used algorithms in the remote sensing community. First, the serial version of
the algorithm available in commercial software is described. Then, several parallel
implementations are given.

2.3.1 Algorithm Description

The PPI algorithm was originally developed by Boardman et al. [23] and was soon
incorporated into Kodak’s Research Systems ENVI, one of the most widely used
commercial software packages by remote sensing scientists around the world. The
underlying assumption under the PPI algorithm is that the spectral signature associated
to each pixel vector measures the response of multiple underlying materials at each
site. For instance, it is very likely that the pixel vectors shown in Figure 3.8 would
actually contain a mixture of different substances (e.g., different minerals, different
types of soils, etc.). This situation, often referred to as the “mixture problem” in
hyperspectral analysis terminology [31], is one of the most crucial and distinguishing
properties of spectroscopic analysis.

Mixed pixels exist for one of two reasons [32]. Firstly, if the spatial resolution of
the sensor is not fine enough to separate different materials, these can jointly occupy
a single pixel, and the resulting spectral measurement will be a composite of the
individual spectra. Secondly, mixed pixels can also result when distinct materials
are combined into a homogeneous mixture. This circumstance occurs independent of
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Figure 2.3 Toy example illustrating the performance of the PPI algorithm in a
2-dimensional space.

the spatial resolution of the sensor. A hyperspectral image is often a combination of
the two situations, where a few sites in a scene are pure materials, but many others
are mixtures of materials.

To deal with the mixture problem in hyperspectral imaging, spectral unmixing tech-
niques have been proposed as an inversion technique in which the measured spectrum
of a mixed pixel is decomposed into a collection of spectrally pure constituent spectra,
called endmembers in the literature, and a set of correspondent fractions, or abun-
dances, that indicate the proportion of each endmember present in the mixed pixel [6].

The PPI algorithm is a tool to automatically search for endmembers that are assumed
to be the vertices of a convex hull [23]. The algorithm proceeds by generating a large
number of random, N -dimensional unit vectors called “skewers” through the data set.
Every data point is projected onto each skewer, and the data points that correspond to
extrema in the direction of a skewer are identified and placed on a list (see Figure 2.3).
As more skewers are generated, the list grows, and the number of times a given pixel
is placed on this list is also tallied. The pixels with the highest tallies are considered
the final endmembers.

The inputs to the algorithm are a hyperspectral data cube F with N dimensions; a
maximum number of endmembers to be extracted, E; the number of random skewers
to be generated during the process, k; a cut-off threshold value, tv , used to select
as final endmembers only those pixels that have been selected as extreme pixels at
least tv times throughout the PPI process; and a threshold angle, ta , used to discard
redundant endmembers during the process. The output of the algorithm is a set of E
final endmembers {ee}E

e=1. The algorithm can be summarized by the following steps:
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1. Skewer generation. Produce a set of k randomly generated unit vectors
{skewer j }k

j=1.

2. Extreme projections. For each skewer j , all sample pixel vectors fi in the orig-
inal data set F are projected onto skewer j via dot products of |fi · skewer j |
to find sample vectors at its extreme (maximum and minimum) projections,
thus forming an extrema set for skewer j that is denoted by Sextrema(skewer j ).
Despite the fact that a different skewer j would generate a different extrema
set Sextrema(skewer j ), it is very likely that some sample vectors may appear in
more than one extrema set. In order to deal with this situation, we define an
indicator function of a set S, denoted by IS(x), to denote membership of an
element x to that particular set as follows:

IS(fi ) =
{

1 if x ∈ S

0 if x /∈ S

}
(2.1)

3. Calculation of PPI scores. Using the indicator function above, we calculate
the PPI score associated to the sample pixel vector fi (i.e., the number of times
that given pixel has been selected as extreme in step 2) using the following
equation:

NPPI(fi ) =
k∑

j=1

ISextrema (skewer j )(fi ) (2.2)

4. Endmember selection. Find the pixel vectors with scores of NPPI(fi ) that are
above tv and form a unique set of endmembers {ee}E

e=1 by calculating the spectral
angle distance (SAD) for all possible vector pairs and discarding those pixels
that result in an angle value below ta . It should be noted that the SAD between
a pixel vector fi and a different pixel vector f j is a standard similarity metric for
remote sensing operations, mainly because it is invariant in the multiplication
of the input vectors by constants and, consequently, is invariant to unknown
multiplicative scalings that may arise due to differences in illumination and
sensor observation angle:

SAD(fi , f j ) = cos−1(fi · f j/‖fi‖ · ‖f j‖)

= cos−1

⎛⎜⎝ ∑N
l=1 fil f jl√∑N

l=1 f 2
il

√∑N
l=1 f 2

jl

⎞⎟⎠ (2.3)

From the algorithm description above, it is clear that the PPI is not an iterative
algorithm [33]. In order to set parameter values for the PPI, the authors recommend
using as many random skewers as possible in order to obtain optimal results. As a
result, the PPI can only guarantee to produce optimal results asymptotically and its
computational complexity is very high. According to our experiments using standard
AVIRIS hyperspectral data sets (typically, 614×512 pixels per frame and 224 spectral
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bands), the PPI generally requires a very high number of skewers (in the order of
k = 104 or k = 105) to produce an accurate final set of endmembers [32] and
results in processing times above one hour when the algorithm is run on a latest-
generation desktop PC. Such response time is unacceptable in most remote sensing
applications. In the following section, we provide an overview of HPC paradigms
applied to speed up computational performance of the PPI using different kinds of
parallel and distributed computing architectures.

2.3.2 Parallel Implementations

This section first develops a parallel implementation of the PPI algorithm that has been
specifically developed to be run on massively parallel, homogeneous Beowulf clus-
ters. Then, the parallel version is transformed into a heterogeneity-aware implemen-
tation by introducing an adaptive data partitioning algorithm specifically developed to
capture in real time the specificities of a heterogeneous network of distributed work-
stations. Finally, an FPGA implementation aimed at onboard PPI-based processing
is provided.

2.3.2.1 Cluster-Based Implementation of the PPI Algorithm

In this subsection, we describe a master-slave parallel version of the PPI algorithm.
To reduce code redundancy and enhance reusability, our goal was to reuse much of
the code for the sequential algorithm in the parallel implementation. For that purpose,
we adopted a spatial-domain decomposition approach [34, 35] that subdivides the
image cube into multiple blocks made up of entire pixel vectors, and assigns one or
more blocks to each processing element (see Figure 2.4).

Local partition #2

Local partition #1

Scatter

Original image

Local PPI scores

Local PPI scores

Gather

Global PPI scores

Processing node #2

Processing node #1

Figure 2.4 Domain decomposition adopted in the parallel implementation of the
PPI algorithm.
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It should be noted that the PPI algorithm is mainly based on projecting pixel vectors
that are always treated as a whole. This is a result of the convex geometry process
implemented by the PPI, which is based on the spectral “purity” or “convexity” of
the entire spectral signature associated to each pixel. Therefore, a spectral-domain
partitioning scheme (which subdivides the whole multi-band data into blocks made up
of contiguous spectral bands or sub-volumes, and assigns one or more sub-volumes
to each processing element) is not appropriate in our application [8]. This is because
the latter approach breaks the spectral identity of the data because each pixel vector
is split amongst several processing elements.

A further reason that justifies the above decision is that, in spectral-domain parti-
tioning, the calculations made for each hyperspectral pixel need to originate from sev-
eral processing elements, and thus require intensive inter-processor communication.
Therefore, in our proposed implementation, a master-worker spatial domain-based
decomposition paradigm is adopted, where the master processor sends partial data to
the workers and coordinates their actions. Then, the master gathers the partial results
provided by the workers and produces a final result.

As it was the case with the serial version, the inputs to our cluster-based imple-
mentation of the PPI algorithm are a hyperspectral data cube F with N dimensions; a
maximum number of endmembers to be extracted, p; the number of random skewers
to be generated during the process, k; a cut-off threshold value, tv; and a threshold
angle, ta . The output of the algorithm is a set of E endmembers {ee}E

e=1. The parallel
algorithm is given by the following steps:

1. Data partitioning. Produce a set of L spatial-domain homogeneous partitions
of F and scatter all partitions by indicating all partial data structure elements
that are to be accessed and sent to each of the workers.

2. Skewer generation. Generate k random unit vectors {skewer j }k
j=1 in parallel

and broadcast the entire set of skewers to all the workers.

3. Extreme projections. For each skewer j , project all the sample pixel vectors at
each local partition l onto skewer j to find sample vectors at its extreme projec-
tions, and form an extrema set for skewer j that is denoted by S(l)

extrema(skewer j ).
Now calculate the number of times each pixel vector f (l)

i in the local partition
is selected as extreme using the following expression:

N (l)
PPI

(
f (l)
i

) =
k∑

j=1

IS(l)
extrema (skewer j )

(
f (l)
i

)
(2.4)

4. Candidate selection. Select those pixels with N (l)
PPI

(
f (l)
i

)
> tv and send them to

the master node.

5. Endmember selection. The master gathers all the individual endmember sets
provided by the workers and forms a unique set {ee}E

e=1 by calculating the SAD
for all possible pixel vector pairs in parallel and discarding those pixels that
result in angle values below ta .
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It should be noted that the proposed parallel algorithm has been implemented in
the C++ programming language, using calls to message passing interface (MPI) [36].
We emphasize that, in order to implement step 1 of the parallel algorithm, we resorted
to MPI-derived data types to directly scatter hyperspectral data structures, which may
be stored non-contiguously in memory, in a single communication step. As a result,
we avoid creating all partial data structures on the root node (thus making better use
of memory resources and compute power).

2.3.2.2 Heterogeneous Implementation of the PPI Algorithm

In this subsection, we provide a simple application case study in which the standard
MPI-based implementation of the PPI is adapted to a heterogeneous environment by
reutilizing most of the code available for the cluster-based system [27]. This approach
is generally preferred due to the relatively large amount of data processing algorithms
and parallel software developed for homogeneous systems. Before introducing our
implementation of the PPI algorithm for heterogeneous NOWs, we must first formu-
late a general optimization problem in the context of fully heterogeneous systems
(composed of different-speed processors that communicate through links at different
capacities) [16]. Such a computing platform can be modeled as a complete graph
G = (P, E), where each node models a computing resource pi weighted by its rela-
tive cycle-time wi . Each edge in the graph models a communication link weighted by
its relative capacity, where ci j denotes the maximum capacity of the slowest link in
the path of physical communication links from pi to p j (we assume that the system
has symmetric costs, i.e., ci j = c ji .

With the above assumptions in mind, processor pi should accomplish a share of
αi · W of the total workload, denoted by W , to be performed by a certain algorithm,
with αi ≥ 0 for 1 ≤ i ≤ P and

∑P
i=1 αi = 1. With the above assumptions in mind,

an abstract view of our problem can be simply stated in the form of a master-worker
architecture, much like the commodity cluster-based homogeneous implementation
described in the previous section. However, in order for such parallel algorithms to be
also effective in fully heterogeneous systems, the master program must be modified
to produce a set of L spatial-domain heterogeneous partitions of F in step 1.

In order to balance the load of the processors in the heterogeneous environ-
ment, each processor should execute an amount of work that is proportional to its
speed. Therefore, two major goals of our partitioning algorithm should be: (i) to ob-
tain an appropriate set of workload fractions {αi }P

i=1 that best fit the heterogeneous
environment; and (ii) to translate the chosen set of values into a suitable decomposition
of the input data, taking into account the properties of the heterogeneous system.

To accomplish the above goals, we use a workload estimation algorithm (WEA)
that assumes that the workload of each processor pi must be directly proportional to
its local memory and inversely proportional to its cycle-time wi . Below, we provide a
description of a WEA algorithm, which replaces step 1 in the implementation of PPI
provided in our previous section. Steps 2–5 of the parallel algorithm in the previous
section would be executed immediately after WEA and remain the same as those
outlined in the algorithmic description provided in the previous section (thus greatly
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enhancing code reutilization). The input to WEA is F, an N -dimensional data cube,
and the output is a set of L spatial-domain heterogeneous partitions of F:

1. Obtain necessary information about the heterogeneous system, including the
number of available processors P , each processor’s identification number
{pi }P

i=1, and processor cycle-times {αi }P
i=1.

2. Set αi = � (P/wi )∑P
i=1(1/wi )

� for all i ∈ {1, · · · , P}. In other words, this step first

approximates the {αi }P
i=1 so that the amount of work assigned to each processor

is proportional to its speed and αi · wi ≈ const for all processors.

3. Iteratively increment some αi until the set of {αi }P
i=1 best approximates the total

workload to be completed, W , i.e., for m = ∑P
i=1 αi to W , find k ∈ {1, · · · , P}

so that wk · (αk + 1) = min{wi · (αi + 1)}P
i=1, and then set αk = αk + 1.

4. Once the set {αi }P
i=1 has been obtained, a further objective is to produce P

partitions of the input hyperspectral data set. To do so, we proceed as follows:� Obtain a first partitioning of the hyperspectral data set so that the number of
rows in each partition is proportional to the values of {αi }P

i=1.� Refine the initial partitioning taking into account the local memory associated
to each processor.

The parallel algorithm described above has been implemented using two
approaches. The first one is based on the C++ programming language with calls to stan-
dard MPI functions. A second implementation was developed using HeteroMPI [37],
a heterogeneous version of MPI that automatically optimizes the workload assigned
to each heterogeneous processor (i.e., this implementation automatically determines
the load distribution accomplished by our proposed WEA algorithm). Experimen-
tally, we tested that both implementations resulted in very similar results, and, hence,
the experimental validation provided in the following section will be based on the
performance analysis achieved by the first implementation (i.e., using our proposed
WEA algorithm to estimate the workloads).

2.3.2.3 FPGA-Based Implementation of the PPI Algorithm

In this subsection, we describe a hardware-based parallel strategy for implementa-
tion of the PPI algorithm that is aimed at enhancing replicability and reusability of
slices in FPGA devices through the utilization of systolic array design [38]. One of
the main advantages of systolic array-based implementations is that they are able to
provide a systematic procedure for system design that allows for the derivation of a
well-defined processing element-based structure and an interconnection pattern that
can then be easily ported to real hardware configurations. Using this procedure, we
can also calculate the data dependencies prior to the design, and in a very straight-
forward manner. Our proposed design intends to maximize computational power of
the hardware and minimize the cost of communications. These goals are particularly
relevant in our specific application, where hundreds of data values will be handled
for each intermediate result, a fact that may introduce problems related with limited
resource availability and inefficiencies in hardware replication and reusability.
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Figure 2.5 Systolic array design for the proposed FPGA implementation of the PPI
algorithm.

After several empirical experiments using real data sets, we opted for a config-
uration in which local results remain static at each processing element, while pixel
vectors are input to the systolic array from top to bottom and skewer vectors are fed
to the systolic array from left to right. Figure 2.5 illustrates the above principle, in
which local results remain static at each processing element, while pixel vectors are
input to the systolic array from top to bottom and skewer vectors are fed to the sys-
tolic array from left to right. In Figure 2.5, asterisks represent delays while skewer(n)

j
denotes the value of the n-th band of the j-th skewer, with j ∈ {1, · · · , K } and
n ∈ {1, · · · , N }, where N is the number of bands of the input hyperspectral scene.
Similarly, f(n)

i denotes the reflectance value of the n-th band of the i-th pixel, with
i ∈ {1, · · · , T }, where T is the total number of pixels in the input image. The pro-
cessing nodes labeled as dot in Figure 2.5 perform the individual products for the
skewer projections. On the other hand, the nodes labeled as max and min respectively
compute the maxima and minima projections after the dot product calculations have
been completed. In fact, the max and min nodes can be respectively seen as part of a
1-dimensional systolic array that avoids broadcasting the pixel while simplifying the
collection of the results.

Basically, a systolic cycle in the architecture described in Figure 2.5 consists in
computing a single dot product between a pixel and a skewer. A full vector dot-product
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calculation requires N multiplications and N − 1 additions, where N is the number
of spectral bands. It has been shown in previous work that the skewer values can be
limited to a very small set of integers when N is large, as in the case of hyperspectral
images. A particular and interesting set is {1, −1}, since it avoids the multiplication
[39]. The dot product is thus reduced to an accumulation of positive and negative
values (the self-connections in the dot nodes of Figure 2.5 represent the accumula-
tion of intermediate results in those nodes). With the above assumptions in mind,
the dot nodes only need to accumulate the positive or negative values of the pixel
input according to the skewer input. These units are thus only composed of a single
16-bit addition/subtraction operator. If we suppose that an addition or a subtraction is
executed every clock cycle, then the calculation of a full dot product requires N clock
cycles. During the first systolic cycle, dot11 starts processing the first band of the first
pixel vector, f1. During the second systolic cycle, the node dot12 starts processing the
first band of pixel f2, while the node dot11 processes the second band of pixel f1, and
so on.

The main advantage of the systolic array described above is its scalability. Depend-
ing on the resources available on the reconfigurable board, the number of processors
can be adjusted without modifying the control of the array. In order to reduce the
number of passes, we decided to allocate the maximum number of processors in the
available FPGA components. In other words, although in Figure 2.5 we represent an
ideal systolic array in which T pixels can be processed, this is not the usual situation,
and the number of pixels usually has to be divided by P , the number of available pro-
cessors. In this scenario, after T/P systolic cycles, all the nodes are working. When
all the pixels have been flushed through the systolic array, T/P additional systolic
cycles are thus required to collect the results for the considered set of P pixels and
a new set of P different pixels would be flushed until processing all T pixels in the
original image.

Finally, to obtain the vector of endmember abundances {ai1, ai2, · · · , ai E } for each
pixel fi , we multiply each fi by (MT M)−1MT , where M = {ee}E

e=1 and the superscript
T denotes the matrix transpose operation. As recently described [40], this operation
can be done using a so-called parallel block algorithm, which has been adopted in
this work to carry out the final spectral unmixing step added to our description of PPI
algorithm using part of the systolic array design outlined above.

Based on the design described above, we have developed a high-level implementa-
tion of PPI using Handel-C [41], a design and prototyping language that allows using
a pseudo-C programming style. The final decision on implementing our design using
Handel-C instead of other well-known hardware description languages such as VHDL
or Verilog was taken on the account that a high-level language may allow users to gen-
erate hardware versions of available hyperspectral analysis algorithms in relatively
short time. For illustrative purposes, the source code in Handel-C corresponding to the
extreme projections step of our FPGA implementation of the PPI algorithm is shown
below. The skewer initialization and spectral unmixing-related portions of the code
are not shown for simplicity. For a detailed understanding of the piece of code shown
in the listing below, we point to reference material and documentation on Handel-C
and Xilinx [41, 42].
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Listing 1 Source code of the Handel-C (high level) FPGA implementation of the PPI
algorithm.

void main(void) {

unsigned int 16 max[E]; //E is the number of endmembers
unsigned int 16 end[E];
unsigned int 16 i ;
unsigned int 10000 k; //k denotes the number of skewers
unsigned int 224 N ; //N denotes the number of bands

par(i = 0;i < E ;i++) max[i]=0;
par(k = 0;k < E ;k++) {

par(k = 0;k < E ;k++) {
par( j = 0; j < N ;j++) {

Proc Element[i][k](pixels[i][ j],skewers[k][ j],0@i,0@k);
}

}
}

for(i = 0;i < E ;i++) {
max[i]=Proc Element[i][k](0@max[i], 0, 0@i, 0@k);

}

phase 1 finished=1
while(!phase 2) { //Waiting to enter phase 2 }
for(i = 0;i < E ;i++) end[i]=0;
for(i = 0;i < E ;i++) {

par(k = 0;k < E ;k++) {
par( j = 0; j < N ;j++) {

end[i]=end[i]&&Proc Element[i][k](pixels[i][ j],skewers[k][ j],0,0);
}

}
}

phase 2 finished=1
global finished=0
for(i = 0;i < E ;i++) global finished=global finished&&end[i];

The implementation above was compiled and transformed into an EDIF specifi-
cation automatically by using the DK3.1 software package [43]. We also used other
tools such as Xilinx ISE 6.1i [42] to carry out automatic place and route, and to adapt
the final steps of the hardware implementation to the Virtex-II FPGA used in the
experiments.
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2.4 Experimental Results

This section provides an assessment of the effectiveness of the parallel versions of
PPI described throughout this chapter. Before describing our study on performance
analysis, we first describe the HPC computing architectures used in this work. These
include Thunderhead, a massively parallel Beowulf cluster made up of homogeneous
commodity components and available at NASA’s GSFC; four different networks
of heterogeneous workstations distributed among different locations; and a Xilinx
Virtex-II XC2V6000-6 FPGA. Next, we describe the hyperspectral data sets used for
evaluation purposes. A detailed survey on algorithm performance in a real application
is then provided, along with a discussion on the advantages and disadvantages of each
particular approach. The section concludes with a discussion of the results obtained
for the PPI implemented using different HPC architectures.

2.4.1 High-Performance Computer Architectures

This subsection provides an overview of the HPC platforms used in this study for
demonstration purposes. The first considered system is Thunderhead, a 512-processor
homogeneous Beowulf cluster that can be seen as an evolution of the HIVE project,
started in 1997 to build a homogeneous commodity cluster to be exploited in remote
sensing applications. It is composed of 256 dual 2.4 GHz Intel Xeon nodes, each with
1 GB of memory and 80 GB of main memory. The total peak performance of the
system is 2457.6 GFlops. Along with the 512-processor computer core, Thunderhead
has several nodes attached to the core with a 2 Ghz optical fibre Myrinet. The proposed
cluster-based parallel version of the PPI algorithm proposed in this chapter was run
from one of such nodes, called thunder1. The operating system used in the experiments
was Linux Fedora Core, and MPICH [44] was the message-passing library used.

To explore the performance of the heterogeneity-aware implementation of PPI de-
veloped in this chapter, we have considered four different NOWs. All of them were
custom-designed in order to approximate a recently proposed framework for eval-
uating heterogeneous parallel algorithms [45], which relies on the assumption that
a heterogeneous algorithm cannot be executed on a heterogeneous network faster
than its homogeneous version on an equivalent homogeneous network. In this study,
a homogeneous computing environment was considered equivalent to the heteroge-
neous one based when the three requirements listed below were satisfied:

1. Both environments should have exactly the same number of processors.

2. The speed of each processor in the homogeneous environment should be equal
to the average speed of the processors in the heterogeneous environment.

3. The aggregate communication characteristics of the homogeneous environment
should be the same as those of the heterogeneous environment.

With the above three principles in mind, a heterogeneous algorithm may be considered
optimal if its efficiency on a heterogeneous network is the same as that evidenced by
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TABLE 2.1 Specifications of Heterogeneous Computing Nodes in
a Fully Heterogeneous Network of Distributed Workstations

Processor Architecture Cycle-Time Memory Cache
Number Overview (Seconds/Mflop) (MB) (KB)

p1 Intel Pentium 4 0.0058 2048 1024
p2, p5, p8 Intel Xeon 0.0102 1024 512
p3 AMD Athlon 0.0026 7748 512
p4, p6, p7, p9 Intel Xeon 0.0072 1024 1024
p10 UltraSparc-5 0.0451 512 2048
p11 − p16 AMD Athlon 0.0131 2048 1024

its homogeneous version on the equivalent homogeneous network. This allows using
the parallel performance achieved by the homogeneous version as a benchmark for
assessing the parallel efficiency of the heterogeneous algorithm. The four networks are
considered approximately equivalent under the above framework. Their descriptions
follow:

� Fully heterogeneous network. Consists of 16 different workstations and four
communication segments. Table 2.1 shows the properties of the 16 heteroge-
neous workstations, where processors {pi }4

i=1 are attached to communication
segment s1, processors {pi }8

i=5 communicate through s2, processors {pi }10
i=9 are

interconnected via s3, and processors {pi }16
i=11 share the communication seg-

ment s4. The communication links between the different segments {s j }4
j=1 only

support serial communication. For illustrative purposes, Table 2.2 also shows
the capacity of all point-to-point communications in the heterogeneous network,
expressed as the time in milliseconds to transfer a 1-MB message between each
processor pair (pi , p j ) in the heterogeneous system. As noted, the communica-
tion network of the fully heterogeneous network consists of four relatively fast
homogeneous communication segments, interconnected by three slower com-
munication links with capacities c(1,2) = 29.05, c(2,3) = 48.31, c(3,4) = 58.14
in milliseconds, respectively. Although this is a simple architecture, it is also a
quite typical and realistic one as well.� Fully homogeneous network. Consists of 16 identical Linux workstations with
processor cycle-time of w = 0.0131 seconds per Mflop, interconnected via

TABLE 2.2 Capacity of Communication Links
(Time in Milliseconds to Transfer a 1-MB Message)
in a Fully Heterogeneous Network

Processor p1 − p4 p5 − p8 p9 − p10 p11 − p16

p1 − p4 19.26 48.31 96.62 154.76
p5 − p8 48.31 17.65 48.31 106.45
p9 − p10 96.62 48.31 16.38 58.14
p11 − p16 154.76 106.45 58.14 14.05
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a homogeneous communication network where the capacity of links is c =
26.64 ms.� Partially heterogeneous network. Formed by the set of 16 heterogeneous work-
stations in Table 2.1 but interconnected using the same homogeneous commu-
nication network with capacity c = 26.64 ms.� Partially homogeneous network. Formed by 16 identical Linux workstations
with cycle-time of w = 0.0131 seconds per Mflop, interconnected using the
communication network in Table 2.2.

Finally, in order to test the proposed systolic array design in hardware-based com-
puting architectures, our parallel design was implemented on a Virtex-II XC2V6000-6
FPGA of the Celoxica’s ADMXRC2 board. It contains 33,792 slices, 144 Select
RAM Blocks, and 144 multipliers (of 18-bit × 18-bit). Concerning the timing perfor-
mances, we decided to pack the input/output registers of our implementation into the
input/output blocks in order to try to reach the maximum achievable performance.

2.4.2 Hyperspectral Data

The image scene used for experiments in this work was collected by the AVIRIS
instrument, which was flown by NASA’s Jet Propulsion Laboratory over the World
Trade Center (WTC) area in New York City on September 16, 2001, just 5 days
after the terrorist attacks that collapsed the two main towers and other buildings in
the WTC complex. The data set selected for the experiments was geometrically and
atmospherically corrected prior to data processing, and consists of 614 × 512 pixels,
224 spectral bands, and a total size of 140 MB. The spatial resolution is 1.7 meters
per pixel. Figure 2.6(left) shows a false color composite of the data set selected for
the experiments using the 1682, 1107, and 655 nm channels, displayed. A detail of
the WTC area is shown in a rectangle.

At the same time of data collection, a small U.S. Geological Survey (USGS) field
crew visited lower Manhattan to collect spectral samples of dust and airfall debris
deposits from several outdoor locations around the WTC area. These spectral samples
were then mapped into the AVIRIS data using reflectance spectroscopy and chemical
analyses in specialized USGS laboratories. For illustrative purposes, Figure 2.6(right)
shows a thermal map centered at the region where the buildings collapsed. The map
shows the target locations of the thermal hot spots.

An experiment-based cross-examination of endmember extraction accuracy was
first conducted to assess the SAD-based spectral similarity scores obtained after
comparing the ground-truth USGS reference signatures with the corresponding five
endmembers extracted by the three parallel implementations of the PPI algorithm.
This experiment revealed that the three considered parallel implementations did not
produce exactly the same results as those obtained by the original PPI algorithm
implemented in Kodak’s Research Systems ENVI 4.0, although the spectral similar-
ity scores with regards to the reference USGS signatures were very satisfactory in all
cases.
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Figure 2.6 AVIRIS hyperspectral image collected by NASA’s Jet Propulsion Lab-
oratory over lower Manhattan on Sept. 16, 2001 (left), and location of thermal hot
spots in the fires observed in the World Trade Center area (right).

Table 2.3 shows the spectral angle distance (SAD) between the most similar target
pixels detected by the original ENVI implementation and our three proposed parallel
implementations with regards to the USGS signatures. In all cases, the total number
of endmembers to be extracted was set to E = 16 for all versions after estimating the
virtual dimensionality (VD) of the data [6], although only seven endmembers were
available for quantitative assessment in Table 2.3 due to the limited number of ground-
truth signatures in our USGS library. Prior to a full examination and discussion of the
results, it is also important to outline parameter values used for the PPI. It is worth not-
ing that, in experiments with the AVIRIS scene, we observed that the PPI produced the
same final set of experiments when the number of randomly generated skewers was
set to k = 104 and above (values of k = 103, 105, and 106 were also tested). Based on
the above simple experiments, we empirically set parameter tv (threshold value) to the

TABLE 2.3 SAD-Based Spectral Similarity Scores Between Endmembers
Extracted by Different Parallel Implementations of the PPI Algorithm and the
USGS Reference Signatures Collected in the WTC Area

Dust/Debris Class ENVI Cluster-Based Heterogeneous FPGA

Gypsum Wall board – GDS 524 0.081 0.089 0.089 0.089
Cement – WTC01-37A(c) 0.094 0.094 0.099 0.099
Dust – WTC01-15 0.077 0.077 0.077 0.077
Dust – WTC01-36 0.086 0.086 0.086 0.086
Dust – WTC01-28 0.069 0.069 0.069 0.069
Concrete – WTC01-37Am 0.073 0.073 0.075 0.073
Concrete – WTC01-37B 0.090 0.090 0.090 0.090



High-Performance Computer Architectures for Remote Sensing 31

256224192160128

Number of CPUs

9664320

0

32

64

96

128

160

192
Linear speedup

Heterogeneous PPI

Homogeneous PPI

S
p

ee
d

u
p

224

256

Figure 2.7 Scalability of the cluster-based and heterogeneous parallel implemen-
tations of PPI on Thunderhead.

mean of NPPI scores obtained after k = 1000 iterations. In addition, we set the thresh-
old angle value used to discard redundant endmembers during the process to ta = 0.01.
These parameter values are in agreement with those used before in the literature [32].

2.4.3 Performance Evaluation

To investigate the parallel properties of the parallel algorithms proposed in this chap-
ter, we first tested the performance of the cluster-based implementation of PPI and its
heterogeneous version on NASA’s GSFC Thunderhead Beowulf cluster. For that pur-
pose, Figure 2.7 plots the speedups achieved by multi-processor runs of the homoge-
neous and heterogeneous parallel versions of the PPI algorithm over the corresponding
single-processor runs performed using only the Thunderhead processor. It should be
noted that the speedup factors in Figure 2.7 were calculated as follows: the real time
required to complete a task on p processors, T (p), was approximated by T (p) = Ap+
Bp

p , where Ap is the sequential (non-parallelizable) portion of the computation and Bp

is the parallel portion. In our parallel codes, Ap corresponds to the data partitioning
and endmember selection steps (performed by the master), while Bp corresponds to
the skewer generation, extreme projections, and candidate selection steps, which are
performed in “embarrasingly parallel” fashion at the different workers. With the above
assumptions in mind, we can define the speedup for p processors, Sp, as follows:

Sp = T (1)

T (p)
≈ Ap + Bp

Ap + (Bp/p)
, (2.5)
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TABLE 2.4 Processing Times (Seconds) Achieved by the Cluster-Based
and Heterogeneous Parallel Implementations of PPI on Thunderhead

Number of CPUs 1 4 16 36 64 100 144 196 256

Cluster-based PPI 2745 1012 228 94 49 30 21 16 12
Heterogeneous PPI 2745 1072 273 106 53 32 22 17 13

where T (1) denotes single processor time. The relationship above is known as
Amdahl’s Law [46]. It is obvious from this expression that the speedup of a parallel
algorithm does not continue to increase with increasing the number of processors.
The reason is that the sequential portion Ap is proportionally more important as the
number of processors increases, and, thus, the performance of the parallelization is
generally degraded for a large number of processors. In fact, since only the parallel
portion Bp scales with the time required to complete the calculation and the serial
component remains constant, there is a theoretical limit for the maximum parallel
speedup achievable for p processors, which is given by the following expression:

S p
∞ = lim

p→∞ Sp = Ap + Bp

Ap
= 1 + Bp

Ap
(2.6)

In our experiments, we have observed that although the speedup plots in Figure 2.7
flatten out a little for a large number of processors, they are very close to linear speedup,
which is the optimal case in spite of equation 2.6. The plots also reveal that the scal-
ability of the heterogeneous algorithm was esentially the same as that evidenced by
its homogeneous version. For the sake of quantitative comparison, Table 2.4 reports
the measured execution times by the tested algorithms on Thunderhead, using dif-
ferent numbers of processors. The results in Table 2.4 reveal that the heterogeneous
implementation of PPI can effectively adapt to a massively parallel homogeneous
environment, thus being able to produce a response in only a few seconds (12–13)
using a relatively moderate number of processors.

After evaluating the performance of the proposed cluster-based implementation on
a fully homogeneous cluster, a further objective was to evaluate how the proposed
heterogeneous implementation performed on heterogeneous NOWs. For that purpose,
we evaluated its performance by timing the parallel heterogeneous code using four
(equivalent) networks of distributed workstations. Table 2.5 shows the measured
execution times for the proposed heterogeneous algorithm and a homogeneous version

TABLE 2.5 Execution Times (Measured In Seconds)
of the Heterogeneous PPI and its Homogeneous Version
on the Four Considered Nows (16 Processors)

PPI Fully Fully Partially Partially
Implementation Hetero Homo Hetero Homo

Heterogeneous 84 89 87 88
Homogeneous 667 81 638 374
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that was directly obtained from the heterogeneous one by by simply replacing step 3
of the WEA algorithm with αi = P/W for all i ∈ {1, 2, · · · , P}.

As expected, the execution times reported in Table 2.5 show that the heterogeneous
algorithm was able to adapt much better to fully (or partially) heterogeneous environ-
ments than the homogeneous version, which only performed satisfactorily on the fully
homogeneous network. One can see that the heterogeneous algorithm was always sev-
eral times faster than its homogeneous counterpart in the fully heterogeneous NOW,
and also in both the partially homogeneous and the partially heterogeneous networks.
On the other hand, the homogeneous algorithm only slightly outperformed its het-
erogeneous counterpart in the fully homogeneous NOW. Table 2.5 also indicates that
the performance of the heterogeneous algorithm on the fully heterogeneous platform
was almost the same as that evidenced by the equivalent homogeneous algorithm
on the fully homogeneous NOW. This indicated that the proposed heterogeneous
algorithm was always close to the optimal heterogeneous modification of the basic
homogeneous one. On the other hand, the homogeneous algorithm performed much
better on the partially homogeneous network (made up of processors with the same
cycle-times) than on the partially heterogeneous network. This fact reveals that pro-
cessor heterogeneity has a more significant impact on algorithm performance than
network heterogeneity, a fact that is not surprising given our adopted strategy for data
partitioning in the design of the parallel heterogeneous algorithm. Finally, Table 2.5
shows that the homogeneous version only slightly outperformed the heterogeneous
algorithm in the fully homogeneous NOW. This clearly demonstrates the flexibility
of the proposed heterogeneous algorithm, which was able to adapt efficiently to the
four considered network environments.

To further explore the parallel properties of the considered algorithms in more de-
tail, an in-depth analysis of computation and communication times achieved by the
different methods is also highly desirable. For that purpose, Table 2.6 shows the total
time spent by the tested algorithms in communications and computations in the four
considered networks, where two types of computation times were analyzed, namely,
sequential (those performed by the root node with no other parallel tasks active in
the system, labeled as Ap in the table) and parallel (the rest of the computations, i.e.,
those performed by the root node and/or the workers in parallel, labeled as Bp in
the table). The latter includes the times in which the workers remain idle. It can be
seen from Table 2.6 that the Ap scores were relevant for both the heterogeneous and
homogeneous implementations of PPI, mainly due to the final endmember selection
step at is performed at the master node once the workers have finalized their parallel

TABLE 2.6 Communication (com), Sequential Computation (Ap), and
Parallel Computation (Bp) Times Obtained on the Four Considered NOWs

Fully Hetero Fully Homo Partially Hetero Partially Homo

com Ap Bp com Ap Bp com Ap Bp com Ap Bp

Heterogeneous 7 19 58 11 16 62 8 18 61 8 20 60
Homogeneous 14 19 634 6 16 59 9 18 611 12 20 342
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TABLE 2.7 Load Balancing Rates for the Heterogeneous PPI and its
Homogeneous Version on the Four Considered NOWs

Fully Hetero Fully Homo Partially Hetero Partially Homo

Dall Dminus Dall Dminus Dall Dminus Dall Dminus

Heterogeneous 1.19 1.05 1.16 1.03 1.24 1.06 1.22 1.03
Homogeneous 1.62 1.23 1.20 1.06 1.67 1.26 1.41 1.05

computations. However, it can be seen from Table 2.6 that the Ap scores were not
relevant when compared to the Bp scores, in particular, for the heterogeneous algo-
rithm. This results in high parallel efficiency of the heterogeneous version. On the
other hand, it can also be seen from Table 2.6 that the cost of parallel computations
(Bp scores) dominated that of communications (labeled as com in the table) in the two
considered parallel algorithms. In particular, the ratio of Bp to com scores achieved by
the homogeneous version executed on the (fully or partially) heterogeneous network
was very high, which is probably due to a less efficient workload distribution among
the heterogeneous workers. Therefore, a study of load balance is highly required to
fully substantiate the parallel properties of the considered algorithms.

To analyze the important issue of load balance in more detail, Table 2.7 shows the
imbalance scores achieved by the parallel algorithms on the four considered NOWs.
The imbalance is defined as D = Rmax/Rmin , where Rmax and Rmin are the maxima
and minima processor run times, respectively. Therefore, perfect balance is achieved
when D = 1. In the table, we display the imbalance considering all processors, Dall ,
and also considering all processors but the root, Dminus . As we can see from Table 2.7,
the heterogeneous PPI was able to provide values of Dall close to 1 in all considered
networks. Further, this algorithm provided almost the same results for both Dall and
Dminus while, for the homogeneous PPI, load balance was much better when the root
processor was not included. In addition, it can be seen from Table 2.7 that the homoge-
neous algorithm executed on the (fully or partially) heterogeneous networks provided
the highest values of Dall and Dminus (and hence the highest imbalance), while the
heterogeneous algorithm executed on the homogeneous network resulted in values of
Dminus that were close to 1. It is our belief that the (relatively high) unbalance scores
measured for the homogeneous PPI executed on the fully heterogeneous network are
not only due to memory considerations or to an inefficient allocation of data chunks
to heterogeneous resources, but to the impact of communications. As future research,
we are planning to include considerations about the heterogeneous communication
network in the design of the data partitioning algorithm.

Although the results presented above demonstrate that the proposed parallel im-
plementations of the PPI algorithm are satisfactory from the viewpoint of algorithm
scalability, code reusability, and load balance, there are many hyperspectral imaging
applications that demand a response in real time. Although the idea of mounting clus-
ters and networks of processing elements onboard airborne and satellite hyperspectral
imaging facilities has been explored in the past, the number of processing elements
in such experiments has been very limited thus far, due to payload requirements in
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TABLE 2.8 Summary of Resource Utilization for the
FPGA-based Implementation of the PPI Algorithm

Number of Number of Percentage Operation frequency
gates slices of total (MHz)

526,944 12,418 36% 18,032

most remote sensing missions. For instance, a low-cost, portable Myrinet cluster of
16 processors (with very similar specifications as those of the homogeneous network
of workstations used in the experiments) was recently developed at NASA’s GSFC
for onboard analysis. The cost of the portable cluster was only $3,000. Unfortunately,
it could still not facilitate real-time performance as indicated by Table 2.5, and the in-
corporation of additional processing elements to the low-scale cluster was reportedly
difficult due to overheating and weight considerations. As an alternative to cluster
computing, FPGA-based computing provides several advantages, such as increased
computational power, adaptability to different applications via reconfigurability, and
compact size. Also, the cost of the Xilinx Virtex-II XC2V6000-6 FPGA used for the
experiments in this work is currently only slightly higher than that of the portable
Myrinet cluster mentioned above.

In order to fully substantiate the performance of our FPGA-based implementation,
Table 2.8 shows a summary of resource utilization by the proposed systolic array-
based implementation of the PPI algorithm on the considered XC2V6000-6 FPGA,
which was able to provide a response in only a few seconds for the considered
AVIRIS scene. This result is even better than that reported for the cluster-based
implementation of PPI executed on Thunderhead using 256 processors. Since the
FPGA used in the experiments has a total of 33,792 slices available, the results
addressed in Table 2.8 indicate that there is still room in the FPGA for implementation
of additional algorithms. It should be noted, however, that the considered 614 ×
512-pixel hyperspectral scene is just a subset of the total volume of hyperspectral
data that was collected by the AVIRIS sensor over the Cuprite Mining District in a
single pass, which comprised up to 1228 × 512 pixels (with 224 spectral bands). As
a result, further experiments would be required in order to optimize our FPGA-based
design to be able to process the full AVIRIS flight line in real time.

2.4.4 Discussion

This section has described different HPC-based strategies for a standard data pro-
cessing algorithm in remote sensing, with the purpose of evaluating the possibility of
obtaining results in valid response times and with adequate reliability in several HPC
platforms where these techniques are intended to be applied. Our experiments con-
firm that the utilization of parallel and distributed computing paradigms anticipates
ground-breaking perspectives for the exploitation of these kinds of high-dimensional
data sets in many different applications.

Through the detailed analysis of the PPI algorithm, a well-known hyperspec-
tral analysis method available in commercial software, we have explored different
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strategies to increase the computational performance of the algorithm (which can take
up to several hours of computation to complete its calculations in latest-generation
desktop computers). Two of the considered strategies, i.e., commodity cluster-based
computing and distributed computing in heterogeneous NOWs, seem particularly ap-
propriate for information extraction from very large hyperspectral data archives. Paral-
lel computing architectures made up of homogeneous and heterogeneous commodity
computing resources have gained popularity in the last few years due to the chance
of building a high-performance system at a reasonable cost. The scalability, code
reusability, and load balance achieved by the proposed implementations in such low-
cost systems offer an unprecedented opportunity to explore methodologies in other
fields (e.g. data mining) that previously looked to be too computationally intensive for
practical applications due to the immense files common to remote sensing problems.

To address the near-real-time computational needs introduced by many remote
sensing applications, we have also developed a systolic array-based FPGA imple-
mentation of the PPI. Experimental results demonstrate that our hardware version
of the PPI makes appropriate use of computing resources in the FPGA and further
provides a response in near-real-time that is believed to be acceptable in most remote
sensing applications. It should be noted that onboard data processing of hyperspectral
imagery has been a long-awaited goal by the remote sensing community, mainly be-
cause the number of applications requiring a response in realtime has been growing
exponentially in recent years. Further, the reconfigurability of FPGA systems opens
many innovative perspectives from an application point of view, ranging from the ap-
pealing possibility of being able to adaptively select one out of a pool of available data
processing algorithms (which could be applied on the fly aboard the airborne/satellite
platform, or even from a control station on Earth), to the possibility of providing a
response in realtime in applications that certainly demand so, such as military target
detection, wildland fire monitoring and tracking, oil spill quantification, etc. Although
the experimental results presented in this section are very encouraging, further work
is still needed to arrive at optimal parallel design and implementations for the PPI
and other hyperspectral imaging algorithms.

2.5 Conclusions and Future Research

Remote sensing data processing exemplifies a subject area that has drawn together an
eclectic collection of participants. Increasingly, this is the nature of many endeavors
at the cutting edge of science and technology. However, a common requirement in
most available techniques is given by the extremely high dimensionality of remote
sensing data sets, which pose new processing problems. In particular, there is a clear
need to develop cost-effective algorithm implementations for dealing with remote
sensing problems, and the goal to speed up algorithm performance has already been
identified in many on-going and planned remote sensing missions in order to satisfy
the extremely high computational requirements of time-critical applications.
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In this chapter, we have taken a necessary first step towards the understanding and
assimilation of the above aspects in the design of innovative high-performance data
processing algorithms and architectures. The chapter has also discussed some of the
problems that need to be addressed in order to translate the tremendous advances in our
ability to gather and store high-dimensional remotely sensed data into fundamental,
application-oriented scientific advances through the design of efficient data processing
algorithms. Specifically, three innovative HPC-based techniques, based on the well-
known PPI algorithm, have been introduced and evaluated from the viewpoint of
both algorithm accuracy and parallel performance, including a commodity cluster-
based implementation, a heterogeneity-aware parallel implementation developed for
distributed networks of workstations, and an FPGA-based hardware implementation.
The array of analytical techniques presented in this work offers an excellent snapshot
of the state-of-the-art in the field of HPC in remote sensing.

Performance data for the proposed implementations have been provided in the con-
text of a real application. These results reflect the versatility that currently exists in the
design of HPC-based approaches, a fact that currently allows users to select a specific
high-performance architecture that best fits the requirements of their application do-
mains. In this regard, the collection of HPC-based techniques presented in this chapter
also reflects the increasing sophistication of a field that is rapidly maturing at the in-
tersection of disciplines that still can substantially improve their degree of integration,
such as sensor design including optics and electronics, aerospace engineering, remote
sensing, geosciences, computer sciences, signal processing, and Earth observation re-
lated products. The main purpose of this book is to present current efforts towards
the integration of remote sensing science with parallel and distributed computing
techniques, which may introduce substantial changes in the systems currently used
by NASA and other agencies for exploiting the sheer volume of Earth and planetary
remotely sensed data collected on a daily basis.

As future work, we plan to implement the proposed parallel techniques on other
massively parallel computing architectures, such as NASA’s Project Columbia, the
MareNostrum supercomputer at Barcelona Supercomputing Center, and several grid
computing environments operated by the European Space Agency. We are also
developing GPU-based implementations (described in detail in the last chapter of
this book), which may allow us to fully accomplish the goal of real-time, onboard
information extraction from hyperspectral data sets. We also envision closer multidis-
ciplinary collaborations with environmental scientists to address global monitoring
land services and security issues through carefully application-tuned HPC algorithms.
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Multimedia processing involves applications with a high demanding computational
power. New capabilities have been included in modern processors to cope with these
new requirements, and specific architectures have been designed to increase the per-
formance of different multimedia applications. Thus, multimedia extensions were
included in general purpose processors to exploit the single-instruction multiple-data
(SIMD) parallelism that appears in signal processing applications. Moreover, new ar-
chitectures, such as Graphics Processing Units (GPU), are being successfully applied
to general purpose computation (GPGPU) and, specifically, image and video process-
ing. In this chapter we discuss the impact of the usage of multimedia extensions and
GPUs in multimedia applications and illustrate this discussion with the study of two
concrete applications involving video analysis.

3.1 Introduction

The growing importance of multimedia applications is greatly influencing current
computer architectures. Thus, new extensions have been included in general purpose
processors in order to exploit the subword parallelism (SIMD paradigm) that appears
in some of these applications [1],[2]. Additionally, the capability of new processors
designs, such as VLIW and SMT, to exploit the coarse and fine grain parallelism
present at multimedia processing is being studied [3].

Also, specific architectures have been developed to speed up the performance of
programs that process multimedia contents. Thus, specific implementations based on
associative processors [4] and FPGAs [5] have been performed.

Graphics Processing Units (GPUs) were initially devoted to manage 3-D objects
by including a powerful design with plenty of functional units able to apply geometric
transformation and projections to a high number of spatial points and pixels describing
the 3-D scenario. Nowadays, the two processors included in GPUs, named vertex and
pixel processors, can be programmed using a high level language [6]. This allows
other applications different from graphics to use the capabilities of those processing
units, as, for example, video decoding [37].

Several specific benchmarks have been developed to measure the impact of archi-
tectural improvements on multimedia processing. This way, UCLA Media Bench is a
suite of multimedia applications and data sets designed to represent the workload of
emerging multimedia and communications systems [7]. Berkley multimedia work-
load [8] updates previous the benchmark by adding new applications (most notably
MP3 audio) and modifying several data sets.
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Attending to existing benchmarks, multimedia applications can be classified into
the following three groups:

� Coding/decoding algorithms. Audio and/or video signals are digitized in or-
der to obtain better quality and low bit-rates. Different efforts in the field of
standardization have driven the development of specific standards for video
transmission, such as MPEG 1, MPEG 2, and MPEG 4, and also for image
compression, as JPEG. Signal coding and decoding are basic tools to generate
multimedia contents. This fact, in addition to their high demanding computa-
tional requirements, have made these applications the most common used for
testing the multimedia capabilities of a computer architecture.� Media content management and analysis. The huge amount of digital content
that is daily produced and stored increases the need for powerful tools for its
manipulation. Thus, editing tools are used to cut and paste different pieces of
sequences according to the audiovisual language. Simple editing effects can
be applied in the compress domain. However, more complex effects must be
generated in the uncompress domain, requiring decoding and encoding stages.
As a result, an important challenge in this field is the topic of automatic indexing
of the multimedia contents. It is based on the application of computational
techniques to the digital audiovisual information in order to analyze those
contents and extract some descriptors. These descriptors will be annotated in
a database for indexing purposes, allowing the implementation of content-
based retrieval techniques. Description of the multimedia content is a wide
area. Currently, MPEG 7 is a standard that proposes both a set of multimedia
descriptors and the relationship between them. It should be noted that the
complexity of the analysis to be applied to the video content is related to
the semantic level of the descriptors to be extracted. Thus, temporal video
segmentation involves the comparison of low-level frame information to locate
edition effects and camera movements. Object identification and tracking need
more complex algorithms to improve the robustness.� 3-D graphics. Real-time 3D applications have become usual in multimedia
applications. The use of more realistic scenarios implies the increase in the
number of polygons needed to describe the objects. Thus, more computational
requirements are needed for the rendering process.

Current multimedia benchmarks mainly focus on the computation of specific ker-
nels or functions. However, we consider that the mapping of a complete application
to a concrete computing architecture can help to extract interesting conclusions about
the limits of the architecture and evaluate the impact of possible improvements.

Thus, in this chapter, we present two different applications involving video analysis:
temporal video segmentation and object tracking. In the first application, multimedia
extensions implemented in general purpose processors are used to increase the per-
formance of a temporal video segmentation algorithm. Our study extracts the com-
putational kernels that appear in the algorithm and analyzes how to map these kernels
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to the available SIMD instructions. Final speedup values consider the whole appli-
cation, that is, optimized and non-optimized kernels. In the second application, we
show the capabilities of the GPUs for general purpose processing and illustrate the
performance that this architecture can achieve by implementing an application for
object tracking in video. Reported performance is compared with that from general
purpose processors showing that it depends on the problem size.

The rest of the chapter is organized as follows. In the next section, basic concepts
about the two computing architectures are presented. Section 3.3 introduces the tem-
poral video segmentation algorithm, including the analysis of its main computational
kernels. Section 3.4 shows the optimization of the computational kernels in the pro-
posed segmentation algorithm, and Section 3.5 analyses the achieved performance
by using multimedia extensions. The following three sections illustrate the use of the
GPU in object tracking in video. Hence, Section 3.6 introduces the techniques for
object tracking using a second order approach while Section 3.7 studies the mapping
of this algorithm to the GPU. Section 3.8 shows the performance of the GPU results
compared with general purpose processors. Finally, in Section 3.9, main conclusions
are summarized.

3.2 The Computing Architectures

Two different computing architectures have been proposed to implement multimedia
applications. Following are the basic concepts of these architectures.

3.2.1 Multimedia Extensions

The multimedia extensions were proposed to deal with the demanding requirements
of modern multimedia applications. They are based on the SIMD computation model
and exploit the subword parallelism present in signal processing applications. Thus,
arithmetic functions that operate with long words (e.g. 128 bits) can be subdivided to
perform parallel computation with shorter words, as shown in Figure 3.1.

The major manufacturers have proposed their own set of multimedia extensions.
Thus, AMD uses in their processors the 3DNow! technology. The processors PowerPC
from Motorola include the AltiVec extensions. Finally, Sun Microsystems presented
the VIS extensions in their UltraSparc processors. Nevertheless, the most famous
extensions are those from Intel. In 1997, Intel introduced the first version of its multi-
media extensions, the MMX technology. It consisted of 57 new instructions used to
perform SIMD calculations on up to 8 integer operands. The FPU registers were used
as MMX registers. Hence, combining floating-point and multimedia code was not ad-
visable. The Pentium 3 processor introduced the SSE extensions, with 70 new instruc-
tions, some of which were used to perform SIMD calculations on four simple precision
floating-point operands. Here, the set of registers, known as XMM registers, were in-
dependent of the FPU registers. Later, the Pentium 4 introduced the SSE2 extensions,
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Figure 3.1 Typical SIMD operation using multimedia extensions.

containing 144 new instructions. The main innovation was the ability to work with up
to two double precision floating-point operands. The last proposal from Intel is the
SSE3 extensions, which includes instructions to perform horizontal and asymmetric
computations, instead of vertical computations, as shown in Figure 3.1. A comparison
of the performance of different sets of multimedia extensions is given in [23].

3.2.2 Graphics Processing Units

General purpose programming of Graphic Processing Units has become a topic of
considerable interest in the past years due to the spectacular evolution of this kind
of hardware in terms of capabilities to satisfy leisure and multimedia applications
requirements. Nowadays it is common to find this kind of processor in almost every
personal computer, and, in many occasions, their computing capabilities (in number of
operations per second) are higher than those offered by the CPU, at a reasonable cost.

Initial GPU designs consisted of a specific fixed pipeline for graphic rendering.
However, the increasing demand of customized graphic effects to fit different appli-
cations requirements motivated a fast evolution of its programming possibilities in
subsequent generations. GPUs’ desirable characteristics include a high memory band-
width and a higher number of floating-point units than the CPUs. These facts make
these platforms interesting candidates to be taken into account as efficient coproces-
sors of intensive computing applications in domestic platforms and workstations.

The computing capabilities of GPUs as intrinsic parallel systems have been shown
in many recent works, including numerical computing applications, such as [35],[36].

Nowadays, the GPU is a deeply segmented architecture. The number of processing
stages and its sequence greatly differ from one manufacturer to another, and even
between the different models. However, a common high level structure can be dis-
tinguished, such as the one illustrated in Figure 3.2. Initial stages are related to the
management of input vertex attributes defining the graphic objects feeding the graphic
card. Ending stages focus on color processing of the pixels to be shown on the screen.
In this design, vertex processors and fragment processors (darker in the figure) are
the programmable stages of the pipeline.
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The most distinctive characteristic is the main role of the data pipeline, in com-
parison to the instruction pipeline based CPU computing model (von-Neumann
architecture). GPU instructions are employed to set up the hardware at a low level
and to feed it with input data, instead of being stored in video memory. Data arrive
at the pipeline as vertices and attributes and, after being transformed by the different
execution units, they are represented as pixels in the framebuffer.

The graphic pipeline works on all the data simultaneously and the predominance
of unary instructions allows it to simplify the hardware involved in risk management.
No data forwarding or predictions units are used. That implies an important saving
in the number of required transistors, which can be used to increment the computing
resources and minimize the structural dependencies by means of a higher degree of
parallelism.

Processing is organized using multiple uncoupled functional units working on
data groups. Computations on the functional units generate resulting pixels in the
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framebuffer. Spatial data locality is exploited by assigning a rectangular area of ad-
jacent pixels to a specific fragment processor in a so-called ‘tiled’ processing. In
addition, the last GPU generations are able to exploit SIMD parallelism by comput-
ing simultaneously the four data associated to a pixel (three color components and
one transparency value) as floating-point numbers.

In a computational model where data handling is so important, memory bandwidth
has a fundamental role in the throughput. The GPU model looks for a fast memory
access as uniform as possible in all its address spaces. To get this bandwidth, low
latency memories with high bus dimensions are used; i.e. in 2002 they were equipped
with 256-bit memories in addition to the 64 bits of many CPU architectures.

As a result of these characteristics, GPUs’ theoretical capabilities are higher than
those obtained from commodity CPUs. Furthermore, its design as a stream processing
architectures scales well with respect to both the number of fragment processors
and the core clock rate. However, real values in practical applications can be far
away from the theoretical performance. In many cases, memory access is a major
bottleneck that prevents the functional units from being active all the time. Thus, it is
important to choose those designs that better map on these architectures, in order to
take advantage of the GPU parallelism and make use of the spatial coherence of the
geometric primitives.

3.3 Temporal Video Segmentation

Temporal video segmentation has become an active research field in the past years. As
video archives continue growing, fast and reliable methods for indexing purposes are
needed. One of the most useful techniques in video indexing is shot detection, where
a shot is defined as a sequence of frames captured from a single camera operation.
Shot detection is performed by means of shot transition detection algorithms.

Two different types of transitions are used to split a video into shots: abrupt and
gradual transitions. Abrupt transitions, also referred to as cuts or straight cuts, occur
when a sudden change from one shot to the next one is performed in just one frame.
On the other hand, gradual transitions use several frames to link two shots together.
Other authors refer to gradual transitions as optical cuts [9]. Depending on how
the shots are mixed up in the transition, there are many different types of gradual
transitions. Dissolves are the most common. Fades and wipes are also frequently
used. What is most important about gradual transitions is that they are often used
to establish some kind of semantic information in the video. For example, dissolves
have been widely used to perform scene changes in video editing, where a scene is a
set of shots closely related in terms of place and time.

While abrupt transitions detection is a relatively easy task [10], gradual transitions
detection is still an open issue, as the amount of false positives reported by the
algorithms is very high for certain sequences. The main problem in gradual transitions
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detection is that camera operation (pan, tilt, swing, zoom, etc.) originates similar
patterns to those generated by gradual transitions [11]. Thus, a method to estimate
global motion in video is needed in order to discard false positives induced by camera
operations [12].

The first stage of shot transition detection algorithms is the extraction of character-
istics from the video streams. One or more metrics are then used to compute several
parameters from the characteristics. These metrics can be based on pixel luminance,
contour information, block tracking, etc. Although most of the proposed methods
make use of only one metric, using several of them is recommended as drawbacks
from one metric could be compensated by the others [13], as long as the used metrics
rely on different video characteristics.

The computed parameters are then used to determine the occurrence of a transition.
Here, data driven methods address the problem from the data analysis point of view. On
the other hand, model driven methods, based on mathematical models of video data,
allow a systematic analysis of the problem and the use of domain-specific constraints,
which helps to improve the efficiency [14],[15].

Other authors use non-deterministic classifiers to study the computed parame-
ters in order to perform pattern recognition, as transitions generally resulting in a
characteristic pattern in the parameters. Using a non-deterministic classifier makes
unnecessary a specifically designed pattern recognition method, which usually needs
several parameters to be tuned. Also, by using a supervised classification scheme,
the system is able to learn the patterns generated by different types of gradual tran-
sitions. Some shot transition detection algorithms using neural networks [16],[17],
hidden Markov models [18],[19], or support vector machines [20],[21] have been
proposed.

3.3.1 Temporal Video Segmentation Algorithm

Many efforts have been devoted to developing reliable temporal video segmentation
algorithms [22] running at real-time processing speed. However, this is not easy
to achieve when different video features are computed; several video streams are
processed in parallel; or even other tasks, such as a video decoder, are running at
the same time. Thus, the optimization of temporal video segmentation applications
is encouraged.

Certain characteristics of these algorithms, such as the calculation of numerical
operations on large amounts of data stored in matrices, make them good candidates to
be optimized by means of the multimedia extensions included in modern processors
[23]. Thus, by optimizing these kinds of tasks, which are usually very time consuming,
the algorithms are able to run faster.

The temporal video segmentation algorithm to be optimized was introduced in
[24]. It is an algorithm designed to perform cut detection on MPEG compressed
video using DC images. Two similarity values are computed for each pair of frames
using a luminance based metric (LBM) and a contour based metric (CBM). Both
sequences of similarity values are median filtered and then analyzed using a classifier
to perform cut detection.
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The LBM calculates the similarity using the expression

fLBM(H1, H2) =
∑

b H1[b] · W1D(H2[b])√
H1[b] · W1D(H1[b]) · √

H2[b] · W1D(H2[b])
(3.1)

where H1 and H2 are luminance histograms of DC images, and

W1D(H [b]) =
1∑

i=−1

H [b + i] (3.2)

On the other hand, the CBM calculates the similarity using the expression

fCBM(OT1, OT2)

=
∑

α

∑
θ OT1[α][θ ] · W2D(OT2[α][θ ])√

OT1[α][θ ] · W2D(OT1[α][θ ]) · √
OT2[α][θ ] · W2D(OT2[α][θ ])

(3.3)

where OT1 and OT2 are the orientation tables calculated by the generalized Hough
transform (GHT) [25] from the DC images, and

W2D(OT [α][θ ]) =
2∑

wi =−2

2∑
w j =−2

OT [α + wi ][θ + w j ] (3.4)

A block diagram of the algorithm is shown in Figure 3.3. The tasks used in this algo-
rithm that are suitable to be optimized using the multimedia extensions are indicated
by a dark circle.

Both LBM and CBM perform some of these tasks, such as sum of products and the
functions W1D and W2D . The CBM also computes several arctangent values. Thus,
a procedure to perform an arctangent calculation using the multimedia extensions
should also be developed.

Sum of Products

Calculation of W1D(.)

Calculation of W2D(.)

1D Convolution

Gradients Magnitude

ArctangentA
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Figure 3.3 Temporal video segmentation algorithm to optimize.
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The edge detection stage, implemented using the Canny Algorithm [26], includes
some more operations suitable for the multimedia extensions, such as the 1D convo-
lution, the gradients magnitude calculation, and the gradients direction calculation.
This last operation is also based on an arctangent calculation.

Some other operations, such as the luminance histogram calculation or the cre-
ation of the orientation tables of the GHT, could not be optimized as the multimedia
extensions are not applicable due to their memory access patterns.

3.4 Applying Multimedia Extensions to Temporal Video
Segmentation

In this section, the most time-consuming tasks within temporal video segmentation are
identified and their computation kernels optimized using the multimedia extensions
provided by the Intel Pentium 4 processor.

3.4.1 Sum of Products

The sum of products is used by both LBM and CBM as a key operations to compute
similarity values between frames. It is given by the expression

R =
n−1∑
i=0

U [i] · V [i] (3.5)

where U and V are the data vectors and R is the desired sum of products.
Vectors U and V are accessed in groups of 8 elements, 16 bits each, and stored

in XMM registers. Then, the PMADDWD instruction is used to compute 4 sums of
products (SP) in an XMM register. Each one is 32 bits wide. The PADDD instruction
is used to accumulate sums of products during the iterations of the algorithm. Finally,
4 sums of sums of products (SSP) are computed in register XMM0. Then, shift in-
structions (PSRLDQ) as well as add instructions (PADDD) are used to calculate the
value of R.

3.4.2 Calculation of W1D(·)
The function W1D(·) is used by LBM to compute the similarity between two frames
(see Section 3.4.1). In each iteration of the algorithm, a new group of 8 elements is
accessed in memory and stored in register XMM2. Two more groups of 8 elements are
already stored in registers XMM0 and XMM1 from previous iterations. The elements
in these registers are arranged using shift instructions (PSLLDQ and PSRLDQ) and
then added using the PADDW instruction. Thus, 8 elements are computed in parallel.

3.4.3 Calculation of W2D(·)
Similarly, the function W2D(·) is used by CBM to compute the similarity between two
frames. Its expression is also given in Section 3.4.1. In a first stage, horizontal sums
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are computed for each element in the orientation table using the expression

H S[α][θ ] =
2∑

w j =−2

OT [α][θ + w j ] (3.6)

obtaining this way the horizontal sums table (H S). Then, the second stage performs
vertical sums of elements in H S using the expression

W2D(OT [α][θ ]) = V S[α][θ ] =
2∑

w j =−2

H S[α + wi ][θ ] (3.7)

The process to calculate the horizontal sums is similar to that depicted in Section 3.3,
which allows us to compute 8 elements in parallel. However, as 5 terms instead of 3
have to be added to obtain a horizontal sum, more instructions are needed.

To compute the vertical sums, the last expression is turned into

V S[α][θ ] = V S[α − 1][θ ] + H S[α + 2][θ ] − H S[α − 3][θ ] (3.8)

In other words, each vertical sum is computed from the previous one, just using
one PADDW and one PSUBW instruction. As in the previous stage, 8 elements are
computed in parallel.

3.4.4 1-D Convolution

The algorithm to optimize implements horizontal and vertical 1-D convolution op-
erations, using a five-element mask, in the edge detection stage. The source image
elements I are multiplied by the mask elements M and added to obtain the elements
of the convolved image C . Each image element is accessed only once and multiplied
by every mask element. The computed products are accumulated using five registers,
disposed following a top to bottom, right to left line. In each iteration, the leftmost
accumulator produces one element of the convolved image.

This strategy has been implemented using the MULPS and ADDPS instructions,
to obtain 4 single precision floating-point convolved terms in parallel, as shown in
Figure 3.4 for the horizontal 1-D convolution. The implementation of the vertical 1-D
convolution is highly similar.

3.4.5 Gradients Magnitude

The process to compute the magnitude of a gradient vector in the Canny Algorithm
is also used in the edge detection stage. It is given by the expression

‖∇ I‖ =
√

I 2
x + I 2

y (3.9)

where Ix and Iy are the horizontal and vertical derivatives of the image. This expression
is simple to optimize using the instructions ADDPS, MULPS, and SQRTPS, obtaining
this way 4 terms per iteration.
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Figure 3.4 Implementation of the horizontal 1-D convolution.

3.4.6 Arctangent

The calculation of arctangent values is used in two stages of the algorithm to be
optimized. It is used by the Canny Algorithm in the edge detection stage to compute
the direction of a gradient vector. It is also used in the procedure to compute the
similarity between two frames performed by the CBM.

The implementation of trigonometrical functions using multimedia extensions has
been addressed in [27]. However, no method is proposed to perform arctangent cal-
culations. A procedure to compute four arctangent in parallel has been developped. It
is based on the five first terms of the Taylor’s series, using the instructions MULPS,
ADDPS, and SUBPS. This allows one to compute arctangent values with an error
less than 3◦.

As the Taylor’s series to obtain an arctangent value is defined only within the
interval [−45◦, 45◦], an extension has been implemented. This allows the method to
work in parallel within the interval [0◦, 360◦]. In order to increase performance, no
branch instructions have been used. Instead, a scheme using the instructions ANDPS
and ORPS is proposed. This extension is shown in Figure 3.5.
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3.5 Performance of Multimedia Extensions

In order to implement the aforementioned optimized kernels, two key aspects have
been studied. On one hand, it is important to choose the right compiler, as different
compilers may produce different object codes, and thus different performance. On
the other hand, it is even more important to make the correct decision about the
implementation method (inlined assembler code, autovectorization or intrinsics).

The kernels have been implemented using the GNU C Complier (gcc) version
4.0.0 as well as the Intel C++ Compiler version 9.0. The obtained results show that
the optimized versions produced by the latter are slightly faster. Regarding the imple-
mentation method, the results pointed out that the autovectorization is highly effective
in simple algorithms as the sum of products, but inefficient in more complicated ker-
nels, as the compiler is not able to design a suitable strategy. Good performance can
be obtained using inlined assembler code. However, the compiler is unable to perform
code reorganization in order to avoid structural risks. Thus, certain kernels exhibit
low performance. Finally, the most efficient versions of the optimized kernels were
those implemented using intrinsics. The use of intrinsics allows the programmer to
design a parallelization strategy suitable for the kernel, as long as it lets the compiler
reorganize the object code to obtain better performance.

Table 3.1 shows the clock cycles spent by the kernels in their sequential and op-
timized (parallel) implementations. The computed speedup for each kernel is also
provided. To obtain these values the Intel C++ Compiler has been used. The algo-
rithms have been implemented using intrinsics.

The speedup obtained by the optimized kernels is variable. Highest speedups are
reported by those tasks that perform a vertical processing of a table, as the vertical
sums in the calculation of W2D(·) or the vertical 1-D convolution. This is due to the
reduction of cache misses when reading data elements. When a table is accessed by
columns, a cache miss will occur in each memory access if the table is large enough.

TABLE 3.1 Clock Cycles and Speedups for the Sequential/Optimized
Kernel Implementations

Kernel Sequential Optimized Speedup
Used Clock Cycles Clock Cycles Measured

Sum of products (64 elements) 396 108 3.67
Sum of products (2025 elements) 9940 1084 9.17
W1D(·) 296 144 2.06
W2D(·) (horizontal) 13100 7964 1.64
W2D(·) (vertical) 53804 4064 13.24
1-D Convolution (horizontal) 30220 10168 2.97
1-D Convolution (vertical) 134436 6304 21.33
Gradients magnitude 49116 13824 3.55
Arctangent 144424 32684 4.42
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TABLE 3.2 Percentage of Computation Time Spent by the Temporal Video
Segmentation Algorithm in Different Tasks, Before and After the Optimization

Tasks % Computation % Computation
Performed (Sequential) (Optimized)

Edge detection:
1-D convolution (horizontal) 1.96 2.12
1-D convolution (vertical) 10.61 2.54
Gradients magnitude 3.35 2.12
Gradients direction 6.98 2.12

Similarity calculation by CBM:
Contour points histogram calculation 2.79 3.81
Orientation tables calculation 33.24 48.31
Pairings insertion into orientation tables 1.12 5.93
Calculation of α angle 27.94 12.71
Calculation of W2D(·) (horizontal) 1.12 0.85
Calculation of W2D(·) (vertical) 1.68 0
Sum of Products (2025 elements) 2.51 0.42

Similarity calculation by LBM:
Luminance histogram calculation 1.68 3.81
Others: 5.02 15.26

However, as data elements are read in parallel in the optimized versions, the memory
accesses are reduced, and therefore the cache misses.

The proposed optimizations permit a speedup of 2.28 to be obtained. This speedup
is noticeably lower than those from most of the optimized kernels. The fact that
certain parts of the algorithm could not be optimized seriously limits the performance
of the algorithm. Table 3.2 shows the percentage of computation time spent by the
algorithm in different tasks before and after the optimization. Important tasks, such as
the orientation tables calculation, contour points histogram calculation, and pairings
insertion, as well as the luminance histogram calculation, could not be optimized due
to their memory access patterns. In the sequential version of the algorithm, all of
them represent 38.83% of time. Thus, as an important part of the algorithm could not
be optimized, the speedup for the complete algorithm is not as high as those for the
individual tasks. Nevertheless, thanks to the optimizations, the algorithm is able to
run more than twice as fast before.

3.6 Object Tracking in Video

Tracking algorithms are a key element in many computer vision related applications,
such as face recognition, augmented reality, and advanced computer interfaces. In
many instances they are part of more complex systems requiring visual information
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processing, as, for example, video decoding. The use of GPUs in these systems as
efficient processors for the tracking tasks can help to fulfill the temporal requisites.
In these cases, the GPU can take the role of an efficient coprocessor for specific
multimedia applications.

Some of the most studied algorithms for object tracking have been those based
on template matching schemes using the sum of squared differences (SSD), such
as the Lucas-Kanade algorithm [32]. Low-cost schemes have been implemented,
reformulating the image registration process in a way that most of the required com-
putations can be done offline, while still maintaining the same performance. There
are also extensions that allow one to model appearance variations of the tracked
objects [30],[31]. In addition, advanced optimization schemes based on second order
approximations help to improve the convergence of the algorithm [29].

In this work, we use an adaptation of the second order approach to the inverse
compositional image alignment algorithm [31]. Following is a brief overview of the
technique.

Let us suppose that we have the template image T (x) of an object whose evolution
must be followed across an image sequence I (x, t). The goal of the tracking algorithm
is to determine the parameter value, p, of a warping function, W (x, p), used to match
the object pattern with its occurrence in the captured image. The easiest case, as
illustrated in Figure 3.6, is where the warping function is a simple displacement of
the image. In the implementation described here more complex warping functions
are used, modeling projective transformations and image appearance changes.

T(x) u I(x?) u?

v?

v
x? = W(x,p)

Figure 3.6 Tracking process: A warping function is applied to the template, T (x),
to match its occurrence in an image.
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As all Lucas-Kanade [32] derived algorithms, the proposed implementation
is an iterative technique to find previously mentioned parameters using a linear
approximation of the problem that performs the following sum of squares differences
minimization: ∑

x

‖T (W (x, �p)) − I (W (x, p))‖2 (3.10)

Instead of the linear approximation proposed in previous approaches such as ICA
[31], a second order approximation of the deformed template is used in the algorithm
resulting in a higher convergence rate:

T (W (x, �p)) ≈ T (W (x, 0)) + ∂T (W (x, p))

∂p

∣∣∣
p=0

+ · · ·
(3.11)· · · + �p + 1

2
�pT ∂2T (W (x, p))

∂p2

∣∣∣
p=0

�p

To avoid the need to compute the second order partial derivative, the following ap-
proximation is employed (see [29] for a justification):

T (W (x, �p)) ≈ T (W (x, 0)) + 1

2
(∇x T + ∇x I (W (x, p))

∂W (x, p)

∂
�p (3.12)

Using this approximation in 3.1, it results in the following expression to be minimized:

E(�p) ≈
∑∥∥∥T (x) − I (W (x, pc)) + 1

2
(∇x T + ∇x I (W (x, p)))

∂W (x, p)

∂p
�p

∥∥∥2

(3.13)

Beginning with an initial pose defined by p0 we find a new pose p by an incremental
composition in successive iterations: p = p0 · �p. This incremental value is a linear
function of the image error e (difference between template and observed images in
the initial pose) solved from 3.13:

�p = −H−1
esm

∑
x

SDT
esmeesm(x) (3.14)

where:

� SDT
esm = 1

2 (∇x T (x) +∇x I (W (x, pc))) ∂W (x,p)
∂p

∣∣∣
p=0

is the Jacobian of the warp-

ing function. This matrix can be obtained from the image intensity gradients
and the warping function derivatives, W ′(x, p), with respect to the parameters
p, evaluated at each point x .� H , the Hessian approximation, is a matrix given by Hesm = SDT

esm SDesm .� eesm(x) = T (x) − I (W (x, pc)).
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Figure 3.7 Steps of the tracking algorithm.

Figure 3.7 is a visual representation of the required steps of this algorithm in order
to compute the pose parameter. Parameter increment requires the computation of the
three terms defined in the right member of expression 3.14. The first, the Jacobian
matrix SDesm , also called, the steepest descent matrix, has a principal role in the algo-
rithm (like other linear optimization techniques, such as the gradient descent method).
It is formed by several components, each of them contributing to the increment of one
pose parameter. Intuitively, the components can be interpreted as a set of variation
modes of the template that occur by modifying its corresponding parameter (see step
5 of Figure 3.7). Its computation makes use of the template and warped image gradi-
ents (obtained at steps 1 and 4) and the warp function derivatives with respect to the
pose parameters (step 2). Another required term, the inverse Hessian matrix H−1

esm , is
computed in step 6 and inverted in 7. Similarly, the error matrix eesm is computed
at step 8 by subtracting the template and the warped input image. Final computation
of the parameter increment �p is carried out at steps 9 and 10, by combining the
three terms previously mentioned. More details about the tracking algorithm can be
obtained in [28].

3.7 Mapping the Tracking Algorithm in GPUs

As opposed to other schemes based on meaningful characteristics matching (such as
edges or corners), SSD algorithms make use of all the texture information inside the
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considered region of interest, by means of dense linear algebra operations over the
contained pixels at this area. Furthermore, these tracking algorithms are organized
in several well-defined stages, producing regular and predictable pattern accesses to
the processed data. All of these make GPU an appropriate architecture to implement
these kinds of algorithms in an efficient way. Following, the mapping in the GPU of
each step of the algorithm is described.

Steps 1 and 2 in Figure 3.7 do not depend on the parameter values at the current
iteration and can be precomputed in an initial step. Gradient computation can be
approximated in the discrete domain by only using a finite convolution, involving the
use of four adjacent pixels around the one considered. This scheme maps very well in
GPU architectures because there is little reuse of input values and the same operation
is applied to all of them.

At each iteration, we begin with the capture of the interest region (stage 3) using the
initial parameters obtained at the previous iteration. This image rectification can be
implemented in an efficient way in the GPU by using its specific texture interpolation
hardware.

For the computation of step 5, we propose to organize the different steepest descent
components in a packed form. This way, the resulting steepest descent matrix is
composed of a set of submatrices, one per deformation mode parameter. This approach
has two advantages:

1. Considering how task assignation is performed in fragment processors, the
proposed data arrangement using the same dimensions than the template image
allows a coherent access to input matrices (gradient and jacobian matrices).
Thus the spatial locality is exploited in the cache associated to each fragment
processor.

2. This 2-D distribution also allows one to efficiently assign workloads to dif-
ferent functional units following the ‘tiled’ task organization available in
the GPU.

To compute the parameters increment (step 9) we have to multiply the steepest
descent matrix by the image error. It is a costly computation because of the high input
matrix dimensions. However, the resulting vector is quite small, as its dimensions
coincide with the number of parameters of the warping function. Again, keeping in
mind that GPU parallelism is achieved by dividing the computation of target elements
between different functional units following their spatial distribution, a standard ma-
trix multiplication algorithm, as in [35], will not provide good results in this case.
In other words, the reduced dimensions of the rendering target do not allow one to
efficiently assign the workload to all the processors. Thus, to take advantage of the
GPU parallelism, we follow a different approach organized in two steps using the
mentioned steepest descent matrix (see Figure 3.8):

� First, an element-wise multiplication for each Jacobian submatrix is carried
out, producing a temporal matrix of high dimensions.
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Figure 3.8 Efficient computation of a hessian matrix.

� Second, a reduction stage is done accumulating the temporal results previously
obtained. This stage requires several iterations, each of them reducing the matrix
dimensions by a 1/2 factor. To make this process as efficient as possible we
restrict the algorithm input to multiples of 2 templates.

A similar technique has to be employed to compute the hessian matrix (step 6),
because it requires a matrix multiplication between the high dimensions steepest
descent matrix and its transpose, yielding a matrix of reduced dimensions.

Finally, the matrix-vector multiplication to obtain the parameter increment (step 10)
is done using a multipass algorithm similar to those described in [35].

3.8 GPU Performance with the Tracking Algorithm

Multiple experiments were performed using different GPUs and commodity CPUs.
Although there are useful libraries that abstract the GPU as a stream computing system
(see Brook as an example), our algorithm was implemented upon OpenGL directly
using C++ in order to have more control over the different code sections and to do the
benchmarks; it was also necessary to introducte some specific OpenGL extensions to
make the code more efficient. We employed Cg as a shader language.
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Figure 3.9 Time employed by a tracking iteration in several platforms.

The system was running a Linux operating system using nVidia proprietary drivers
version 81.74; we made use of the recently introduced Framebuffer Objects extensions
to avoid read/writing operations between target buffers and textures. We compared
the performance of our algorithm against a CPU implementation based on the LTI-Lib
[36] vision library.

In Figure 3.9, iteration times are represented for several GPUs and commodity
CPUs. As mentioned in other applications [35], when the input data size is big enough,
GPU functional units increment their workload, resulting in a better task assignment
between different functional units. As a result, nVidia 7800 GTX tracking imple-
mentation results outperform those achieved by CPU implementations for template
dimensions higher than 128×128. In any case, GPU versions appear as a competitive
solution showing how this hardware platform can be used as an efficient coprocessor
in those applications in which it is important to save CPU time for other higher level
tasks in multimedia systems.

Figure 3.10 shows the relative computing time of different steps involved in the
tracking process for the 128×128 template case. As an example, it can be seen that the
required time for steepest descent computation is reduced in the GPU implementation.
The reason is that it mostly requires element-wise operations that map well on these
platforms. CPU efficiency in many intensive computing applications comes from
exploiting data spatially located by using cache hierarchies; but in this case, with so
little element reuse, it does not suppose a great advantage.
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3.9 Conclusions

In this chapter we have presented two approaches that implement multimedia appli-
cations using different computing architectures. On one hand, multimedia extensions
have been used to increase the performance of a particular temporal video segmenta-
tion algorithm. It is based on luminance and contour information from MPEG video
streams, being able to perform at real time. Several computation kernels used in this
algorithm have been optimized using Intel’s multimedia extensions, such as sum of
products, 1-D convolution, and arctangent calculation, among others. The obtained
results show that the reported speedup is variable from one kernel to another. Notwith-
standing, the complete temporal video segmentation algorithm yielded a final speedup
of 2.28. This means that the optimized algorithm is able to run more than twice as
fast as the sequential version.

GPUs were used to perform a tracking algorithm based on sum-of-squared dif-
ferences techniques. The results achieved confirm the great potential of these archi-
tectures in a multimedia application. We also have faced the limitations of current
GPU designs, such as the inability to keep the computation units busy because of the
limited bandwidth to the closest cache or the need of appropriate data organization
to match efficient rasterization access patterns.
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ORASIS (the Optical Real-Time Adaptive Spectral Identification System) is a series
of algorithms developed at the Naval Research Lab for the analysis of HyperSpectral
Image (HSI) data. ORASIS is based on the Linear Mixing Model (LMM), which
assumes that the individual spectra in a given HSI scene may be decomposed into a
set of in-scene constituents known as endmembers. The algorithms in ORASIS are
designed to identify the endmembers for a given scene, and to decompose (or demix)
the scene spectra into their individual components. Additional algorithms may be
used for compression and various post-processing tasks, such as terrain classification
and anomaly detection. In this chapter, we present a parallel version of the ORASIS
algorithm that was recently developed as part of a Department of Defense program
on hyperspectral data exploitation.

4.1 Introduction

A casual viewing of the recent literature reveals that hyperspectral imagery is be-
coming an important tool in many disciplines. From medical and military uses to
environmental monitoring and geological prospecting the power of hyperspectral im-
agery is being shown. From a military point of view, the primary use of hyperspectral
data is for target detection and identification. Secondary uses include determination
of environmental products, such as terrain classification or coastal bathymetry, for
the intelligence preparation of the battlespace environment. The reconnaissance and
surveillance requirements of the U.S. armed forces are enormous. Remarks at an in-
ternational conference by General Israel put the requirements at a minimum of one
million square kilometers per day that need to be analyzed. Usually, this work includes
the use of high resolution panchromatic imagery, with analysts making determinations
based on the shapes of objects in the image. Hyperspectral imagery and algorithms
hold the promise of assisting the analyst by making determinations of areas of interest
or even identification of militarily relevant objects using spectral information with
spatial information being of secondary importance.

Both the power and the pitfalls of hyperspectral imaging originate with the vast
amount of data that is collected. This data amount is a consequence of the detailed
measurements being made. For example, given a sensor with a 2 meter ground sample
distance (GSD) and a spectral range of 400 to 1000 nanometers (with a 5 nanometer
spectral sampling), a coverage area of 1 square kilometer produces approximately
57 MB of hyperspectral data. In order to meet the million square kilometer require-
ment, a hyperspectral sensor would have to produce up to 57 terabytes per day. This is
truly a staggering number. Only by automating the data processing, and by using state-
of-the-art processing capability, will there be any chance of hyperspectral imagery
making a significant contribution to military needs in reconnaissance and surveillance.

In order to deal with the large amounts of data in HSI, a variety of new algorithms
have appeared in recent years. Additionally, advanced computing systems continue
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to improve processing speed, storage, and display capabilities. This is particularly
true of the high-performance computing (HPC) systems.

One common technique used in hyperspectral data analysis is the Linear Mixing
Model (LMM). In general terms (details are given in the next section), the LMM
assumes that a given spectrum in a hyperspectral image is simply the weighted sum
of the individual spectra of the components present in the corresponding image pixel.
If we assume that the total number of major constituents in the scene (generally known
as the scene endmembers) is smaller than the number of bands, then it follows that the
original high-dimensional data can be projected into a lower-dimensional subspace
(one that is spanned by the endmembers) with little to no loss of information. The
projected data may then be used either directly by an analyst and/or fed to various
other post-processing routines, such as classification or targeting.

In order to apply the LMM, the endmembers must be known. There have been
a number of different methods for determining endmembers presented in the litera-
ture [1], including Pixel Purity [2], N-FINDR [3], and multidimensional morpholog-
ical techniques [4]. The Optical Real-Time Adaptive Spectral Identification System
(ORASIS) [5] is a series of algorithms that have been developed to find endmembers,
using no a priori knowledge of the scene, capable of operating in (near) real-time.
In addition to the main endmember selection algorithms, additional algorithms allow
for compression, constrained or unconstrained demixing, and anomaly detection.

The original ORASIS algorithm was designed to run in scalar (single-processor)
mode. Recently, we were asked to develop a parallel, scalable version of the ORASIS,
as part of a Department of Defense Common High-Performance Computing Software
Support Initiative (CHSSI) program [6]. In addition to ORASIS, this project included
the development of parallel versions of N-FINDR and two LMM-based anomaly
detection routines. In this chapter, we review the details of the algorithms involved in
this project, and discuss the modifications that were made to allow them to be run in
parallel. We also include the results of running our modified algorithms on a variety
of HPC systems.

The remainder of this chapter is divided into six sections. In Section 4.2 we present
the mathematical formalities of the linear mixing model. In Sections 4.3 and 4.4 we
give a general overview of the (scalar) ORASIS and the anomaly detection and N-
FINDR algorithms, respectively, used in this project. In Section 4.5 we discuss the
modifications that were made to the scalar algorithms in order to be run in parallel
mode, and present the computational results of our modifications in 4.6. We then
present our conclusions in 4.7.

4.2 Linear Mixing Model

The linear mixing model assumes that each spectrum in a given hyperspectral image
may be decomposed into a linear combination of the scene’s constituent spectra,
generally referred to as endmembers. Symbolically, let l be the number of spectral
bands, and consider each spectrum as a vector in l-dimensional space. Let E j be the
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l-dimensional endmember vectors, k be the number of constituents in the scene, and
j = 1 · · · k. Then the model states that each scene spectrum s may be written as the
sum

s =
k∑

j=1

α j E j + N (4.1)

where α j is the abundance of the j th component spectrum E j , and N is an
l-dimensional noise vector. Intuitively, the α j ’s represent the amount of each con-
stituent that is in a given pixel, and are often referred to as the abundance (or mixing)
coefficients. For physical reasons, one or both of the following constraints (respec-
tively, sum-to-one and nonnegativity) are sometimes placed on the α j ’s:

k∑
j=1

α j = 1 (4.2)

α j ≥ 0 (4.3)

Once the endmembers for a given scene are known (either by ORASIS or some
other method), the abundance coefficients may be estimated using a least squares
technique, a process generally known as demixing. If no constraints are placed on
the coefficients, then this calculation reduces to a simple (and fast) matrix-vector
product, as does the case involving the sum-to-one constraint (4.2). In the case of the
nonnegativity constraint (4.3), the coefficients can only be found by using numerical
optimization techniques. In this chapter, we consider only the unconstrained and
nonnegative constrained problems.

After demixing, each of the l-dimensional spectra from the original scene may be
replaced by the k-dimensional demixed spectra. In this way, a set of grayscale images
(generally known as either fraction planes or abundance planes) is constructed, where
each pixel in the image is given by the abundance coefficient of the corresponding
spectra for the given endmember. As a result, the fraction planes serve to highlight
groups of similar image spectra in the original scene. An example of this is given
in Figure 4.1, which shows a single band of a hyperspectral image taken at Fort AP
Hill with the NVIS sensor, along with two of the fraction planes created by ORASIS.
Also, since the number of endmembers is generally much smaller than the original
number of bands, the fraction planes retain the significant information in the scene
but with a large reduction in the amount of data.

4.3 Overview of the ORASIS Algorithms

In its most general form, ORASIS is a collection of algorithms that work together
to produce a set of endmembers. The first of these algorithms, the prescreener, is
used to ‘thin’ the data; in particular, the prescreener chooses a subset of the scene
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(a) (b) (c)

Figure 4.1 Data from AP Hill. (a) Single band of the original data. (b) (c) Fraction
planes from ORASIS processing.

spectra (known as the exemplars) that is used to model the data. In our experience,
up to 95% of the data in a typical scene may be considered redundant (adding no
additional information) and simply ignored. The prescreener is used to reduce the
complexity and computational requirements of the subsequent ORASIS processing,
as well as acting as a compression algorithm. The second step is the basis selection
module, which determines an optimal subspace that contains the exemplars. The
existence of such a subspace is a consequence of the linear mixing model. Once
the exemplars have been projected into the basis subspace, the endmember selection
algorithm is used to actually calculate the endmembers for the scene. This algorithm,
which we call the shrinkwrap, intelligently extrapolates outside the data set to find
endmembers that may be closer to pure substances than any of the spectra that exist
in the data. Large hyperspectral data sets provide the algorithm with many examples
of the different mixtures of the materials present, and each mixture helps determine
the makeup of the endmembers. The last step in ORASIS is the demixing algorithm,
which decomposes each spectrum in the original scene into a weighted sum of the
endmembers.

In this section we discuss the family of algorithms that make up ORASIS. This
section is focused primarily on the original (scalar) versions of ORASIS; a discussion
of the modifications made to allow the algorithms to run in parallel mode is given in
Section 4.4.
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4.3.1 Prescreener

The prescreener module in ORASIS has two separate but related functions. The first,
which we denote ”exemplar selection,” is to replace the relatively large set of spectra
in the original scene with a smaller representative set, known as the exemplars. The
reason for doing this is that, by choosing a small set of exemplars that faithfully rep-
resents the image data, subsequent processing can be greatly sped up, often by orders
of magnitude, with little loss in precision of the output. The second function of the
prescreener, which we denote codebook replacement, is to associate each image spec-
trum with exactly one member of the exemplar set. This is done for compression. By re-
placing the original high-dimensional image spectra with an index to an exemplar, the
total amount of data that must be stored to represent the image can be greatly reduced.

The basic concepts used in the prescreener are easy to understand. The exemplar
set is initialized by adding the first spectrum in a given scene to the exemplar set. Each
subsequent spectrum in the image is then compared to the current exemplar set. If
the image spectrum is ‘sufficiently similar’ (meaning within a certain spectral ‘error’
angle), then the spectrum is considered redundant and is replaced, by reference, by
a member of the exemplar set. If not, the image spectrum is assumed to contain new
information and is added to the exemplar set. This process continues until every image
spectrum has been processed.

The prescreener module can thus be thought of as a two-step problem; first, the
exemplar selection process, is to decide whether or not a given image spectrum is
‘unique’ (i.e., an exemplar). If not, the second step (codebook replacement) is to find
the best ‘exemplar’ to represent the spectrum. The trick, of course, is to perform
each step as quickly as possible. Given the sheer size of most hyperspectral images,
it is clear that a simple brute-force search and replace method would be quickly
overwhelmed. The remainder of this subsection discusses the various methods that
have been developed to allow the prescreener to run as quickly as possible (usually in
near-real-time). In ORASIS, the two steps of the prescreener are intimately related;
however, for ease of exposition, we begin by examining the exemplar selection step
separately, followed by a discussion of the replacement process.

It is worth noting that the number of exemplars produced by the prescreener is a
complicated function of instrument SNR, scene complexity (which might be viewed
as a measure of how much hyperspectral ‘space’ the data fill), and processing error
level desired (controlled by the error angle mentioned above). Figure 4.2 provides an
example of how the number of exemplars scales with the error angle. This scaling is
an important aspect of the porting of the ORASIS to the HPC systems. As discussed
in later sections, the exponential increase in the number of exemplars as the error
angle decreases creates problems with our ability to parallelize the prescreener.

4.3.1.1 Exemplar Selection

The exemplar selection algorithm selects a subset of spectra (known as the exemplars)
from the image that is used to represent the image. Let {X1, X2, · · · , X N } represent
the image spectra, where N is the total number of pixels in the image. The exemplar
set is initialized by setting the first exemplar E1 equal to the first image spectrum X1.
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Figure 4.2 The number of exemplars as a function of the error angle for various
hyperspectral images.

For each of the remaining image spectrum, the spectrum Xi is compared to the current
set of exemplars E1, · · · , Em to see if it is ‘sufficiently similar’ (as defined below)
to any member of the set. If not, the image spectrum is added to the exemplar set:
Em+1 = Xi . Otherwise, the spectrum is considered to be spectrally redundant and is
replaced by a reference to the matching exemplar. This process continues until every
spectrum in the image has either been assigned to the exemplar set or given an index
into this set.

By ‘sufficiently similar’ we simply mean that the angle θ (Xi , E j ) between the
image spectrum Xi and the exemplar E j must be smaller than some predetermined
error angle θT . Recall that the angle between any two vectors is defined as θ (Xi , E j ) =
cos−1 |〈Xi ,E j 〉|

‖Xi ‖·‖E j ‖ , where 〈Xi , E j 〉 is the standard (Euclidean) vector inner (or dot) prod-
uct, and ‖Xi‖ is the standard (Euclidean) vector norm. It follows that an image
spectrum is rejected (not added to the exemplar set) only if θ (Xi , E j ) ≤ θT for some
exemplar E j . If we assume that the vectors have been normalized to unit norm, then the
rejection condition for an incoming spectrum becomes simply |〈Xi , E j 〉| ≥ cos−1 θT .
Note that the inequality sign is reversed, since the cosine function is decreasing on
the interval (0, π ).

The easiest approach to calculating the exemplar set would be a simple brute-
force method where the entire set of angles between the candidate image spectrum
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and each member of the exemplar set is calculated and the minimum found. Given
that the typical hyperspectral image contains on the order of 100,000 pixels (and
growing), this approach would simply take far too long; thus, faster methods needed
to be developed. The basic approach ORASIS uses to speed up the processing is to try
to reduce the actual number of exemplars that must be checked in order to decide if a
match is possible. To put this another way, instead of having to calculate the angle for
each and every exemplar in the current set, we would like to be able to exclude as many
exemplars as possible beforehand, and calculate angles only for those (hopefully few)
exemplars that remain. In order to do this, we use a set of ‘reference vectors’ to define
a test that quickly (i.e., in fewer processing steps) allows us to decide whether a given
exemplar can possibly match a given image spectrum. All of the exemplars that fail
this test can then be excluded from the search, without having to actually calculate the
angle. Any exemplar that passes the test is still only a ‘possible’ match; the angle must
still be calculated to decide whether the exemplar does actually match the candidate
spectrum.

To define the reference vector test, suppose that we wish to check if the angle
θ (X, E) between two unit normalized vectors, X and E , is below some threshold θT .
Using the Cauchy-Schwarz inequality, it can be shown [5] that

θ (X, E) ≤ θT ⇔ σmin ≤ 〈E, R〉 ≤ σmax (4.4)

where

σmin = 〈X, R〉 −
√

2(1 − cos(θT ))

σmax = 〈X, R〉 +
√

2(1 − cos(θT ))

and R is an arbitrary unit normalized vector. To put this another way, to test whether the
angle between two given vectors is sufficiently small, we can choose some reference
vector R, calculate σmin , σmax and 〈E, R〉, and check whether or not the rejection
condition (Eq. 4.4) holds. If not, then we know that the vectors X and E cannot be
within the threshold angle θT . We note that the converse does not hold.

Obviously, the above discussion is not of much use if only a single angle needs
to be checked. However, suppose we are given two sets of vectors X1, · · · , Xn (the
candidates) and E1, · · · , Em (the exemplars), and assume that for each Xi we would
like to see if there exists some E j such that the angle between them is smaller than
some threshold θT . Using the above ideas, we choose a reference vector R with
‖R‖ = 1 and define σi = 〈 E j

‖E j ‖ , R〉, for each exemplar Ei . By renumbering the
exemplars, if necessary, we may assume that σ1 ≤ σ2 ≤ · · · ≤ σm .

To test the candidate vector Xi we calculate

σ i
min = 〈Xi , R〉 −

√
2 − (1 − cos(θT ))

σ i
max = 〈Xi , R〉 +

√
2 − (1 − cos(θT ))

By the rejection condition (Eq. 4.4), it follows that the only exemplars that can
be within the threshold angle are those whose sigma value σ j lies in the interval
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[σ i
min, σ

i
max ]; we call this interval the possibility zone for the vector Xi . All other

exemplars can be immediately excluded. Assuming that the reference vector is chosen
so that the sigma values are sufficiently spread out, and that the possibility zone for
a given candidate is relatively small, then it is often possible using this method to
significantly reduce the number of exemplars that need to be checked.

The preceding idea can be extended to multiple reference vectors as follows. Sup-
pose that R1, · · · , Rk is an orthonormal set of vectors, and let ‖X‖ = ‖E‖ = 1. Then
X and E can be written as

X =
k∑

i=1

αi Ri + α⊥ R⊥

E =
k∑

i=1

σi Ri + σ⊥S⊥

where αi = 〈X, R〉, σi = 〈E, R〉, and R⊥, S⊥ are the residual vectors of X and E ,
respectively. In particular, R⊥, S⊥ have unit norm and are orthogonal to the subspace
defined by the Ri vectors. It follows that the dot product of X and E is given by
〈X, E〉 = ∑

αiσi + α⊥σ⊥〈R⊥, S⊥〉.
By the Cauchy-Schwartz inequality, 〈R⊥, S⊥〉 ≤ ‖R⊥‖ · ‖S⊥‖ = 1, and by the

assumption that X and E have unit norm

α⊥ =
√

1 −
∑

α2
i

σ⊥ =
√

1 −
∑

σ 2
i

.

If we define the projected vectors αp = (α1, · · · , αk, α
⊥) and σp = (σ1, · · · ,

σk, σ
⊥), then the full dot product satisfies 〈X, E〉 ≤ ∑

αiσi + α⊥σ⊥ ≡ 〈αp, σp〉.
This allows us to define a multizone rejection condition that, as in the single ref-

erence vector case, allows us to exclude a number of exemplars without having to
do a full dot product comparison. The exemplar search process becomes one of first
checking that the projected dot product 〈αp, σp〉 is below the rejection threshold. If
not, there is no need to calculate the full dot product, and we move on to the next
exemplar. The trade-off is that each of the reference vector dot products must be taken
before using the multizone rejection test. In our experience, the number of reference
zone dot products (we generally use three or four reference vectors) is generally much
smaller than the number of exemplars that are excluded, saving us from having to
calculate the full band exemplar/image spectra dot products, and thus justifying the
use of the multizone rejection criterion. However, the overhead does limit the number
of reference vectors that should be used.

We note that the choice of reference vectors is important in determining the size
of the possibility zone, and therefore in the overall speed of the prescreener. The
principal components of the exemplars tend to give the best results, which is not
surprising since the PCA eigenvectors provide by construction the directions that
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Figure 4.3 Three-dimensional histogram of the exemplars projected onto the first
two reference vectors.

maximize the variance of the projected exemplars. In the prescreener, the PCA vectors
are calculated on the fly using a weighted exemplar substitution method to calculate
the (noncentered) covariance matrix and then the eigenvectors. Experience has shown
that sufficiently accurate directions can be determined using only the first hundred
or so exemplars. Conceptually, the use of PCA eigenvectors for the reference vectors
assures that a grass spectrum is compared only to exemplars that look like grass and
not to exemplars that are mostly water, for example.

An example of the power of the possibility zone is given in Figure 4.3, which shows
a histogram of a set of exemplars projected onto two reference vectors (in this example
the reference vectors are the first two principal components of the exemplars). Using
the multizone rejection condition, only the highlighted (lighter colored) exemplars
need to be fully tested for the given candidate image spectrum. All other exemplars
can be immediately excluded, without having to actually calculate the angle between
them and the candidate.

The single and multizone rejection conditions allow us to quickly reduce the number
of exemplars that must be compared to an incoming image spectrum to find a match.
We note that each test uses only the spectral information of the exemplars and image
spectra; however, hyperspectral images typically exhibit a large amount of spatial
homogeneity. As a result, neighboring pixels tend to be spectrally similar. In terms of
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exemplar selection, this implies that if two consecutive pixels are rejected, then there
is a reasonable chance that they both matched the same exemplar. For this reason,
we keep a dynamic list (known as the popup stack) of the exemplars that were most
recently matched to an image spectrum. Before applying the rejection conditions, a
candidate image spectrum is compared to the stack to see if it matches any of the
recent exemplars. This list is continuously updated, and should be small enough to
be quickly searched but large enough to capture the natural scene variation. In our
experience, a size of four to six works well; the current version of ORASIS uses a
five-element stack.

4.3.1.2 Codebook Replacement

In addition to exemplar selection, the second major function of the prescreener is the
codebook replacement process, which substitutes each redundant (i.e., non-exemplar)
spectrum in a given scene with an index to one of the exemplar spectra. By doing so,
the high-dimensional image spectra may be replaced by a simple scalar (the index),
thus greatly reducing the amount of data that must be stored. In the compression
community, this is known as a vector quantization compression scheme. We note
that this process only affects how the image spectra pair up with the exemplars, and
does not change the spectral content of the exemplar set. Thus, it does not affect any
subsequent processing, such as the endmember selection stage.

In exemplar selection, each new candidate image spectrum is compared to the list
of ‘possible’ matching exemplars. A few of these candidate spectra will not ‘match’
any of the exemplars and will become new exemplars. However, the majority of the
candidates will match at least one of the exemplars and be rejected as redundant.
In these cases, we would like to replace the candidate with a reference to the ‘best’
matching exemplar, for some definition of best.

In ORASIS, there are a number of different ways of doing this replacement. For this
project, we implemented two replacement strategies, which we denote ‘first match’
and ‘best fit.’ We note for completeness that other replacement strategies are available;
however, they were not implemented in this version of the code.

The ‘first match’ strategy simply replaces the candidate spectrum with the first
exemplar within the possibility zone that it matches. This is by far the easiest and
fastest method, and is used by default.

The trade-off for the speed of the first match method is that the first matching
exemplar may not be the best, in the sense that there may be another exemplar that
is closer (in terms of difference angles) to the candidate spectrum. Since the search
is stopped at the first matching exemplar, the ‘better’ matching exemplar will never
be found. In a compression scenario, this implies that the final amount of distortion
from using the first match is higher than it could be if the better matching exemplar
was used.

To overcome the shortcomings of the first match method, the user has the option
of the ‘best fit’ strategy, which simply checks every single exemplar in the possibility
zone and chooses the exemplar that is closest to the candidate. This method guarantees
that the distortion between the original and compressed images will be minimized.
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The obvious drawback is that this approach can take much longer than the simple first
match method. Since, as we noted earlier, the codebook replacement does not affect
any steps later in the program, we use the best fit strategy only when compression is
a major concern in the processing.

4.3.2 Basis Selection

Once the prescreener has been run and the exemplars calculated, the next step in
the ORASIS algorithm is to define an appropriate, low-dimensional subspace that
contains the exemplars. One way to interpret the linear mixing model (Eq. 4.1) is that, if
we ignore noise, then every image spectrum may be written as a linear combination of
the endmember vectors. It follows that the endmembers define some subspace within
band space that contains the data. Moreover, the endmembers are, in mathematical
terms, a basis for that subspace. Reasoning backwards, it follows that if we can find
some low-dimensional subspace that contains the data, then we simply need to find
the ‘right’ basis for that subspace to find the endmembers. Also, by projecting the data
into this subspace, we can reduce both the computational complexity (by working in
lower dimensions) as well as the noise.

The ORASIS basis selection algorithm constructs the desired subspace by building
up a set of orthonormal basis vectors from the exemplars. At each step, a new dimen-
sion is added until the subspace contains the exemplar set, up to a user-defined error
criterion. The basis vectors are originally chosen from the exemplar set, and then they
orthonormalized using a Gramm-Schmidt-like procedure (we note for completeness
that earlier ORASIS publications have referred to the basis selection algorithm as
a ‘modified Gramm-Schmidt procedure.’ We have since learned that this term has
a standard meaning in mathematics that is unrelated to our procedure, and we have
stopped using this phrase to describe the algorithm.)

The algorithm begins by finding the two exemplars Ei(1), Ei(2) that have the largest
angle between them. These exemplars become known as ‘salients,’ and the indices
i(1) and i(2) are stored for use later in the endmember selection stage. The first
two salients are then orthonormalized (via Gramm-Schmidt) to form the first two
basis vectors B1 and B2. Next, the set of exemplars is projected down into the two-
dimensional subspace (plane) spanned by B1 and B2, and the residual (distance from
the original to the projected spectrum) is calculated for each exemplar. If the value of
the largest residual is smaller than some predefined error threshold, then the process
terminates. Otherwise, the exemplar Ei(3) with the largest residual is added to the
salient set, and the index is saved. This exemplar is orthonormalized to the current
basis set to form the third basis vector B3. The exemplars are then projected into the
three-dimensional subspace spanned by {B1, B2, · · · , Bk} and the process repeated.
Additional basis vectors are added until either a user-defined error threshold is reached
or a predetermined maximum number of basis vectors has been chosen.

At the end of the basis selection process, there exists a k-dimensional subspace
that is spanned by the basis vectors {B1, B2, · · · , Bk}, and all of the exemplars have
been projected down into this subspace. As we have noted, under the assumptions of
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the linear mixing model, the endmembers must also span this same space. It follows
that we are free to use the low-dimensional projected exemplars in order to find the
endmembers. The salients {Ei(1), Ei(2), · · · , Ei(k)} are also saved for use in the next
step, where they are used to initialize the endmember selection algorithm.

It is worth noting that the basis algorithm described above guarantees that the largest
residual (or error) is smaller than some predefined threshold. In particular, ORASIS
will generally include all outliers, by increasing the dimensionality of the subspace
until it is large enough to contain them. This is by design, since in many situations
(e.g., target and/or anomaly detection) outliers are the objects of most interest. By
comparison, most statistically based methods (such as Principal Component Analysis)
are designed to exclude outliers (which by definition lie in the tails of the distribution).
One problem with our inclusive approach is that it can be sensitive to noise effects and
sensor artifacts; however, this is usually avoided by having the prescreener remove
any obviously ‘noisy’ spectra from the scene.

We note for completeness that newer versions of ORASIS include options for
using principal components as a basis selection scheme, as well as an N-FINDR-like
algorithm for improving the original salients. Neither of these modifications were
used in this version of the code.

4.3.3 Endmember Selection

The next stage in the ORASIS processing is the endmember selection algorithm,
or the ‘shrinkwrap.’ As we have discussed in previous sections, one way to interpret
the linear mixing model (Eq. 4.1) is that the endmember vectors define some k-
dimensional subspace (where k is equal to the number of endmembers) that contains
the data. If we apply the sum-to-one (Eq. 4.2) and nonnegativity (Eq. 4.3) constraints,
then a slightly stronger statement may be made; the endmembers are in fact the
vertices of a (k − 1) simplex that contains the data. Note that this simplex must lie
within the original k-dimensional subspace containing the data.

ORASIS uses this idea by defining the endmembers to be the vertices of some
‘optimal’ simplex that encapsulates the data. This is similar to a number of other
‘geometric’ endmember algorithms, such as Pixel Purity Index (PP) and N-FINDR,
and is a direct consequence of the linear mixing model. We note that, unlike PP and
N-FINDR, ORASIS does not assume that the endmembers are necessarily in the data
set. We believe this is an important point. By assuming that each endmember must be
one of the spectra in the given scene, there is an implicit assumption that there exists at
least one pixel that contains only the material corresponding to the endmember. If this
condition fails, then the endmember will only appear as a mixture (mixed pixel), and
will not be present (by itself ) in the data. This can occur, for example, in scenes with
a large GSD (where the individual objects may be too small to fill an entire pixel).
One of the goals of ORASIS is to be able to detect these ‘virtual’-type endmembers
(i.e. those not in the data), and to estimate their signature by extrapolating from the
mixtures those that are present in the data.
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From the previous subsection, the inputs to the endmember module are the exem-
plars from the prescreener, projected down into some k-dimensional subspace, as well
as an initial set of k vectors known as the salients. By construction, the salients form an
initial (k −1) simplex within the subspace. The basic idea behind the shrinkwrap is to
systematically ‘push’ the vertices of this simplex outwards. At each step, the vertices
of the simplex are adjusted and a new simplex is formed. This process continues until
every exemplar lies within the new simplex.

To begin the shrinkwrap, we check to see if all the exemplars are already inside
the simplex defined by the salients. If so, then we assume that the salients are in fact
the endmembers, and we are done. In almost every case, however, there will be at
least one point outside of the initial simplex, and it must be expanded in order to
encapsulate the exemplars. To do so, we find the exemplar Emax that lies the furthest
distance outside of the current simplex. This is easily done by using the current
endmembers (the vertices of the current simplex) to demix the data and search for
the most negative abundance coefficient. The vertex Vmax that is the furthest from
the most outlaying exemplar Emax is held stationary, and the remaining vertices are
moved outward (using steps of convex combinations) until the Emax exemplar lies
inside the new simplex. The process is then simply repeated until all exemplars are
within the simplex. The final endmembers are then defined to be the vertices of this
final encompassing simplex.

4.3.4 Demixing

The final step in ORASIS is to decompose each of the scene spectra into a weighted
sum of the endmembers. In the HSI literature this process is commonly referred to as
demixing the data. Note that, in almost all cases, the measured image spectra will not
lie exactly in the subspace defined by the endmembers; this is due to both modeling
error and various types of sensor noise. It follows that the demixing process will not be
exactly solvable, and the abundance coefficients must be estimated. The process of es-
timating the coefficients will differ depending on whether or not either (or both) of the
constraints given in Eqs. 4.2 and 4.3 are applied. In this subsection, we discuss the two
demixing algorithms (constrained and unconstrained) that are available in ORASIS.

The demixed data (with or without constraints) produced by the linear mixing
model have a number of useful properties. For example, demixing allows the original
high-dimensional image spectra to be replaced with the lower-dimensional demixed
data, with little loss of information. This reduction, typically on the order of 10 to 1,
can greatly simplify and speed up further processing. Also, demixing the data pro-
duces ‘maps’ of the abundance coefficients αi, j . By replacing each image spectrum
with its demixed version, a series of k (= number of endmembers) grayscale images
can be created. Each image will highlight only those pixels that contain the given end-
member. For example, in a scene containing water, grass, and dirt elements, the pix-
els that contain water will be bright (have high abundance coefficients) only in the
water endmember image, and will be dark in the remaining grass and dirt endmember
images. Remembering that physically the αi, j ’s represent the abundance of mate-
rial j in image spectrum i , the images produced in this way are often referred to as
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abundance planes (or maps). Exactly what the abundance planes measure physically
depends on what calibrations/normalizations have been performed during the pro-
cessing. If the data have been calibrated and the endmembers are normalized, then
the abundance maps represent the radiance associated with each endmember. Other
interpretations are possible, such as relating the abundance maps to the fraction of
total radiance from each endmember. In this case, the abundance maps are sometimes
called the fraction planes.

4.3.4.1 Unconstrained Demix

The easiest method for demixing the data occurs when no constraints are placed on
the abundance coefficients. If we let P be the k × n matrix (where k is the number of
endmembers and n is the number of spectral bands) defined by P = (Xt · X )−1 Xt ,
where |X1 X2 · · · Xk | is the n × k matrix whose columns are the endmembers, then
it is straightforward to show that the least squares estimate α̂ to the true unknown
mixing coefficients α for a given image spectrum Y is given by α̂ = PY .

Note that the matrix P depends only on the endmembers. It follows that once P
has been calculated, the unconstrained demixing process reduces to a simple matrix-
vector product, which can be done very quickly.

4.3.4.2 Constrained Demix

The constrained demixing algorithm is used when the nonnegativity constraints
(Eq. 4.3) are applied to the abundance coefficients. In this case, there is no known
analytical solution, and numerical methods must be used. Our approach is based on the
well-known Non-Negative Least Squares (NNLS) method of Lawson and Hanson [7].
The NNLS algorithm is guaranteed to converge to the unique solution that is closest
(in the least squares sense) to the original spectrum. The FORTRAN code for the
NNLS algorithm is freely available from Netlib [8]. We note that, compared to the
unconstrained demixing algorithm, the NNLS can be significantly (orders of mag-
nitude) slower. At the current time, ORASIS does not implement the sum-to-one
constraint, either with or without the nonnegativity constraint.

4.4 Additional Algorithms

While the main focus in this chapter is the ORASIS algorithm, we include for com-
pleteness a brief description of the other major algorithms that were implemented in
this project. This section discusses the algorithms in their original scalar form; we
discuss the modifications made to run them in parallel in the next section.

4.4.1 ORASIS Anomaly Detection

The ORASIS Anomaly Detection (OAD) algorithm [9], originally developed as part
of the Adaptive Spectral Reconnaissance Program (ASRP), is a method for using
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the ORASIS outputs (exemplars and endmembers) to identify potential objects of
interest within hyperspectral imagery. The term ‘anomaly’ is generally used in the
HSI literature to refer to objects that are significantly different (generally in a spectral
sense, though spatial context is also used) from the background clutter of the scene.
Generally speaking, anomaly detection algorithms do not attempt to identify (in a
material sense) the detected anomalies; in contrast, target detection algorithms attempt
to find those spectra in the image containing specific materials (targets).

The first step of OAD is to simply run ORASIS to create a set of exemplars
and to identify endmembers. Next, each exemplar is assigned an ‘anomaly measure’
as defined below. An initial target map is then created by assigning to each image
spectrum a score equal to that of its corresponding exemplar. A threshold is applied
to the target map and the surviving spectra are segmented to create a list of distinct
objects. Finally, the various spatial properties (e.g., width, height, aspect ratio) of the
objects are calculated and stored. Spatial filters may then be applied to reduce false
alarms by removing those objects that are not relevant.

The OAD anomaly measure attempts to define how spectrally different a given
exemplar is from the general background of the scene. To do so, OAD first separates
the set of endmembers into ‘target’ and ‘background’ classes. Intuitively, background
endmembers are those endmembers that appear as a mixture element in a large number
of the exemplars; conversely, target endmembers are those that appear in only a small
number of exemplars. To put it another way, the abundance coefficient corresponding
to a background endmember will be relatively large for a majority of the exemplars
in a given scene, while the abundance coefficient of a target endmember should
be relatively small for almost all exemplars. In statistical terms, the histogram of
abundance coefficients for a background endmember will be relatively wide (high
standard deviation) with a relatively large mean value (see Figure 4.4(a)), while target
endmembers will have relatively thin (low standard deviation) histograms, with small
means and a few pixels with more extreme abundance values (Figure 4.4(b)).

After the endmembers have been classified, the OAD algorithm discards the back-
ground endmembers and uses only the target dimensions. A number of partial mea-
sures are calculated, including measures of how ‘target-like’ (i.e., how much target
abundance is present) a given exemplar is, and how ‘isolated’ or unique (i.e., how
many other exemplars are nearby, in target space) that exemplar is. The partial mea-
sures are then combined into a single scalar anomaly measure.

As an example, Figure 4.5 shows the results of applying the OAD algorithm (with
spatial filters) to the HYDICE Forest Radiance I data set.

4.4.2 N-FINDR

The N-FINDR algorithm is an alternative endmember selection algorithm developed
by Technical Research Associates, Inc. As with ORASIS, N-FINDR uses the structure
imposed on the data by the linear mixture model to define endmembers. In geomet-
rical terms, the LMM (Eq. 4.1) states that the endmembers form a k-dimensional
subspace that contains the image spectra (ignoring noise). If the sum-to-one and non-
negativity constraints (Eqs. 4.2 and 4.3, respectively) are enforced, then the linear
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Figure 4.4 Abundance coefficient histograms. (a) The histogram of a background
endmember. (b) The histogram of a target endmember.
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Figure 4.5 HYDICE data from Forest Radiance. (a) A single band of the raw data.
(b) Overlay with the results of the OAD.
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mixing model implies that the endmembers are in fact the vertices of a (k − 1)
simplex that encapsulates the data. Roughly speaking, N-FINDR uses this approach
to determine endmembers by choosing the k image spectra that define a solid whose
volume is maximized. The number of endmembers k that are chosen may be defined
by the user, or determined autonomously using a principal components-like analysis.
We note that, in contrast to ORASIS, N-FINDR will only choose spectra that are in
the image to be endmembers, and thus implicitly assumes that full-pixel examples of
each endmember exist in the data. On the other hand, unlike ORASIS, this approach
guarantees that each endmember is physically meaningful.

4.4.3 The Stochastic Target Detector

The Stochastic Target Detector (STD) [10] is an anomaly detection algorithm that
was originally developed by Technical Research Associates, Inc. STD is similar to
OAD in that endmembers are divided into target and background groups, although
STD also includes a ‘neutral’ endmember type, which includes endmembers that are
neither target or background endmembers (e.g. noise artifacts, shading effects, etc.).
The algorithm then uses various statistical measures on the target and background
endmember planes to determine how ‘anomalous’ a given input spectra is. The final
output is a target map, assigning a single detection measure to each image spectra. As
with OAD, the target map can then be thresholded, segmented, spatially filtered, etc.

4.5 Parallel Implementation

The algorithms presented in the two previous sections were all originally designed to
run in scalar (single processor) environments. In this section, we discuss the changes
that were made to run the various algorithms in parallel.

One of the goals of our project was to present the algorithms in such a way as to
allow the user to be able to ‘mix-n-match’ various pieces in order to obtain a specific
result as quickly as possible. For example, a user interested only in anomaly detection
has no need for compression. Similarly, a user may want to be able to compare results
using different endmember selection schemes, etc. With this in mind, we divided the
various algorithms into four general processing steps:

1. ORASIS Endmember Selection. This step includes all of the major ORASIS
algorithms (prescreener, basis selection, shrinkwrap) and outputs a set of end-
members. In addition, the user may optionally select the ‘compression’ option,
which runs the best-fit module of the prescreener.

2. N-FINDR Endmember Selection. This step simply runs the parallel version of
N-FINDR and outputs a set of endmembers.

3. Demixing. This step uses the endmembers from either of the first two steps to
demix the image spectra. The user has the option of using either unconstrained
or nonnegatively constrained demixing.
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4. Anomaly Detection. This step uses the endmembers from either of the first two
steps to run the OAD or STD algorithms.

Each of the preceding four steps was modified to be able to run in parallel mode.
Note that the steps themselves must be run serially, since each step depends on the
outcome of the earlier steps in order to be run. Also, in general only one of the
endmember selection schemes will be used.

The general strategy we used for parallelization was the well-known master-slave
paradigm, in which one process (the master) acts as a scheduler, distributing data
and tasks to the remaining processes (slaves), which in turn send results back to the
master for consolidation and output. Inter-process communication was done using
the Message Passing Interface (MPI) [11], a communications library that has been
implemented by all major HPC hardware manufacturers. We note that, at the time of
this project, the full MPI-2 standard had not yet been implemented by all vendors.
Since one of the requirements for this project was to be as portable as possible, we
decided to use the older MPI-1.1 standard. In particular, we did not have access to
the parallel Input/Output (I/O) routines of the MPI-2 standard. As a result, the master
was tasked with reading the input image files and then distributing the data to each
of the slaves. Given the size of typical hyperspectral images, this presented a rather
large bottleneck, and forced us to structure the code in ways that were perhaps not
ideal. As the MPI-2 standard and Parallel I/O become better implemented, it is hoped
that these bottlenecks can be removed.

4.5.1 ORASIS Endmember Selection

The first step in the ORASIS program, the exemplar selection part of the prescreener,
turned out to be quite difficult to parallelize. For a number of reasons, which we
discuss in more detail later in this subsection, we decided to use only a limited number
(typically three or four) of slave processes in this step. The master began by sending
to each slave a fixed number of lines from the beginning of the cube; for example, the
first slave received the first 100 lines of the cube, the second slave received the next
100 lines, etc. The individual slaves would then run their own (scalar) version of the
prescreener, with each slave keeping a ‘personal’ list of exemplars. Once a slave had
finished the initial block of data, it would ask the master for a new block to process,
using its own internal list of exemplars, until the entire cube had been processed. In
this way, each slave process builds up a set of exemplars, which is then sent to the
master. The master then consolidates the individual lists into a ‘full’ set of exemplars,
which it then broadcasts to all of the slave processes (including those processes not
involved with the exemplar selection).

If the compression option is selected by the user, then the next step is the codebook
replacement module, which replaces each image spectrum with the closest member
of the exemplar list. We again use a master-slave formulation; the master begins by
sending each slave an image frame to process. The slave then runs the (scalar) ‘best-fit’
codebook replacement algorithm on the frame. As the slave finishes, it sends back to
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the master the codebook for that frame, and receives a new frame. This process simply
continues until the entire image has been processed. The frame-by-frame approach
is needed since the amount of time needed to find the best matching exemplar can
vary widely among the incoming image spectra, which tended to lead to serious load
balancing issues.

The two remaining modules, basis determination and endmember selection, operate
only on the exemplars. At this point, each process has a copy of the exemplar list,
and the master distributes the computing load by assigning each process a subgroup
of exemplars to work on. The slaves send the results of their computations back to
the master, who first selects the basis vectors and then (after further processing by the
slaves) determines the endmembers.

We conclude this subsection with a discussion of why we decided to cap the number
of slave processes used during the exemplar selection process. The reason for doing
so was due to the fact that the prescreener is based on accumulated knowledge. In
particular, each incoming spectrum must be compared to the entire list of already
known exemplars. Since each process contains its own list of exemplars, it is possible
that a process could encounter an incoming spectrum that appears to be a new exemplar
(since it does not match any exemplar on its list), while in reality it should be discarded
(since it matches an exemplar found on another process’s list). As a result, each process
contains a number of ‘redundant’ exemplars, and the total number of exemplars will
increase with the number of processes. As an extreme example, if the number of
slave processes was equal to the number of image spectra, then no spectrum would be
considered redundant, and every image spectrum would become an exemplar. Since
the computation time of the remaining modules scales approximately as the square
of the number of exemplars, the speedup resulting in parallelizing the prescreener
(using all available slaves) was quickly nullified by the increase in computing time
needed for the rest of the algorithm. For this reason, it was decided to cap the number
of processes used in the prescreener.

We also note that the reason for sending ‘blocks’ of data, instead of simply par-
titioning the scene into equal areas and then assigning each area to a slave, was a
load balancing problem. The actual amount of processing time needed to run the
prescreener varies directly with the number of exemplars, which is itself closely tied
to the scene. For example, a given image may contain both large, homogenous areas
(grass fields, say) as well as areas with very diverse spectra (e.g. urban areas). In this
type of image, the homogeneous areas will have only a relatively few spectra, and
thus run very quickly, since very few comparisons are needed to see if a match occurs.
Conversely, the urban areas will contain relatively many exemplars, and consequently
take much longer to run than the grass fields.

4.5.2 N-FINDR Endmember Selection

To parallelize N-FINDR, a master-slave formulation was again used, and the scene
partitioned spatially. To run the algorithm, the master process reads in the data cube and
sends a given number of spatially contiguous frames to each process. The individual
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processes then run a (slightly modified) version of the scalar N-FINDR algorithm to
determine a set of ‘possible’ endmembers for that section of the data. Each set of
possible endmembers is returned to the master process, which then consolidates the
combined list of possible endmembers to create a final set of endmembers. We note
that the design and implementation of the parallel N-FINDR algorithm was done by
Michael Winter of the University of Hawaii and TRA.

4.5.3 Spectral Demixing

Once the endmembers have been calculated, either by ORASIS or by N-FINDR, the
next step is to estimate the abundance coefficients, or demix, the individual spectra.
Two demixing routines are available: an unconstrained demix, which places no re-
strictions on the abundance coefficients, and a constrained demix, which requires that
the abundance coefficients be strictly nonnegative. We note that either demixing rou-
tine operates strictly on a spectrum-by-spectrum case and is therefore embarrassingly
parallel.

In the parallel version of the demixing algorithm, the master begins by sending
the endmembers to each of the slave processes, which then calculates the correct
(constrained or unconstrained) demixing matrix. The master then sends out a single
image frames to each of the slaves. Each slave demixes the individual pixels in the
frame and returns the demixed frame to the master, who then sends out a new frame to
the slave. Once each frame has been demixed, the master then writes out the demixed
cube to disk.

4.5.4 Anomaly Detection

After the demixing process, the next (optional) step in the program is anomaly de-
tection. The user may choose one of two anomaly detection routines: the ORASIS
Anomaly Detection (OAD) algorithm or the Stochastic Target Detector (STD)
algorithm.

In the parallel version of OAD, the master separates the endmembers into target/
background classes and broadcasts that information to the slaves. At this point in the
processing, each slave already contains a copy of the exemplars and the endmembers.
The exemplars are then partitioned by the master into subgroups, and each slave
calculates the anomaly measures for each of the exemplars in its group. The master
then receives back each of the anomaly measures, creates a target image, and writes
out the target image to disk.

In the STD algorithm, the actual calculation times are dominated by matrix-matrix
multiplications. Most of these multiplications involve small matrices (on the order
of the number of endmembers) with a few relatively large ones (on the order of
the number of pixels in the scene). Using platform-specific optimized linear algebra
libraries, the total running time of the (scalar) STD algorithm for the images we used
was on the order of a few seconds; therefore, we did not attempt to develop a parallel
version of this algorithm.
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4.6 Results

In this section, we discuss the timing and validation results of the parallel algorithms
presented in the last section. We begin with a discussion of the hardware used in
the test procedure. As we have noted earlier, this work was done as part of a CHSSI
project on hyperspectral data validation. One of the requirements of this project was
to design the code to be completely portable, while also allowing for the use of opti-
mized, hardware-specific libraries. To meet this requirement, we ran our algorithms
on three different HPC systems representing a variety of architectures and operating
systems. The details of the hardware are summarized in Table 4.1. The base code was
written in ISO compatible C++ (except the public domain WNNLS routine used in
the constrained demixing algorithm, which is written in FORTRAN). All message
passing and numerical linear algebra calculations were done using vendor-specific
implementations of the MPI and BLAS (including LAPACK) libraries, respectively.
The code compilation and linking of the various libraries was handled through the
use of machine-specific make files.

To test our algorithms, we ran a series of experiments on each of the three test
machines. The major goals of the test procedure were to show that the algorithms
performed well on a variety of data cubes and under various user configurations.
With that in mind, we constructed a series of five test runs for each machine, meant to
model typical hyperspectral linear modeling tasks. In particular, we developed tests
for compression, terrain categorization, and anomaly detection [12].

The first test, compression, used only the endmember selection and unconstrained
demixing modules. Since N-FINDR is not designed for compression, we used only the
ORASIS endmember selection module (including the ‘best-fit’ codebook replacement
algorithm) for this test.

The second test, terrain categorization (TerrCat), used only the endmember selec-
tion and constrained demixing algorithms. This test was subdivided into two parts,
one for each of the two endmember selection algorithms.

The third test, anomaly detection (ATR), used the endmember selection and un-
constrained demixing algorithms, as well as one of the anomaly detection algorithms.
As in TerrCat, this test was subdivided into two parts, one for each of the endmember
selection algorithms. For the ORASIS endmember test, the OAD anomaly detection
algorithm was used; the STD algorithm was used for the N-FINDR endmember tests.

Each of the three test scenarios was applied to different image cubes, to verify that
the code was able to handle data from various sensors and in various formats. The
specifications for each of the image cubes used are summarized in Table 4.2.

TABLE 4.1 Summary of HPC Platforms

Machine Location Machine Type Operating System Processors

Longview SPAWAR HP Superdome HP-UX 48
Huinalu MHPCC IBM Netfinity Supercluster Linux 512
Shelton ARL IBM P5 AIX 512
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TABLE 4.2 Summary of Data Cubes

Test Sensor Cube Name Samples Lines Bands Data Type

Compression AVIRIS Cuprite VNIR 610 1024 64 16 bit integer
TerrCat AVIRIS Cuprite 610 1024 224 16 bit integer
ATR NVIS AP Hill 244 512 293 32 bit float

In Tables 4.3–4.5, we summarize the timing results for each of the three HPC
platforms. Each table contains the results of running each of the five test runs, with
the times given in seconds. Each test was run on a number of different processors
(4, 8, 16, and 64) to test scalability. A Not Applicable (NA) score in the tables indicates
that the given test was not run on the specified number of processors.

A second series of tests was developed to test the validity of the results. This test
was somewhat of a challenge, since there is no ‘correct’ answer to the endmember
selection process. However, we can use the compression test from above to verify
that the endmember selection and demixing algorithms are working correctly, by first
compressing the image cube and then comparing the decompressed cube with the
original input cube. Since we can derive theoretical limits on how much distortion
can occur, it is reasonable to assume that if the actual measured distortion is within the
theoretical bounds, then the algorithms are performing correctly. Or, to put in another
way, when the algorithms are not performing correctly, the distortion is much higher
than it should be.

TABLE 4.3 Timing Results for the Longview Machine (in seconds)

Number of Processes

Test Algorithm 4 8 32 64

Compression ORASIS 83 NA 32 NA
TerrCat ORASIS 152 NA 35 NA
TerrCat N-FINDR 168 NA 41 NA
ATR ORASIS 48 NA 15 NA
ATR N-FINDR 25 NA 11 NA

TABLE 4.4 Timing Results for the Huinalu Machine (in seconds)

Number of Processes

Test Algorithm 4 8 32 64

Compression ORASIS 111 80 32 53
TerrCat ORASIS 128 78 57 51
TerrCat N-FINDR 140 82 60 48
ATR ORASIS 77 47 32 31
ATR N-FINDR 24 21 9 19
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TABLE 4.5 Timing Results for the Shelton
Machine (in seconds)

Number of Processes

Test Algorithm 4 8 32 64

Compression ORASIS 97 70 46 NA
TerrCat ORASIS 197 111 59 6
TerrCat N-FINDR 11 10 11 NA
ATR ORASIS 158 94 35 25
ATR N-FINDR 13 9 7 NA

TABLE 4.6 Statistical Tests used for Compression.
X = original Spectrum, Y = Reconstructed Spectrum,
n =Number of Bands

Measure Formula

Absolute error 1
n

∑n
i=1 |Xi − Yi |

Relative error 1
n

∑n
i=1

|Xi −Yi |
Xi

RMS
√∑n

i=1
(Xi −Yi )2

n

SNR 10 · log10

(
(maxYi )2

RM S

)
Error angle cos−1( X ·Y

‖Xi ‖·‖Yi ‖ )

To verify the compression results, we calculated a variety of statistical measures to
compare the original input cube and the decompressed image cube. For our test cube,
we used the Cuprite image from Table 4.2, and the error angle in the prescreener
was set to 0.5 degrees. Each measure was calculated on a pixel-by-pixel case, by
comparing the original and reconstructed spectra. We then calculated the minimum,
maximum, and mean results (among all pixels) for each measure. The details of
the individual measures are given in Table 4.6, and the results for each of the three
platforms are summarized in Tables 4.7–4.9. We note that the results were consistent
among each of the three platforms, implying that the code was running correctly on
each machine.

TABLE 4.7 Compression Results for the Longview
Machine

Measure Mean Min Max

Absolute error 541.8 374.6 1140.3
Relative error 0.75 0.73 0.75
RMS 592.9 390.6 1341.5
SNR 23.2 19.7 27.9
Error angle 0.38 0.05 0.73
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TABLE 4.8 Compression Results for the
Huinalu Machine

Measure Mean Min Max

Absolute error 541.8 374.6 1140.2
Relative error 3.0 2.9 3.01
RMS 592.9 390.6 1341.4
SNR 35.2 31.8 39.9
Error angle 0.38 0.05 1.4

4.7 Conclusions

Given the size of most hyperspectral images, it is clear that automated, and efficient,
processing algorithms are needed in order to keep up with the flow of data. Modern
high-performance systems appear to offer the best hope of doing so, but a number of
issues remain.

In the particular case of ORASIS, these issues include the data passing overhead, as
the master process needs to send large chunks of data to each of the slaves. Better im-
plementation of the MPI-2 standard, including the use of Parallel I/O, should remove
most of that overhead. A bigger issue in our case was our lack of success in completely
parallelizing the prescreener. This was offset by the near perfect speedup of the demix-
ing routines, which, especially in the case of the constrained demix, tends to dominate
the total processing time. In compression tasks, the best-fit algorithm performed well
up to about 32 processes; for reasons we do not yet fully understand, increasing the
number above that led to a decrease in performance. The remaining algorithms (basis
determination, endmember selection, and OAD) also performed reasonably well, but,
given the performance of the scalar versions, the speedup that results from paralleliza-
tion is fairly slight. We note that N-FINDR, which was better able to take advantage
of parallel processing by partitioning the scene spatially, performed very well.

One last issue, which we did not discuss in the text, is the question of how best to
process the data spatially. Modern pushbroom sensors, which take data on a line-by-
line basis, are capable of producing images that are many thousands of lines long (and

TABLE 4.9 Compression Results for the
Shelton Machine

Measure Mean Min Max

Absolute error 541.8 374.6 1140.3
Relative error 3.0 2.9 3.0
RMS 592.9 390.6 1341.4
SNR 35.2 31.8 39.9
Error angle 0.39 0.05 0.74
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many gigabytes in size). ORASIS, like most linear mixing model-based algorithms,
tends to do better on relatively small (1000 lines or so) images. The reason for this is
simply that larger scenes will contain a larger number of endmembers. As the number
of endmembers starts to reach the number of bands, the advantages of using linear
mixing quickly diminishes. The question of how to best partition these very long data
sets is a question we hope to pursue in the future.
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The hierarchical image segmentation algorithm (referred to as HSEG) is a hybrid of
hierarchical step-wise optimization (HSWO) and constrained spectral clustering that
produces a hierarchical set of image segmentations. HSWO is an iterative approach
to region growing segmentation in which the optimal image segmentation is found
at NR regions, given a segmentation at NR + 1 regions. HSEG’s addition of con-
strained spectral clustering makes it a computationally intensive algorithm, for all
but the smallest of images. To counteract this, a computationally efficient recursive
approximation of HSEG (called RHSEG) has been devised. Further improvements
in processing speed are obtained through a parallel implementation of RHSEG. This
chapter describes this parallel implementation and demonstrates its computational
efficiency on a Landsat Thematic Mapper test scene.

5.1 Introduction

Image segmentation is the partitioning of an image into related sections or regions.
For remotely sensed images of the earth, an example of an image segmentation would
be a labeled map that divides the image into areas covered by distinct earth surface
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covers such as water, snow, types of natural vegetation, types of rock formations, types
of agricultural crops, and types of other man created development. In unsupervised
image segmentation, the labeled map may consist of generic labels such as region 1,
region 2, etc., which may be converted to meaningful labels by a post-segmentation
analysis.

Segmentation is a key first step for a number of approaches to image analysis and
compression. In image analysis, the group of image points contained in each region
provides a good statistical sampling of image values for more reliable labeling based
on region mean feature values. In addition, the region shape can be analyzed for
additional clues to the appropriate labeling of the region. In image compression, the
regions form a basis for compact representation of the image. The quality of the pre-
requisite image segmentation is a key factor in determining the level of performance
for these image analysis and compression approaches.

A segmentation hierarchy is a set of several image segmentations of the same image
at different levels of detail in which the segmentations at coarser levels of detail can
be produced from simple merges of regions at finer levels of detail. This is useful for
applications that require different levels of image segmentation detail depending on
the particular image objects segmented. A unique feature of a segmentation hierarchy
that distinguishes it from most other multilevel representations is that the segment or
region boundaries are maintained at the full image spatial resolution for all levels of
the segmentation hierarchy.

In a segmentation hierarchy, an object of interest may be represented by multi-
ple image segments in finer levels of detail in the segmentation hierarchy, and may
be merged into a surrounding region at coarser levels of detail in the segmentation
hierarchy. If the segmentation hierarchy has sufficient resolution, the object of interest
will be represented as a single region segment at some intermediate level of segmen-
tation detail. The segmentation hierarchy may be analyzed to identify the hierarchical
level at which the object of interest is represented by a single region segment. The
object may then be identified through its spectral and spatial characteristics. Addi-
tional clues for object identification may be obtained from the behavior of the image
segmentations at the hierarchical segmentation levels above and below the level at
which the object of interest is represented by a single region.

Segmentation hierarchies may be formed through a region growing approach to
image segmentation. In region growing, spatially adjacent regions iteratively merge
through a specified merge selection process. Hierarchical step-wise optimization
(HSWO) is a form of region growing segmentation in which the iterations consist
of finding the best segmentation with one region less than the current segmentation
[1, 2, 3]. The best segmentation is defined through a mathematical criterion such as a
minimum vector norm or minimum mean squared error. An augmentation of HSWO,
called HSEG (for hierarchical segmentation), was introduced by Tilton [4] in which
an option is provided for merging spatially non-adjacent regions as controlled by a
threshold based on previous merges of spatially adjacent regions. This can be thought
of as a form of constrained spectral clustering.

The introduction of constrained spectral clustering in HSEG makes it a computa-
tionally intensive algorithm, for all but the smallest of images. This is because of a
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requirement to evaluate the dissimilarity between all pairs of regions, rather than just
spatially adjacent regions. For a 1024 × 1024 pixel image, this leads to the order of
106 dissimilarity evaluations per iteration in the initial processing stages.

This computational difficulty is overcome by a recursive approximation of HSEG,
called RHSEG. An early version of RHSEG was discussed in Tilton [5]. This re-
cursive formulation not only limits the number of comparisons between spatially
non-adjacent regions to a more reasonable number, but also lends itself to a straight-
forward and efficient implementation on parallel computing platforms. The current
parallel implementation is similar to the implementation first disclosed in a NASA
internal document [6] and U.S. Patent No. 6, 895, 115 B2. This implementation for
two-dimensional data has been recently extended to accommodate one- and three-
dimensional data [7].

This chapter is organized as follows. A high-level description of HSEG is followed
by a more detailed description of RHSEG. Then a description of the parallel im-
plementation of RHSEG is provided. Finally, timing comparisons are provided for
several degrees of parallelism, from 256 CPUs down to 1 CPU.

5.2 Description of the Hierarchical Segmentation
(HSEG) Algorithm

The hierarchical image segmentation algorithm, HSEG, is based upon the relatively
widely utilized hierarchical step-wise optimization (HSWO) region growing approach
of Beaulieu and Goldberg [3], which can be summarized as follows:

1. Initialize the segmentation by assigning each image pixel a region label. If
a pre-segmentation is provided, label each image pixel according to the pre-
segmentation. Otherwise, label each image pixel as a separate region.

2. Calculate the dissimilarity criterion value between all pairs of spatially adjacent
regions, find the pair of spatially adjacent regions with the smallest dissimilarity
criterion value, and merge that pair of regions.

3. Stop if no more merges are required. Otherwise, return to step 2.

HSEG differs from HSWO in one major aspect. The HSEG algorithm allows for
the merging of spatially non-adjacent regions, as controlled by the Swght parameter.
For Swght = 0.0, only spatially adjacent regions are allowed to merge, as in HSWO.
However, for Swght > 0.0, HSEG allows merges between spatially non-adjacent
regions. For Swght = 1.0, merges between spatially adjacent and non-adjacent re-
gions are given equal weight. For values of Swght between 0.0 and 1.0, merges
between spatially adjacent regions are favored by a factor of 1.0/Swght . Allowing
for a range of merge priorities for spatially non-adjacent regions provides HSEG
with a great deal of flexibility in tailoring the segmentation results to a particular
need.
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HSEG also provides a selection of dissimilarity functions for determining most
similar pairs of regions for merging. The available selection of dissimilarity functions
is based on vector norms, mean-squared error, entropy, spectral information diver-
gence (SID), spectral angle mapper (SAM), and normalized vector distance (NVD).
See the RHSEG and HSEGViewer User’s Manual [8] for the mathematical definitions
of these dissimilarity functions. Options for other dissimilarity functions can be easily
added.

5.3 The Recursive Formulation of HSEG

The merging of spatially non-adjacent regions in HSEG leads to heavy computational
demands. These demands are significantly reduced through a recursive approxima-
tion of HSEG, called RHSEG, which recursively subdivides the imagery data into
smaller sections to limit to a manageable number the number of regions considered
at any point in the algorithm (usually in the range of 1000 to 4000 regions). RHSEG
includes a provision to blend the results from the subsections to avoid processing
window artifacts. This recursive approximation also leads to a very efficient paral-
lel implementation. This parallel implementation of RHSEG is so efficient that full
Landsat Thematic Mapper (TM) scenes (approximately 7000 by 6500 pixels) can be
processed in 2 – 8 minutes on a Beowulf cluster consisting of 256 2.4GHz CPUs
(http://thunderhead.gsfc.nasa.gov). This is only 10 to 20 times the amount of time
that the Landsat TM sensor takes to collect this amount of data.

The two spatial dimensional version of RHSEG was described in [5] and [9].
A description of RHSEG, generalized to ND spatial dimensions, follows (see
also [7]):

1. Given an input image X , specify the number levels of recursion (Lr ) required
and pad the input image, if necessary, so that each spatial dimension of the data
set can be evenly divided by 2(Lr −1). (A good value for Lr results in an image
section at recursive level Lr consisting of roughly 1000 to 4000 pixels.) Set
L = 1.

2. Call rhseg(L , X ), where rhseg(L , X ) is as follows:

2.1 If L = Lr , go to step 2.3. Otherwise, divide the image data into 2ND

equal subsections and call rhseg(L + 1, X/2ND ) for each image section
(represented as X/2ND ).

2.2 After all 2ND calls to rhseg() from step 2.1 complete processing, reassem-
ble the image segmentation results.

2.3 If L < Lr , initialize the segmentation with the reassembled segmentation
results from step 2.2. Otherwise, initialize the segmentation with one pixel
per region. Execute the HSEG algorithm on the image X with the following
modification: Terminate the algorithm when the number of regions reaches
the preset value Nmin .
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3. Execute the HSEG algorithm (per Section 5.2) on the image X using as a
pre-segmentation the segmentation output by the call to rhseg() in step 2.

The defaults for the user specifiable parameters Lr and Nmin depend on the size of
the image data and are calculated internally by RHSEG.

Under a number of circumstances, the segmentations produced by the RHSEG
algorithm exhibit processing window artifacts. These artifacts are region boundaries
that are along the processing window seams, even though the image pixels across the
seams are very similar. Processing window artifacts are usually minor but can be more
noticeable, depending on the image. They tend to be more noticeable and prevalent in
larger images. However, all processing window artifacts can be completely eliminated
by adding a fourth step to the definition of rhseg(L , X ) given above (following [10]
and [11]):

2.4. If L = Lr , exit. Otherwise do the following (and then exit):

(a) For each region, identify other regions that may contain pixels that
are more similar to it than the region that they are currently in. These
regions are placed in a candidate region label set for each region.
This is done by:

i. scanning the processing window seam between sections processed
at the next deeper level of recursion for pixels that are more similar
(by a factor of Fseam) to the region existing across the processing
window seam.

ii. for Swght > 0.0 identifying regions that have a dissimilarity
between each other less than Fregion × Swght × Tmax (Tmax is
the maximum of the merge threshold encountered so far in
HSEG).

(b) For each region with a candidate region label set of size greater
than zero, identify pixels in the region that are more similar by a fac-
tor of Fspli t to regions in the candidate region label set than to the
region they are currently in. If Swght = 1.0, simply switch the region
assignment of these pixels to the more similar region. Otherwise, split
these pixels out of their current regions and remerge them through a
restricted version of HSEG in which region growing is performed with
these split-out pixels and merging is restricted to neighboring regions,
the region from which the pixel was split out from, and regions in the
candidate region label set of the region from which the pixel was
split out from.

Processing window artifact elimination as introduced here not only eliminates
the processing window artifacts, but does so with minimal computational overhead.
The computation time no more than doubles for a wide range of image sizes [11]. The
default value of 1.5 for the parameters values Fseam , Fregion , and Fspli t works well for
a wide range of images.



102 High-Performance Computing in Remote Sensing

A demonstration version of the sequential implementation of RHSEG is available
from http://ipp.gsfc.nasa.gov/RHSEG/. This demonstration version is full featured,
limited only by a three month time limit.

5.4 The Parallel Implementation of RHSEG

An earlier parallel implementation of RHSEG using PVM is described in Tilton [5].
The current parallel implementation of RHSEG using MPI is similar to the PVM im-
plementation disclosed earlier in Tilton [6] and U.S. Patent No. 6, 895, 115 B2. A key
difference between the current MPI implementation and the earlier implementations
is the manner in which processing tasks are allocated amongst the available CPUs
(see below).

The recursive division of the data, which is at the core of RHSEG, divides the data
into 2ND (Lr −1) sections, where ND is the spatial dimensionality of the data. A naive
parallelization approach would be to process each these sections on a separate CPU.
However, for large images, the number of CPUs required for this approach becomes
unrealistic, as shown in Table 5.1.

The practical solution to this problem is to determine the number of recursive levels,
designated as Li (≤ Lr ), that divides the data into a number of sections less than or
equal to the available number of CPUs (P), by solving P ≥ 2ND (Li −1). Then RHSEG
is run sequentially for the recursive levels > Li .

After the sequential recursive levels complete processing, and parallel processing
is completed at recursive level Li , one must choose whether or not the input data
and pixel-based results data, such as the current region label map, are passed back
to recursive levels < Li or kept at recursive level Li . Such pixel-based data can be
kept at recursive level Li and retrieved as necessary by recursive levels < Li . Since
the region merging decisions involve only region-based information, which is always
passed back to recursive levels < Li , communications are, for the most part, only
required back to recursive level Li to update the region label map. The only other
communications required back to recursive level Li are at recursive level 1 for the
computation of the value of the global dissimilarity function value, if requested, for
the connected component labeling step in processing window artifact elimination,
which is required at all recursive levels < Lr when Swght = 0.0, and when outputting
the segmentation hierarchy results.

For parallel computing systems with slower interprocessor communications, keep-
ing the pixel-based data at processing level Li may lead to an increase in processing
time. However, for large images, bringing the pixel-based data all the way back to
recursive level 1 can easily lead to a large of amount of disk swapping as the program
memory required exceeds the available RAM memory. A compromise is to bring the
pixel-based data back up to a recursive level Lo, which is less than or equal to Li but
greater than or equal to 1. This is illustrated in Figure 5.1. The case illustrated is for
a 512 × 512 pixel image with Lr = 5, Li = 3, and Lo = 2. A total of 16 tasks (on 16
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TABLE 5.1 The Number of CPUs Required for a Naive Parallelization of
RHSEG with One CPU per 4096 Pixel Data Section for Various Dimensionalities

Lr Image size (ND = 1) # CPUs Lr Image size (ND = 2) # CPUs

1 4096 1 1 642 1
2 8192 2 2 1282 4
3 16,384 4 3 2562 16
4 32,768 8 4 5122 64
5 65,536 16 5 1, 0242 256
6 131,072 32 6 2, 0482 1,024
7 262,144 64 7 4, 0962 4,096
8 524,288 128 8 8, 1922 16,384
9 1,048,576 256 9 16, 3842 65,536
10 2,097,152 512 — — —

Lr Image size (ND = 3) # CPUs Lr Image size (ND = 4) # CPUs

1 163 1 1 84 1
2 323 8 2 164 16
3 643 64 3 324 256
4 1283 512 4 644 4096
5 2563 4,096 5 1284 65,536
6 5123 32,768 — — —

Lr Image size (ND = 6) # CPUs Lr Image size (ND = 12) # CPUs

1 46 1 1 212 1
2 86 64 2 412 4,096
3 166 4,096 — — —
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Figure 5.1 Graphical representation of the recursive task distribution for RHSEG
on a parallel computer.
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CPUs) are utilized. The data are input at recursive level 3 (Li ), and then subdivided and
fed down to recursive level 5 (Lr ), where HSEG processing is initiated. All results are
fed back up through recursive level 2 (Lo). Only non-pixel-based results are fed back
up to recursive level 1, and the pixel-based results are maintained and output from re-
cursive level 2 (Lo). Task 0 is active at all recursive levels. At recursive level 1, it covers
the entire 512 × 512 image; at recursive level 2, it covers a 256 × 256 portion of the
image; and at recursive levels 3 through 5 it covers a 128 × 128 portion of the image.
Tasks 4, 8, and 12 are active for recursive levels 2 through 5. At recursive level 2, they
each cover a 256 × 256 portion of the image; and at recursive levels 3 through 5 they
cover a 128×128 portion of the image. Tasks 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, and 15 are
active at recursive levels 3 through 5, and each cover a 128×128 portion of the image.

The scheme of utilizing these three recursive processing levels in this way is the
subject of U.S. Patent No. 6, 895, 115 B2 (see also [6]). However, the current imple-
mentation features a more efficient allocation of processing tasks amongst the avail-
able CPUs. The previous implementation restricted each CPU to processing only at a
particular recursive level. However, the current implementation reuses certain CPUs
at multiple recursive levels. In Figure 5.1, the numbered tasks correspond to individ-
ual CPUs. Thus task 0 is performed on CPU No. 0 and is active at all recursive levels.
Similarly, tasks 4, 8, and 12 are performed on CPU numbers 4, 8, and 12, respectively,
and are active at recursive levels 2 and above. Finally, tasks 1, 2, 3, 5, 6, 7, 9, 10, 11,
13, 14, and 15 are performed on CPU numbers 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, and 15,
respectively, and are active at recursive levels 3 and above.

5.5 Processing Time Performance

Processing time performance is reported here for a subset of a Landsat Thematic Map-
per (TM) image that was collected May 28, 1999 from over Maryland and Virginia.
The test scene contains 2048 columns and 2048 rows with six spectral bands. The
computing platform utilized is a 256 node Beowulf cluster equipped with dual proces-
sor 2.4 GHz Pentium 4 Xeons, 256 Gbyte DDR memory (1.0 GBytes RAM available
per CPU), 20 Tbyte disk space, and a 2.2 Gbyte/sec Myrinet fiber interconnection
system. The interconnection system is sufficiently fast so that no processing time im-
provement is obtained by setting Lo less than Li . When run with only one CPU (i.e.,
in serial), Li also always equals Lo (and is called Lio) and specifies the recursive level
at which image, region label map, and other pixel-oriented intermediate results are
swapped in and out of the program in a scheme to reduce program RAM requirements
(see [12]).

Table 5.2 compares the processing times for RHSEG for three settings of the Swght

parameter for 1, 4, 16, 64, and 256 CPUs. As can be seen from the speedup factors,
the parallel implementation is very efficient. For Swght = 0.0, the speedup factor
even exceeds the number of CPUs for 16 and 64 CPUs. This extra speedup in the
parallel implementation versus the serial can be explained by inefficiencies in the serial
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TABLE 5.2 RHSEG Processing Time Results for a Six-Band Landsat
Thematic Mapper Image with 2048 Columns and 2048 Rows. (For the 1 CPU case,
the processing time shown is for the values of Li and Lo that produce
the smallest processing time.) Processing Time Shown as Hours:Minutes:Seconds

Swght = 0.0 Swght = 0.1 Swght = 1.0

# of Lr:Li: Processing Measured Processing Measured Processing Measured
CPUs Lo Time Speedup Time Speedup Time Speedup

1 7:1:1 — — 1:52:53 — 2:45:50 —
1 7:4:4 0:25:39 — — — — —
4 7:2:2 0:06:58 3.7 0:31:44 3.6 0:45:19 3.7

16 7:3:3 0:01:29 17.3 0:09:13 12.2 0:13:41 12.1
64 7:4:4 0:00:24 64.1 0:02:34 44.0 0:04:11 39.6

256 7:5:5 0:00:11 139.9 0:00:50 135.4 0:01:31 109.3

implementation. It is clearly more efficient to swap the pixel-oriented intermediate
results back and forth between parallel tasks than it is to swap this information in and
out of disk files, as required in the serial version.

It is interesting to investigate the amount of time spent in the parallel implementation
in actual computation versus transferring data between parallel tasks and waiting for
other tasks. Table 5.3 shows the percentage of time task 0 spent in these activities for
4, 16, 64, and 256 CPUs, plus the percentage of time spent in setup (processing input
parameters, calculating other program parameters and inputting distributing the input
image data, etc.) and in other activities for the 2048 × 2048 Landsat TM test scene
for Swght = 0.1.

For the test scene, the percentage of time task 0 spent in actual computation ranges
from about 84% for 256 CPUs up to over 98% for 16 CPUs. The wait time ranges
from about 10.5% for 256 CPUs and 4 CPUs down to just over 1% for 16 CPUs.
The percentage of time spent in setup, data transfer, and other activities is very small
compared to the compute and wait times.

It should be noted that the relative percentages task 0 spends in computation versus
waiting is very data dependent. In the case of 256 CPUs, task 0 processes the upper

TABLE 5.3 The Percentage of Time Task 0 of the Parallel
Implementation of RHSEG Spent in the Activities of Set-up,
Computation, Data Transfer, Waiting for Other Tasks, and Other
Activities for the 2048 × 2048 Landsat TM Test Scene

# CPUs Set-up Computation Data transfer Waiting Other

256 0.82% 84.42% 1.38% 10.44% 2.94%
64 0.33% 95.88% 0.32% 2.57% 0.90%
16 0.12% 98.46% 0.07% 1.26% 0.09%

4 0.06% 89.37% 0.01% 10.48% 0.08%
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left 128 × 128 pixel portion of the image. For 64 CPUs, task 0 processes the upper
left 256 × 256 pixel portion, for 16 CPUs task 0 processes the upper left 512 × 512
portion, and for 4 CPUs task 0 processes the upper left 1024×1024 portion. The wait
time would be 0% if the image data are very homogeneous outside of these upper left
portions of the image and relatively heterogeneous inside of these upper left portions.

5.6 Concluding Remarks

The hierarchical image segmentation algorithm (referred to as HSEG) was described
as a hybrid of hierarchical step-wise optimization (HSWO) and constrained spectral
clustering that produces a hierarchical set of image segmentations. HSEG’s addition
of constrained spectral clustering makes it a computationally intensive algorithm,
for all but the smallest of images. This chapter described a computationally efficient
recursive approximate implementation of HSEG (called RHSEG) designed to reduce
the computational requirements of HSEG and provided a description of the parallel
implementation of RHSEG. The speedup provided by the parallel implementation
was shown for a Landsat TM test scene to range from 42% to 108% of the number
of CPUs, depending on the number of CPUs utilized and the setting of a program
parameter. For the same Landsat TM test scene, the percentage of time spent in actual
computation was shown to range from about 84% to over 98%, depending on the
number of CPUs utilized.
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Hyperspectral remote sensing is increasingly used for Earth observation and anal-
ysis, but the large data volumes and complex analytical techniques associated with
imaging spectroscopy require high-performance computing approaches. In this chap-
ter, we highlight several analytical methods employed in vegetation and ecosystem
studies using airborne and space-based imaging spectroscopy. We then summarize
the most common high-performance computing approaches used to meet these ana-
lytical demands, and provide examples from our own work with computing clusters.
Finally, we discuss several emerging areas of high-performance computing, including
data processing onboard aircraft and spacecraft and distributed Internet computing,
that will change the way we carry out computations with high spatial and spectral
resolution observations of ecosystems.

6.1 Introduction

There is an increasing demand for high spatial and spectral resolution remote sensing
data for environmental studies ranging from ecological dynamics of terrestrial and
aquatic systems to urban development. A good example is hyperspectral remote sens-
ing, also called imaging spectroscopy, which is rapidly advancing from the remote
sensing research arena to a mapping and analysis science in support of conservation,
management, and policy development. Hyperspectral remote sensing is the measure-
ment, in narrow contiguous wavelength bands, of solar radiation reflected by materials
in the environment (Figure 6.1). These measurements express the chemical compo-
sition and structural properties of the materials of interest. In industrial operations,
spectroscopy is used for material identification, manufacturing, and quality assurance.
In Earth observation, imaging spectroscopy is used to estimate chemical concentra-
tions and structures in vegetation, phytoplankton, soils, rocks, and a wide range of
synthetic materials [1, 2].

The advent of hyperspectral remote sensing technology represents a progression
from basic panchromatic and multispectral camera-like imaging of the past to a more
data-rich and physically-based imaging and analysis arena for 21st century science.
Field, airborne, and even space-based hyperspectral sensors are available today to
government, commercial, and private organizations, yet the collection and analysis
of imaging spectrometer data continue to be a challenge. Both the data volume and
the processing techniques currently require a level of technological and scientific
investment that is beyond the reach of many agencies and organizations. Continued
effort is thus needed to advance the science of imaging spectroscopy from an esoteric
specialty area to a mainstream set of applied methods for earth science. This is
particularly true today as the earth science community is challenged to demonstrate the
societal benefit of its observations and studies, especially from expensive investments
such as remote sensing.

In this chapter, we summarize the major processing challenges and steps involved
in hyperspectral image data collection and analysis, and we provide examples of
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Figure 6.1 Imaging spectrometers collect hyperspectral data such that each pixel
contains a spectral radiance signature comprised of contiguous, narrow wavelength
bands spanning a broad wavelength range (e.g., 400–2500 nm). Top shows a typical
hyperspectral image cube; each pixel contains a detailed hyperspectral signature such
as those shown at the bottom.
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how high-performance computing is used to meet these challenges. We highlight
why specific types of high-performance computing approaches are matched to the
demands of different types of scientific algorithms employed for hyperspectral data
analysis. Whereas some analytical methods require true parallel processing, others
benefit from the strategic use of distributed computing techniques. We also look into
the future by outlining a framework for processing hyperspectral data onboard aircraft
and spacecraft. Near-real-time processing of data is the next frontier in bringing
hyperspectral imaging from a specialty to a mainstream science for environmental
research and monitoring.

6.2 Hyperspectral Imagery and Analysis

The term hyperspectral is used in a wide variety of ways by remote sensing practi-
tioners, and there is some confusion in the literature as to what hyperspectral really
means. Some call any imaging system with more than about 5–10 channels ‘hyper-
spectral.’ However, a hyperspectral sensor is a system that collects images with pixels
containing a series of contiguous, narrowband spectral channels covering a particular
region of the spectrum (e.g., 400–1050 nm or 400–2500 nm). The spectrum in each
pixel provides information on absorption and scattering features of materials in that
pixel. Because the data are collected in image format with each spectrum spatially lo-
cated, the measurements are organized as 3-D ‘cubes’ that allow analysis of remotely
sensed materials in a geographic context (Figure 6.1). In this section, we discuss some
of the most common hyperspectral imaging systems and analytical techniques that
subsequently demand high-performance computing techniques.

6.2.1 Typical Imaging Systems

Imaging spectrometers are used to collect hyperspectral data from field, airborne, or
space-based vantage points. Imaging spectrometers vary in design, but the two most
common systems employ either scanning ‘whiskbroom’ sensors or pushbroom arrays
(Table 6.1). The data vary in spatial resolution (ground instantaneous field-of-view;

TABLE 6.1 The Basic Characteristics of Several Well-Known Imaging
Spectrometers

Sensor Bands Range (nm)

Airborne Visible/Infrared Imaging Spectrometer 220 360–2510
Compact Airborne Spectrographic Imager-1500 288 400–1050
Digital Airborne Imaging Spectrometer 79 400–12,000
Earth Observing-1 Hyperion 220 400–2500
HyMap Imaging Spectrometer 128 400–2500
PROBE-1 100–200 400–2400
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GIFOV) based on flying altitude, aircraft speed, scan and data rate, and desired signal-
to-noise (SNR) properties of the imagery. Smaller GIFOV measurements from aircraft
(e.g. < 5 m) require slower speed over ground, high sensor SNR, and fast data
rates. Many applications require these high spatial resolution measurements, but few
airborne and no space-based spectrometers can deliver the information. Probably the
most well-known airborne sensor to do so is the NASA Airborne Visible and Infrared
Imaging Spectrometer (AVIRIS), which can fly sufficiently low and slow to acquire
data at about 1.8 m resolution; otherwise, this sensor is most often flown at higher
altitudes to obtain data in the 4–20 m resolution range. AVIRIS is a very high fidelity
spectrometer that collects spectra in 9.6 nm wide bands (full width at half maximum;
FWHM) spanning the 360–2510 nm wavelength range and with a cross-track swath
of 614 pixels [3, 4]. AVIRIS has been continuously improved over the past 15 or more
years and is now in its fifth major version for use in Earth observation and analysis [4].

Another imaging spectrometer that has undergone continual improvements over the
years is the Compact Airborne Spectral Imager (CASI) [5]. CASI collects spectral
data at 2.4 nm FWHM sampling across a wavelength range of about 400–1050 nm.
The SNR and overall fidelity of CASI are now roughly similar to those of AVIRIS,
but CASI stands as a unique instrument because of its programmability and very high
spectral resolution. Its pushbroom array allows the CASI to be operated at low altitude
to achieve spatial resolutions of less than 1 m. The most recent version of CASI has
1500 cross-track pixels. Other spectrometers such as HyMap and PROBE-1 provide
a near-contiguous spectral sampling of the 400–2500 nm wavelength range, but at
differing operational spatial resolutions, SNRs, and swath widths.

There are very few spaceborne imaging spectrometers available for scientific use;
the space-based technology has not been made operational for the earth sciences.
The earth Observing-1 (EO-1) satellite does carry the Hyperion imaging spectrom-
eter (Table 6.1), which was placed in low Earth orbit in December 1999. EO-1 is
a technology demonstration and thus does not provide large-scale coverage of the
Earth’s surface; however, Hyperion data can be requested from the U.S. Geological
Survey. The Hyperion imagery has a spatial resolution (GIFOV) of 30 m, and the
spectra cover the 400–2500 nm wavelength region in 220 channels [6]. Hyperion
is a pushbroom imager with relatively low signal-to-noise and image uniformity as
compared to systems such as AVIRIS and HyMap, but it does provide a chance to
test imaging spectroscopy concepts and analysis methods just about anywhere in the
world.

The data volumes associated with airborne hyperspectral data are significantly
larger than typical multispectral data for a given spatial resolution and coverage. For
a given length of distance flown, the width of the sensor scan can also affect the data
volume. AVIRIS collects 640 pixels per scan, whereas the CASI-1500 collects 1500
pixels across its linear array. In the spectral domain, the AVIRIS and the CASI-1500
sensors contain 220 and 288 spectral bands per pixel, respectively, while the Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors con-
tain only seven multispectral bands. Furthermore, many multispectral sensors only
have an 8-bit dynamic range of intensity per pixel per band, whereas AVIRIS and
CASI data have a greater dynamic range and are stored as 14- and 16-bit values per
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Figure 6.2 Change in data volume with flight distance for two common imaging
spectrometers, AVIRIS and CASI-1500, flown at 2 m and 10 m GIFOV.

pixel per band, respectively. Figure 6.2 shows how the data volume increases dramat-
ically as these spectral and spatial parameters increase. If a line were drawn on this
graph to show the data volume for a seven-band sensor with similar spatial coverage
characteristics of the AVIRIS or CASI sensor, the data volumes would be so low that
the line would not be distinguishable from the x-axis.

6.2.2 Typical Analysis Steps

Calibrating imagery to radiometric units is a necessary step to compare the image
data to field spectra and data collected from other sensors. With multispectral data,
calibration is typically done relative to other images with known or well-modeled at-
mospheric conditions. For example, a time series of images has one image converted
to surface reflectance, while the other images have their radiometry adjusted to the
surface reflectance image by regressing the radiometric values based on relatively
unchanging surfaces in the image [7]. Unfortunately, this usually involves careful
analysis and selection of calibration targets by a human analyst. Other relative cal-
ibration methods, such as dark object subtraction (DOS), have been developed by
Chavez [8, 9] to minimize the effects of atmospheric scattering on multispectral data.

To take full advantage of the precision of the radiance information inherent in the
narrow spectral bands of hyperspectral sensors, it is critical that the data be calibrated
to land surface reflectance (Figure 6.3). Hyperspectral data contain a wealth of infor-
mation that makes it possible to remove the effects of the most variable constituents
of the atmosphere (principally aerosols and water vapor) based on the relationship
between the numerous spectral bands. These relationships have been used to develop
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Figure 6.3 Major processing steps used to derive calibrated, geo-referenced surface
reflectance spectra for subsequent analysis of hyperspectral images.

atmospheric correction algorithms for the MODIS program [10, 11, 12]. The higher
spectral resolution of instruments such as AVIRIS and Hyperion are making atmo-
spheric correction an automated process based on the spectral data content and not on
human-selected calibration targets [3, 13]. This makes the calibration process easy to
parallelize and distribute across many computer processors [14].

Many airborne hyperspectral sensors are used in conjunction with Global Posi-
tioning System and Inertial Motion Units to precisely geo-locate each pixel based on
the location and attitude of the sensor. A separate digital elevation model makes it
possible to remove any parallax in the image resulting from variations in scan angle
and surface elevation. The combination of these data makes it possible to map the
precise coordinate of each pixel and render a geo-orthorectified image [15].

Although we are used to seeing an organized grid of pixels when images are dis-
played, the precise location of each pixel does not fall on regularly spaced intervals.
To create a visually pleasing, geo-orthorectified rendering of an image, the nearest
neighbor (NN) resampling kernel is typically used. This resampling method has dis-
tinct advantages for hyperspectral data. First, most hyperspectral remote sensing is
done to find subtle variations in the spectra of different land surfaces. Resampling
methods such as bilinear interpolation and cubic convolution perform a weighted av-
eraging of the closest 8 and 16 pixels, respectively, for each geo-orthorectified pixel.
These two resampling methods have been used in multispectral imagery for image
interpretation and to avoid the ‘block’ appearance that the NN kernel can produce.
The second reason that the NN kernel is superior for hyperspectral remote sensing is
that it requires much less computation per pixel.

Although the resampling method can impact computation time, something as basic
as the organization of the imagery on a disk can also affect the computation time.
Most multi-band imagery is organized in one of three different ways: band sequential
(BSQ), band interleaved by line (BIL), and band interleaved by pixel (BIP). While
the organization of the data does not significantly affect the processing speed for
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multispectral imagery, the organization of the large number of bands in hyperspectral
imagery can have important implications for processing an image. Since most pro-
cessing of hyperspectral data occurs on a pixel-by-pixel basis (discussed later), it is
more efficient to organize the data in BIL or BIP format, so that the entire spectrum
for a pixel (in the case of BIP) or a line of pixels (in the case of BIL) is located close
together in the data stream. If BSQ is used, the data for the various spectral bands
will be scattered across the entire length of the data file on the disk or in RAM, thus
slowing the computations on the data.

After the hyperspectral data are calibrated, atmospherically corrected, and geo-
referenced, the spectra can then be analyzed to estimate the structural and/or chem-
ical composition of materials in the image. For our purposes, we focus on terrestrial
vegetation and ecosystems because it presents one of the most challenging areas
for imaging spectroscopy. Whereas geological applications of imaging spectroscopy
rely heavily on analysis of spectral absorption features (e.g., rock minerals) [16],
vegetation spectroscopy places equal emphasis on light scattering and absorption
because the three-dimensionality of vegetation canopies creates a solar-reflected
radiation field that can be dominated by photon scattering rather than solely by
absorption [17, 18].

A wide variety of techniques are available for the analysis of hyperspectral im-
agery. The simplest approaches employ ‘vegetation indices’ that take combinations
of a few narrow wavelength bands to estimate canopy structural or biochemical prop-
erties [19]. These approaches do not necessarily require high-performance computing
environments unless the data are collected over large geographic regions and/or at
high spatial resolution. A more computer-intensive processing effort is required for
methods that utilize the shape of the spectrum, which necessarily requires many
wavebands and more advanced methods. For example, spectral mixture analysis is
very commonly used to estimate the fractional contribution of materials within image
pixels [20]. This type of sub-pixel analysis is made robust by hyperspectral imaging
that resolves the most unique reflectance features of different materials; it is a method
often used to quantify the fractional cover of live and dead vegetation and bare soils
in hyperspectral data [21]. Finally, the most computer-intensive methods for hyper-
spectral data analysis of vegetation involve the use of mechanistic models that are
numerically inverted to derive model parameters leading to the best estimate of the
observed pixel spectrum [22]. Inverse modeling can employ simple or very complex
simulations, depending upon the application and goal of the study [23]. At times,
these approaches may use information from neighboring pixels, which leads to even
higher computational demand.

The products derived from hyperspectral remote sensing can be used as obser-
vational constraints in Earth system models. For example, estimates of vegetation
canopy nitrogen from hyperspectral observations can provide inputs to ecosystem
models seeking to simulate plant growth [24]. Likewise, remotely sensed estimates of
vegetation cover and density can play a key role in constraining biosphere-atmosphere
model simulations of carbon storage and fluxes, and hyperspectral data are just now
being considered for use in data assimilation approaches for ecological forecast-
ing [25]. The computational demand increases with higher and higher levels of data
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analysis and use. From vegetation indices to carbon cycle models, the computing
approaches must scale with the intensity of the effort. In the following sections, we
describe how these different analytical methods set the computing requirements.

6.2.3 Computing Challenges in Hyperspectral Analysis

The large computational demand of hyperspectral image analysis stems from two
particular issues. First, the images can be extremely data-rich because they have a
large number of spectral bands. Second, and more importantly, the analysis techniques
often utilize the shape of the spectra, not just the discrete bands, to remotely sense the
chemical and structural attributes of materials. Typical methods for spectral analysis
include the use of spectral derivatives, Monte Carlo simulations, and the inversion of
physically-based reflectance models. Each of these approaches requires a different
type and level of computational power, and can benefit from a well-matched com-
puting architecture, to achieve the analytical speeds needed to make hyperspectral
imaging truly operational or ‘science ready.’ Here, we use a couple of examples from
our own work to highlight the different types of computational needs.

Spectral mixture analysis (SMA) is a common approach to decomposing image
pixels into fractional cover estimates of various Earth surface materials. The diversity
of materials to be estimated depends upon the spectral and spatial resolution of the
imagery, the fidelity of the spectral measurements, and the uniqueness of the spectral
properties of each material. In ecosystem research, the spectral ‘endmembers’ tend to
be a combination of biotic and abiotic materials such as plant canopies (or species),
dead vegetation, soils, and rocks. In our work in arid and semi-arid regions, as well
as in humid tropical forests and savannas, we have found that no single spectral sig-
nature can represent a generic vegetation canopy; patch of dried, non-photosynthetic
vegetation (NPV); or bare soil. Instead, a wide range of spectral signatures can depict
the presence of these materials. A subsequent finding, however, was that the shapes
(or derivatives) of high spectral resolution signatures in the combined 700–750 nm
and 2000–2400 nm wavelength ranges can best quantify the fractional cover of vege-
tation, NPV, and soils [26, 27]. Although this wavelength range best serves to separate
the materials within each image pixel, the variability within each endmember class
nonetheless persists, and thus a Monte Carlo approach, AutoMCU c©, was developed to
unmix each image pixel iteratively until a stable solution could be found (Figure 6.4).
The computational demand for this type of per-pixel, Monte Carlo mixture analysis
is high and thus requires distributed computing methods described in Section 6.3.

Imaging spectroscopy can also be used to estimate the chemical composition of
vegetation canopies. This type of analysis employs canopy radiative transfer (CRT)
models that simulate top-of-canopy reflectance signatures based on a set of scale-
dependent soil, vegetation, solar, and sensor input parameters. The CRT models range
in complexity from simple 2-stream, turbid medium simulations to complex 3-D mod-
els that combine both radiative transfer and geometric-optical approaches [17, 28].
These models are often run in a forward mode to study the effects of differing in-
puts (often measured in the field) on predicted top-of-canopy reflectance signatures
(Figure 6.5). Run iteratively in this mode, the input parameters and output spectral
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Figure 6.4 A per-pixel, Monte Carlo mixture analysis model used for auto-
mated, large-scale quantification of fractional material cover in terrestrial ecosys-
tems [18, 21]. A spectral endmember database of (A) live, green vegetation; (B)
non-photosynthetic vegetation; and (C) bare soil is used to iteratively decompose
each pixel spectrum in an image into constituent surface cover fractions.
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Figure 6.5 Example forward canopy radiative transfer model simulations of how a
plant canopy hyperspectral reflectance signature changes with increasing quantities
of dead leaf material.

signatures can be compiled and used to understand the relative importance of param-
eters in the models, which sets the physical basis for parameter estimation via model
inversion [18].

Inverse CRT modeling usually requires the use of numerical inversion techniques
to match a measured hyperspectral signature acquired from an airborne or space-
based imaging spectrometer to a set of model parameters. Numerical inversion tech-
niques can range from Newton minimization functions to simulated annealing, neu-
ral networks, and genetic algorithms [29]. All of these methods are computationally
demanding; the inversion of a single pixel can take minutes of CPU time depending
upon the spectral resolution of the data, the complexity of the CRT model, and the
sophistication of the inversion technique. There is also an ecological component to
the inverse modeling process; some canopy or ecosystem parameters represented in
the CRT models co-vary in biochemically or biophysically predictable ways. This
is critically important because a model inversion can be made more efficient if the
solution domain is narrowed via knowledge of these ecological covariations among
parameters [30]. However, these covariates are often fuzzy and thus a Monte Carlo
technique can be employed to accommodate the uncertainty in how model parameters
interrelate. In this case, a Monte Carlo routine is used to iteratively run a numerical
model inversion on a pixel-by-pixel basis (Figure 6.6). This creates an extremely high
computational demand. In our work using 3-D CRT models with Newton minimiza-
tion codes and Monte Carlo techniques, we find that a combination of distributed and
true parallel computing techniques provide the best performance in processing hyper-
spectral data. The distributed computing component breaks images into subsets for
subsequent processing on different computer nodes, whereas the per-pixel inversion
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utilizes 2–4 processors per node with message passing between these processors
(discussed in Section 6.3).

We are developing new inverse modeling algorithms that require information from
neighboring pixels. Very high spatial resolution spectrometers can provide multi-
ple hyperspectral signatures per vegetation canopy (e.g., a set of 0.5 m resolution
signatures spanning the top of a single tree crown). In this case, the model param-
eter estimates of any given pixel can benefit from information obtained through the
parameter estimation of neighboring pixels. To maximize the use of information
among pixels, a fully parallel computing approach is required to simultaneously solve
for all model parameters among all image pixels or groups of pixels.

6.3 Meeting the Computing Demands

The data volumes, processing, steps, and analytical methods described above require
high-performance computing (HPC) techniques. For our purposes, we define an HPC
cluster as a set of networked computers that are dedicated to a given cluster. These
computers typically are identical in configuration and are in close physical proximity.
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The cluster network or networks are private; that is, there is very limited direct access
from systems not associated with the cluster.

Software resides on the HPC cluster computers that enables them to work in a
unified fashion. Clustering software includes software for monitoring and controlling
the computers in the cluster; software for scheduling and controlling jobs running
on the cluster; and software needed by the jobs running on the cluster, in particular,
libraries that enable the sub-job running on each computer to communicate with the
related sub-jobs running on other computers in the cluster.

6.3.1 High-Performance Computing Jobs

The jobs appropriate for an HPC cluster can be grouped in three classes:

� Independent, simultaneous calculations involving different data sets.� Simultaneous calculations involving the same data set in which the calculations
running on the compute nodes are independent.� Simultaneous calculations involving the same data set in which the results of
the calculations running on a compute node are dependent upon the calculations
run on another compute node

6.3.1.1 Job Class 1 – Independent Calculations on Different Data Sets

When performing independent calculations on different data sets, the HPC cluster can
simply be a group of networked workstations on which individual jobs are run. As
the jobs are independent, there is no network needed for communication between the
workstations. An example of this job class is simultaneously running an atmospheric
correction code (Figure 6.3) on a number of remote sensing data sets. This case is
simply one or more workstations providing the independent CPU cycles needed to
process more imagery.

In this computing class, the independent jobs are initiated with a startup script
running on a control computer having network connectivity to all workstations. The
startup script assigns individual calculations to the workstations, with the number of
jobs assigned to each workstation being the same as the number of CPUs on it. If
clustering control software is added to a network of workstations, the software assigns
tasks to available workstations, which can vary dynamically, and enables the user to
queue jobs to be executed as other jobs finish.

6.3.1.2 Job Class 2 – Independent Calculations on a Single Data Set

Because the calculations are independent, this class is often termed trivial parallel
processing. The compute nodes do not communicate between themselves so, as with
job class 1, there are no networking needs for communication between the nodes. An
example of this job class is a calculation performed independently on each pixel of a
remote sensing data set (e.g., the AutoMCU spectral mixture model; Figure 6.4).
Like most spectral mixture models, the AutoMCU code operates on a per-pixel
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basis without a need to gather information from neighboring pixels. In this particular
example, the code is computationally expensive because of the Monte Carlo routine,
matrix inversions, and overall image data volume involved. The calculation begins
by sub-dividing the data set, then each compute node loops through the pixels of
an assigned data subset, and finally the subset results are recombined once all are
received from the nodes.

6.3.1.3 Job Class 3 – Dependent Calculations on a Single Data Set

This class includes distributed parallel computing that requires significant networking
resources for communication between compute nodes. The addition of a high-speed,
low-latency network for communication between compute nodes may significantly
improve performance. At the application level, communication is handled by the Mes-
sages Passing Interface (MPI). Examples of this job class include general circulation
models (GCM) and canopy radiative transfer inverse modeling methods (Figure 6.5).
In this case, the program assigns the calculations for a number of pixels (or cells)
to each processor in the cluster. Since MPI uses shared memory for communication
between processes running on the same compute node, performance enhancements
can be realized when cells that directly communicate with each other are run on the
same compute node.

6.3.2 Computing Architectures

HPC clusters can be divided into two subcategories: (a) clusters that use commodity
hardware, for example, Ethernet for the cluster network; and (b) clusters that use
specialized hardware to achieve higher performance, for example, low-latency, high-
speed networks (Figure 6.7).

These architectures have some common components and considerations:

6.3.2.1 Cluster Computer Nodes

Typical computer nodes for clusters have more than one processor. Processor tech-
nology for HPC clusters has recently transitioned from 32-bit to 64-bit, with a 32-bit
compatibility mode (e.g., ×86−64) and pure 64-bit processors. Multi-core CPUs are
being delivered, but currently there is a lack of understanding as to whether CPU bus
bandwidths associated with multiple cores will support full use of multiple cores for
HPC clusters. Finally, the memory in an HPC cluster is distributed on the compute
nodes. With dual or quad-processor nodes (and soon with dual and multi-core CPUs),
the memory on each of the compute nodes can be shared among the processors/cores
on the node.

6.3.2.2 Cluster Front-End Computer

The cluster front-end computer is used as the portal for users to submit jobs to the
cluster. This particular computer thus requires both private and outside-of-network
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access. The front-end computer can be a different configuration from the compute
nodes and is generally not used for computations.

6.3.2.3 Networking

Gigabit Ethernet is often employed for user communication with the front-end com-
puter and for management of the nodes in the cluster. In addition, we use Gigabit
Ethernet for accessing an IBRIX Fusion (www.ibrix.com) parallel file system and the
conventional network file system (NFS) data storage. Since several nodes accessing
a server can saturate a single Gigabit network interface card, bandwidth is increased
by binding three Gigabit Ethernet interfaces on each storage server into a single-
channel bonding interface. The resulting channel bonding interface has a bandwidth
of 3 × 100 MB/sec, or about 300MB/sec. A Gigabit network is sufficient for a clus-
ter in which node-to-node communication is not needed for calculations. However,
with a latency of 150 msec per message, Ethernet is a poor choice for calculations in
which significant communication is required, i.e., for distributed parallel MPI com-
putations. Newer networks such as InfiniBand (www.InfiniBandTA.org) and Myrinet
(www.myricom.com) provide not only increased bandwidth over Gigabit Ethernet
(900 MB/sec and 450 MB/sec, respectively), but also have a significantly lower
latency (10 sec and 7 sec, respectively).
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6.3.2.4 Data Storage

Simultaneous access to a data set or multiple data sets on a single RAID array by
many compute nodes can seriously limit the performance of an HPC cluster. Fig-
ure 6.8 shows times for independent calculations on our HPC cluster with data ac-
cessed via standard NFS from SATA and SCSI disk arrays. Notice that the run-time
for an individual computation increases with an increasing number of simultaneous
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calculations. This problem is especially noticeable when the data are accessed from
a SATA RAID-5 array. Ideally, the curves would be flat, and the time required for
an individual calculation would not increase as more calculations were performed
simultaneously.

These types of storage hardware limitations require the use of SCSI arrays for
hyperspectral data analyses. They also require a parallel file system to handle the
multiple accesses that simultaneously occur on a disk array (e.g., www.ibrix.com).
We compared the performance of multiple computer nodes accessing a Linux ext3 file
system via NFS versus accessing an IBRIX Fusion parallel file system (Figure 6.9).
The parallel file system provides significantly better throughput when accessed by
multiple nodes.

6.4 Future Possibilities of Hyperspectral Computing

Hyperspectral signatures contain detailed information on the chemical and structural
composition of materials. In this chapter, we have discussed some of the algorithms,
computing methods, and hardware used for analysis of imaging spectrometer data.
Our examples were specific to vegetation and terrestrial ecosystems, but many of
the same principles apply to analyses of aquatic ecosystems and the built environ-
ment. Future remote sensing developments will probably bring the type of shortwave
reflectance spectroscopy presented here together with hyperspectral-thermal and/or
active light detection and ranging (LiDAR) data, which will greatly increase the com-
puter processing requirements for Earth systems analysis. Meanwhile, the spatial
and spectral resolutions of the sensors will continue to increase, allowing access to
smaller surface features and more chemical determinations. How will we cope with
such enormous data sets? The capabilities of even the largest computers are not likely
to keep pace with the expected data stream from hyperspectral imaging. The solutions
may lie in acquiring only the data needed for subsequent analysis and Internet-based
distributed computing techniques.

6.4.1 Onboard Processing and Data Compression

To date, the Earth observing community has mostly operated within the framework
that the data are collected, delivered to the analyst, and then processed to derive
products. This approach may no longer work as the data volume increases with future
sensors. An inherently important quality of high spectral resolution data is its ability to
quantify land, aquatic, and atmospheric constituents ‘on the fly.’ For example, clouds,
aerosol, and cirrus are readily detected using the detailed spectroscopic signatures
provided by full-range (400–2500 nm) hyperspectral sensors [31]. Likewise, water
bodies, snow, rocks, soils, and vegetation are very easily identified in the data. It is
thus possible to program a given flight or satellite overpass to collect only the spectra
that pass a set of tests to remove features of low interest during the image acquisition.
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For instance, in coastal zone mapping missions, land and clouds can easily be detected
in-flight, and those pixels can be set to null. The data can then be compressed using
a wide range of high-performance compression algorithms now available or soon to
be available.

Data compression has traditionally been a subject to avoid in imaging spectroscopy
because of the unrecoverable loss of critical information during the compress-
uncompress process. However, innovations in lossless or low-loss compression tech-
niques are paving the way for reduced data volumes onboard both aircraft and space-
craft. An example algorithm developed at the NASA Goddard Space Flight Center
was used to compress AVIRIS hyperspectral imagery at different compression ra-
tios. The data were then uncompressed and analyzed using the AutoMCU algorithm
described in Section 6.2. The output from different compression tests were then com-
pared to those derived from data that had never been compressed. The results show
that compression ratios of up to 3:1 lead to no degradation of a very sensitive mixture
modeling algorithm; compression as high as 8:1 results in only a 10–15% decrease
in algorithm accuracy. These findings are sensor and algorithm specific, but they
nonetheless demonstrate the value of data compression to reduce volume, telemetry
time, and potentially even processing time.

As remote sensing systems continue to provide ever increasing amounts of spectral
data, this information could facilitate pre-processing steps beyond that of data removal
and compression. What is the value of onboard processing of the data to science-ready
format? In many practical applications of remote sensing, the image products are
quickly needed for conservation and management purposes. For ecosystem analysis,
processing onboard an aircraft could allow for rapid determination of fire fuel loads,
vegetation stress (e.g., precise agriculture), and biodiversity. To do so, the sensors must
provide data-rich, high-fidelity spectral information; combinations of hyperspectral
and LiDAR technology may be best suited for such an effort. It is unlikely that
spacecraft would carry sufficient payload for onboard science-product generation,
but it is possible that the most important processing step of atmospheric correction
could be carried out in orbit.

6.4.2 Distributed Internet Computing

Computing has undergone a revolution from the days of large, mainframe facilities
to relatively low-cost distributed ‘Beowulf’ computing clusters that can be built or
purchased by even a small agency or organization. An even more revolutionary step
was taken in 1999 when a group from the Search for Extraterrestrial Intelligence
(SETI) organization and the University of California, Berkeley, developed software
that uses the vast amount of ‘idle time’ on computers connected to the Internet.
When their project, SETI@home (setiathome. sslberkeley.edu), was first established,
about 200,000 PCs were linked, providing analysis of radio signals collected by
telescopes like the Arecibo Observatory in Puerto Rico [32]. By 2001, more than 1
million computers were analyzing 100-sec segments of the radio signals, all while the
PCs would have been otherwise inactive. In the years since that historic beginning in
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massive distributed Internet computing, additional projects have been initiated, such as
on protein folding (folding.stanford.edu), climate prediction (climateprediction.net),
and drug analysis for AIDS (fightaidsathome.scripps.edu).

Surprisingly, we could find no examples of distributed Internet computing for
Earth remote sensing image analysis. Given the per-pixel or per-image nature of most
processing algorithms, it is likely that Internet computing could easily advance the
computational power needed for the operational analysis of hyperspectral and similar
data. Given the great public interest in accessing images of Earth, such as through
Google Earth (earth.google.com), people would likely be interested in processing
Earth observing data for their particular geographic area or for another area of interest
to them. Participants could then receive direct access to processed image products,
providing a natural conduit for environmental education. The possibilities are real,
and the software structures are available (e.g., www.mithral.com). The future of high-
performance remote sensing may rest in the willingness of a community to provide
large-scale, distributed computing power.
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Improvement of spatial and spectral resolution in latest-generation Earth observa-
tion instruments is introducing extremely high computational requirements in many
remote sensing applications. While thematic classification applications have greatly
benefited from this increasing amount of information, new computational require-
ments have been introduced, in particular, for hyperspectral image data sets with
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hundreds of spectral channels and very fine spatial resolution. Low-cost parallel
computing architectures such as heterogeneous networks of computers have quickly
become a standard tool of choice for dealing with the massive amount of image
data sets. In this chapter, a new parallel classification algorithm for hyperspectral
imagery based on morphological neural networks is presented and discussed. The
parallel algorithm is mapped onto heterogeneous and homogeneous parallel plat-
forms using a hybrid partitioning scheme. In order to test the accuracy and parallel
performance of the proposed approach, we have used two networks of workstations
distributed among different locations, and also a massively parallel Beowulf cluster
at NASA’s Goddard Space Flight Center in Maryland. Experimental results are pro-
vided in the context of a real agriculture and farming application, using hyperspectral
data acquired by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRS),
operated by the NASA Jet Propulstion Laboratory, over the valley of Salinas in
California.

7.1 Introduction

Many international agencies and research organizations are currently devoted to the
analysis and interpretation of high-dimensional image data collected over the surface
of the Earth [1]. For instance, NASA is continuously gathering hyperspectral images
using the Jet Propulsion Laboratory’s Airborne Visible-Infrared Imaging Spectrom-
eter (AVIRIS) [2], which measures reflected radiation in the wavelength range from
0.4 to 2.5 μm using 224 spectral channels at a spectral resolution of 10 nm. The in-
corporation of hyperspectral instruments aboard satellite platforms is now producing
a near-continual stream of high-dimensional remotely sensed data, and cost-effective
techniques for information extraction and mining from massively large hyperspectral
data repositories are highly required [3]. In particular, although it is estimated that sev-
eral Terabytes of hyperspectral data are collected every day, about 70% of the collected
data is never processed, mainly due to the extremely high computational requirements.

Several challenges still remain open in the development of efficient data processing
techniques for hyperspectral image analysis [1]. For instance, previous research has
demonstrated that the high-dimensional data space spanned by hyperspectral data sets
is usually empty [4], indicating that the data structure involved exists primarily in a
subspace. A commonly used approach to reduce the dimensionality of the data is the
principal component transform (PCT) [5]. However, this approach is characterized by
its global nature and cannot preserve subtle spectral differences required to obtain a
good discrimination of classes [6]. Further, this approach relies on spectral properties
of the data alone, thus neglecting the information related to the spatial arrangement
of the pixels in the scene. As a result, there is a need for feature extraction tech-
niques able to integrate the spatial and spectral information available from the data
simultaneously [5].
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While such integrated spatial/spectral developments hold great promise in the field
of remote sensing data analysis, they introduce new processing challenges [7, 8]. The
concept of Beowulf cluster was developed, in part, to address such challenges [9, 10].
The goal was to create parallel computing systems from commodity components to
satisfy specific requirements for the earth and space sciences community. Although
most dedicated parallel machines employed by NASA and other institutions during
the last decade have been chiefly homogeneous in nature, a current trend is to uti-
lize heterogeneous and distributed parallel computing platforms [11]. In particular,
computing on heterogeneous networks of computers (HNOCs) is an economical alter-
native that can benefit from local (user) computing resources while, at the same time,
achieving high communication speed at lower prices. The properties above have led
HNOCs to become a standard tool for high-performance computing in many ongoing
and planned remote sensing missions [3, 11].

To address the need for cost-effective and innovative algorithms in this emerging
new area, this chapter develops a new parallel algorithm for the classification of
hyperspectral imagery. The algorithm is inspired by previous work on morphological
neural networks, such as autoassociative morphological memories and morphological
perceptrons [12], although it is based on different concepts. Most importantly, it
can be tuned for very efficient execution on both HNOCs and massively parallel,
Beowulf-type commodity clusters. The remainder of the chapter is structured as
follows.

� Section 7.2 describes the proposed heterogeneous parallel algorithm, which
consists of two main processing steps: 1) a parallel morphological feature ex-
traction taking into account the spatial and spectral information, and 2) robust
classification using a parallel multi-layer neural network with back-propagation
learning.� Section 7.3 describes the algorithm’s accuracy and parallel performance. Clas-
sification accuracy is discussed in the context of a real application that makes
use of hyperspectral data collected by the AVIRIS sensor, operated by NASA’s
Jet Propulsion Laboratory, to assess agricultural fields in the valley of Salinas,
California. Parallel performance in the context of the above-mentioned applica-
tion is then assessed by comparing the efficiency achieved by an heterogeneous
parallel version of the proposed algorithm, executed on a fully heterogeneous
network, with the efficiency achieved by its equivalent homogeneous version,
executed on a fully homogeneous network with the same aggregate perfor-
mance as the heterogeneous one. For comparative purposes, performance data
on Thunderhead, a massively parallel Beowulf cluster at NASA’s Goddard
Space Flight Center, are also given.� Finally, Section 7.4 concludes with some remarks and hints at plausible fu-
ture research, including implementations of the proposed parallel algorithm on
specialized hardware architectures.
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7.2 Parallel Morphological Neural Network Algorithm

This section describes a new parallel algorithm for the analysis of remotely sensed
hyperspectral images. Before describing the two main steps of the algorithm, we first
formulate a general optimization problem in the context of HNOCs, composed of
different-speed processors that communicate through links at different capacities [11].
This type of platform can be modeled as a complete graph, G = (P, E), where each
node models a computing resource pi weighted by its relative cycle-time wi . Each
edge in the graph models a communication link weighted by its relative capacity,
where ci j denotes the maximum capacity of the slowest link in the path of physical
communication links from pi to p j . We also assume that the system has symmetric
costs, i.e., ci j = c ji . Under the above assumptions, processor pi will accomplish a
share of αi ×W of the total workload W , with αi ≥ 0 for 1 ≤ i ≤ P and

∑P
i=1 αi = 1.

With the above assumptions in mind, an abstract view of our problem can be simply
stated in the form of a client-server architecture, in which the server is responsible for
the efficient distribution of work among the P nodes, and the clients operate with the
spatial and spectral information contained in a local partition. The partitions are then
updated locally and the resulting calculations may also be exchanged between the
clients, or between the server and the clients. Below, we describe the two steps of our
parallel algorithm.

7.2.1 Parallel Morphological Algorithm

The proposed feature extraction method is based on mathematical morphology [13]
concepts. The goal is to impose an ordering relation (in terms of spectral purity) in
the set of pixel vectors lying within a spatial search window (called a structuring
element) designed by B [5]. This is done by defining a cumulative distance between
a pixel vector f (x, y) and all the pixel vectors in the spatial neighborhood given
by B (B-neighborhood) as follows: DB[ f (x, y)] = ∑

i

∑
j SAD[ f (x, y), f (i, j)],

where (x, y) refers to the spatial coordinates in the B-neighborhood and SAD is the
spectral angle distance [1]. From the above definitions, two standard morphological
operations called erosion and dilation can be respectively defined as follows:

( f ⊗ B)(x, y) = argmin(s,t)∈Z2(B)

∑
s

∑
t

SAD( f (x, y), f (x + s, y + t))

(7.1)

( f ⊕ B)(x, y) = argmax(s,t)∈Z2(B)

∑
s

∑
t

SAD( f (x, y), f (x − s, y − t))

(7.2)

Using the above operations, the opening filter is defined as ( f ◦ B)(x, y) =
[( f ⊗ C) ⊕ B](x, y) (erosion followed by dilation), while the closing filter is de-
fined as ( f • B)(x, y) = [( f ⊕ C) ⊗ B](x, y) (dilation followed by erosion). The
composition of the opening and closing operations is called a spatial/spectral profile,
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which is defined as a vector that stores the relative spectral variation for every step of
an increasing series. Let us denote by {( f ◦ B)λ(x, y)}, λ = {0, 1, ..., k}, the opening
series at f (x, y), meaning that several consecutive opening filters are applied using
the same window B. Similarly, let us denote by {( f • B)λ(x, y)}, λ = {0, 1, ..., k},
the closing series at f (x, y). Then, the spatial/spectral profile at f (x, y) is given by
the following vector:

p(x, y) = {SAD(( f ◦ B)λ(x, y), ( f ◦ B)λ−1(x, y))}
∪ {SAD(( f • B)λ(x, y), ( f • B)λ−1(x, y))} (7.3)

Here, the step of the opening/closing series iteration at which the spatial/spectral
profile provides a maximum value gives an intuitive idea of both the spectral and
spatial distributions in the B-neighborhood [5]. As a result, the profile can be used
as a feature vector on which the classification is performed using a spatial/spectral
criterion.

In order to implement the algorithm above in parallel, two types of partitioning can
be exploited:

� Spectral-domain partitioning subdivides the volume into small cells or sub-
volumes made up of contiguous spectral bands, and assigns one or more sub-
volumes to each processor. With this model, each pixel vector is split amongst
several processors, which breaks the spectral identity of the data because the
calculations for each pixel vector (e.g., for the SAD calculation) need to origi-
nate from several different processing units.� Spatial-domain partitioning provides data chunks in which the same pixel vector
is never partitioned among several processors. With this model, each pixel
vector is always retained in the same processor and is never split.

In this work, we adopt a spatial-domain partitioning approach for several reasons:

� A first major reason is that the application of spatial-domain partitioning is a nat-
ural approach for morphological image processing, as many operations require
the same function to be applied to a small set of elements around each data ele-
ment present in the image data structure, as indicated in the previous subsection.� A second reason has to do with the cost of inter-processor communication.
In spectral-domain partitioning, the window-based calculations made for each
hyperspectral pixel need to originate from several processing elements, in par-
ticular, when such elements are located at the border of the local data partitions
(see Figure 7.1), thus requiring intensive inter-processor communication.

However, if redundant information such as an overlap border is added to each of
the adjacent partitions to avoid access from outside the image domain, then boundary
data to be communicated between neighboring processors can be greatly minimized.
Such an overlapping scatter would obviously introduce redundant computations, since
the intersection between partitions would be non-empty. Our implementation makes
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Figure 7.1 Communication framework for the morphological feature extraction
algorithm.

use of a constant structuring element B (with size of 3 × 3 pixels) that is repeatedly
iterated to increase the spatial context, and the total amount of redundant information
is minimized. To do so, we have implemented a special ‘overlapping scatter’ operation
that also sends out the overlap border data as part of the scatter operation itself (i.e.,
redundant computations replace communications).

To implement the algorithm, we made use of MPI derived datatypes to directly scat-
ter hyperspectral data structures, which may be stored non-contiguously in memory,
in a single communication step. A comparison between the associative costs of re-
dundant computations in overlap with the overlapping scatter approach, versus the
communications costs of accessing neighboring cell elements outside of the image
domain, has been presented and discussed in previous work [7].

A pseudo-code of the proposed HeteroMORPH parallel algorithm, specifically
tuned for HNOCs, is given below:

Inputs: N-dimensional cube f , structuring element B.

Output: Set of morphological profiles for each pixel.

1. Obtain information about the heterogeneous system, including the number of
processors, P; each processor’s identification number, {pi }P

i=1; and processor
cycle-times, {wi }P

i=1.
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2. Using B and the information obtained in step 1, determine the total volume of
information, R, that needs to be replicated from the original data volume, V ,
according to the data communication strategies outlined above, and let the total
workload W to be handled by the algorithm be given by W = V + R.

3. Set αi = 	 (P/wi )∑P
i=1(1/wi )


 for all i ∈ {1, ..., P}.
4. For m = ∑P

i=1 αi to (V + R), find k ∈ {1, .., P} so that wk · (αk + 1) =
min{wi · (αi + 1)}P

i=1 and set αk = αk + 1.

5. Use the resulting {αi }P
i=1 to obtain a set of P spatial-domain heterogeneous

partitions (with overlap borders) of W , and send each partition to processor pi ,
along with B.

6. Calculate the morphological profiles p(x, y) for the pixels in the local data
partitions (in parallel) at each heterogeneous processor.

7. Collect all the individual results and merge them together to produce the final
output.

A homogeneous version of the HeteroMORPH algorithm above can be simply
obtained by replacing step 4 with αi = P/wi for all i ∈ {1, ..., P}, where wi is the
communication speed between processor pairs in the network, which is assumed to
be homogeneous.

7.2.2 Parallel Neural Algorithm

In this section, we describe a supervised parallel classifier based on a multi-layer
perceptron (MLP) neural network with back-propagation learning. This approach has
been shown in previous work to be very robust for the classification of hyperspectral
imagery [14]. However, the considered neural architecture and back-propagation-type
learning algorithm introduce additional considerations for parallel implementations
on HNOCs.

The architecture adopted for the proposed MLP-based neural network classifier
is shown in Figure 7.2. As shown in the figure, the number of input neurons equals
the number of spectral bands acquired by the sensor. In the case of PCT-based pre-
processing or morphological feature extraction commonly adopted in hyperspectral
analysis, the number of neurons at the input layer equals the dimensionality of feature
vectors used for classification. The second layer is the hidden layer, where the number
of nodes, M , is usually estimated empirically. Finally, the number of neurons at the
output layer, C , equals the number of distinct classes to be identified in the input
data. With the above architecture in mind, the standard back-propagation learning
algorithm can be outlined by the following steps:

1. Forward phase. Let the individual components of an input pattern be denoted
by f j (x, y), with j = 1, 2, ..., N . The output of the neurons at the hidden layer
is obtained as: Hi = ϕ(

∑N
j=1 ωi j · f j (x, y)) with i = 1, 2, ..., M , where ϕ(·)

is the activation function and ωi j is the weight associated to the connection
between the i-th input node and the j-th hidden node. The outputs of the MLP
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Figure 7.2 MLP neural network topology.

are obtained using Ok = ϕ(
∑M

i=1 ωki · Hi ), with k = 1, 2, ..., C . Here, ωki is
the weight associated to the connection between the i-th hidden node and the
k-th output node.

2. Error back-propagation. In this stage, the differences between the desired and
obtained network outputs are calculated and back-propagated. The delta terms
for every node in the output layer are calculated using δo

k = (Ok − dk) · ϕ
′
(·),

with i = 1, 2, ..., C . Here, ϕ
′
(·) is the first derivative of the activation function.

Similarly, delta terms for the hidden nodes are obtained using δh
i = ∑C

k=1(ωki ·
δo

i ) · ϕ(·)), with i = 1, 2, ..., M .

3. Weight update. After the back-propagation step, all the weights of the net-
work need to be updated according to the delta terms and to η, a learn-
ing rate parameter. This is done using ωi j = ωi j + η · δh

i · f j (x, y) and
ωki = ωki +η·δo

k ·Hi . Once this stage is accomplished, another training pattern is
presented to the network and the procedure is repeated for all incoming training
patterns.

Once the back-propagation learning algorithm is finalized, a classification stage fol-
lows, in which each input pixel vector is classified using the weights obtained by the
network during the training stage [14].

Two different schemes can be adopted for the partitioning of the multi-layer per-
ceptron classifier:

� The exemplar partitioning scheme, also called training example parallelism,
explores data level parallelism and can be easily obtained by simply partitioning
the training pattern data set. Each process determines the weight changes for a
disjoint subset of the training population, and then changes are combined and
applied to the neural network at the end of each epoch. This scheme requires
a suitable large number of training patterns to take advantage of it, which is
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not a very common situation in most remote sensing applications, as long as it
is a very hard task to get ground-truth information for regions of interest in a
hyperspectral scene.� The hybrid partition scheme, on the other hand, relies on a combination of
neuronal level as well as synaptic level parallelism [15], which allows one
to reduce the processors’ intercommunications at each iteration. In the case of
neuronal parallelism (also called vertical partitioning), all the incoming weights
to the neurons local to the processor are computed by a single processor. In
synaptic level parallelism, each workstation will compute only the outgoing
weight connections of the nodes (neurons) local to the processor. In the hybrid
scheme, the hidden layer is partitioned using neuronal parallelism while weight
connections adopt the synaptic scheme.

The parallel classifier presented in this section is based on a hybrid partitioning
scheme, where the hidden layer is partitioned using neuronal level parallelism and
weight connections are partitioned on the basis of synaptic level parallelism [16]. As
a result, the input and output neurons are common to all processors, while the hidden
layer is partitioned so that each heterogeneous processor receives a number of hidden
neurons, which depends on its relative speed. Each processor stores the weight connec-
tions between the neurons local to the processor. Since the fully connected MLP net-
work is partitioned into P partitions and then mapped onto P heterogeneous proces-
sors using the above framework, each processor is required to communicate with every
other processor to simulate the complete network. For this purpose, each of the proces-
sors in the network executes the three phases of the back-propagation learning algo-
rithm described above. The HeteroNEURAL algorithm can be summarized as follows:

Inputs: N -dimensional cube f , training patterns f j (x, y).

Output: Set of classification labels for each image pixel.

1. Use steps 1–4 of the HeteroMORPH algorithm to obtain a set of values (αi )P
i=1,

which will determine the share of the workload to be accomplished by each
heterogeneous processor.

2. Use the resulting (αi )P
i=1 to obtain a set of P heterogeneous partitions of the hid-

den layer and map the resulting partitions among the P heterogeneous proces-
sors (which also store the full input and output layers along with all connections
involving local neurons).

3. Parallel training. For each considered training pattern, the following three
parallel steps are executed:

(a) Parallel forward phase. In this phase, the activation value of the hidden
neurons local to the processors are calculated. For each input pattern,
the activation value for the hidden neurons is calculated using H P

i =
ϕ(

∑N
j=1 ωi j · f j (x, y)). Here, the activation values and weight connections

of neurons present in other processors are required to calculate the acti-
vation values of output neurons according to O P

k = ϕ(
∑M/P

i=1 ωP
ki · H P

i ),
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with k = 1, 2, ..., C . In our implementation, broadcasting the weights
and activation values is circumvented by calculating the partial sum of
the activation values of the output neurons.

(b) Parallel error back-propagation. In this phase, each processor calculates
the error terms for the local hidden neurons. To do so, delta terms for the
output neurons are first calculated using (δo

k )P = (Ok − dk)P · ϕ ′
(·), with

i = 1, 2, ..., C . Then, error terms for the hidden layer are computed using
(δh

i )P = ∑P
k=1(ωP

ki · (δo
k )P ) · ϕ

′
(·), with i = 1, 2, ..., N .

(c) Parallel weight update. In this phase, the weight connections between the
input and hidden layers are updated by ωi j = ωi j + ηP · (δh

i )P · f j (x, y).
Similarly, the weight connections between the hidden and output layers
are updated using the expression ωP

ki = ωP
ki + ηP · (δo

k )P · H P
i .

4. Classification. For each pixel vector in the input data cube f , calculate (in
parallel)

∑P
j=1 O j

k , with k = 1, 2, ..., C . A classification label for each pixel
can be obtained using the winner-take-all criterion commonly used in neural
networks by finding the cumulative sum with maximum value, say

∑P
j=1 O j

k∗ ,

with k∗ = arg{max1≤k≤C
∑P

j=1 O j
k }.

7.3 Experimental Results

This section provides an assessment of the effectiveness of the parallel algorithms
described in the previous section. The section is organized as follows. First, we
describe a framework for the assessment of heterogeneous algorithms and provide
an overview of the heterogeneous and homogeneous networks used in this work for
evaluation purposes. Second, we briefly describe the hyperspectral data set used in
the experiments. Performance data are given in the last subsection.

7.3.1 Performance Evaluation Framework

Following a recent study [17], we assess the proposed heterogeneous algorithms using
the basic postulate that they cannot be executed on a heterogeneous network faster
than its homogeneous prototype on an equivalent homogeneous cluster network. Let
us assume that a heterogeneous network consists of {pi }P

i heterogeneous worksta-
tions with different cycle-times wi , which span m communication segments {s j }m

j=1,
where c( j) denotes the communication speed of segment s j . Similarly, let p( j) be the
number of processors that belong to s j , and let w

( j)
t be the speed of the t-th processor

connected to s j , where t = 1, ..., p( j). Finally, let c( j,k) be the speed of the commu-
nication link between segments s j and sk , with j, k = 1, ..., m. According to [17],
the above network can be considered equivalent to a homogeneous one made up of
{qi }P

i=1 processors with a constant cycle-time and interconnected through a homoge-
neous communication network with speed c if, and only if, the following expressions
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are satisfied:

c =
∑m

j=1 c( j) · [ p( j)(p( j)−1)
2 ] + ∑m

j=1

∑m
k= j+1 p( j) · p(k) · c( j,k)

P(P−1)
2

(7.4)

and

w =
∑m

j=1

∑p( j)

t=1 w
( j)
t

P
(7.5)

where the first expression states that the average speed of point-to-point communi-
cations between processors {pi }P

i=1 in the heterogeneous network should be equal to
the speed of point-to-point communications between processors {qi }P

i=1 in the ho-
mogeneous network, with both networks having the same number of processors. On
the other hand, the second expression simply states that the aggregate performance
of processors {pi }P

i=1 should be equal to the aggregate performance of processors
{qi }P

i=1.
We have configured two networks of workstations to serve as sample networks

for testing the performance of the proposed heterogeneous hyperspectral imaging
algorithm. The networks are considered approximately equivalent under the above
framework. Their description follows:

� Fully heterogeneous network. This network, already described and used in
Chapter 2 of the present volume, consists of 16 different workstations and 4
communication segments, where processors {pi }4

i=1 are attached to commu-
nication segment s1, processors {pi }8

i=5 communicate through s2, processors
{pi }10

i=9 are interconnected via s3, and processors {pi }16
i=11 share the communi-

cation segment s4. The communication links between the different segments
{s j }4

j=1 only support serial communication. The communication network of
the fully heterogeneous network consists of four relatively fast homogeneous
communication segments, interconnected by three slower communication links
with capacities c(1,2) = 29.05, c(2,3) = 48.31, c(3,4) = 58.14 in milliseconds,
respectively. Although this is a simple architecture, it is also a quite typical and
realistic one as well.� Fully homogeneous network. Consists of 16 identical Linux workstations
{qi }16

i=1 with a processor cycle-time of w = 0.0131 seconds per megaflop,
interconnected via a homogeneous communication network where the capac-
ity of links is c = 26.64 milliseconds.

Finally, in order to test the proposed algorithm on a large-scale parallel platform,
we have also experimented with Thunderhead, a massively parallel Beowulf cluster at
NASA’s Goddard Space Flight Center. The system is composed of 256 dual 2.4 GHz
Intel Xeon nodes, each with 1 GB of memory and 80 GB of main memory. The total
peak performance of the system is 2457.6 GFlops. Along with the 512-processor
computer core, Thunderhead has several nodes attached to the core with 2 Ghz optical
fibre Myrinet. In all considered platforms, the operating system used at the time of the
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experiments was Linux Fedora Core, and MPICH was the message-passing library
used (see http://www-unix.mcs.anl.gov/mpi/mpich).

7.3.2 Hyperspectral Data Sets

Before empirically investigating the performance of the proposed parallel hyperspec-
tral imaging algorithms in the five considered platforms, we first describe the hyper-
spectral image scene that will be used in the experiments. The scene was collected by
the 224-band AVIRIS sensor over Salinas Valley, California, and is characterized by
high spatial resolution (3.7-meter pixels). The relatively large area covered (512 lines
by 217 samples) results in a total image size of more than 1 GB. Figure 7.3(a) shows
the spectral band at 587 nm wavelength and a sub-scene (called hereinafter Salinas
A), which comprises 83 × 86 pixels and is dominated by directional features. Figure
7.3(b) shows the ground-truth map, in the form of a class assignment for each labeled
pixel with 15 mutually exclusive ground-truth classes. As shown by Figure 7.3(b),
ground truth is available for nearly half of the Salinas scene. The data set above
represents a very challenging classification problem (due to the spectral similarity of
most classes, discriminating among them is very difficult). This fact has made the
scene a universal and widely used benchmark to validate the classification accuracy
of hyperspectral algorithms [5].

Broccoli_green_weeds_1

Broccoli_green_weeds_2

Fallow

Fallow_rough_plow

Fallow_smooth
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Figure 7.3 AVIRIS scene of Salinas Valley, California (a), and land-cover ground
classes (b).
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TABLE 7.1 Classification Accuracies (in Percentage) Achieved by The
Parallel Neural Classifier for the AVIRIS Salinas Scene Using Morphological
Features, PCT-Based Features, and the Original Spectral Information (Processing
Times in a Single Thunderhead Node are Given in the Parentheses)

AVIRIS Salinas Spectral PCT-Based Morphological
Class Label Information (2981) Features (3256) Features (3679)

Fallow rough plow 96.51 91.90 96.78
Fallow smooth 93.72 93.21 97.63
Stubble 94.71 95.43 98.96
Celery 89.34 94.28 98.03
Grapes untrained 88.02 86.38 95.34
Soil vineyard develop 88.55 84.21 90.45
Corn senesced green weeds 82.46 75.33 87.54
Lettuce romaine 4 weeks 78.86 76.34 83.21
Lettuce romaine 5 weeks 82.14 77.80 91.35
Lettuce romaine 6 weeks 84.53 78.03 88.56
Lettuce romaine 7 weeks 84.85 81.54 86.57
Vineyard untrained 87.14 84.63 92.93
Overall accuracy 87.25 86.21 95.08

In order to test the accuracy of the proposed parallel morphological/neural classifier,
a random sample of less than 2% of the pixels was chosen from the known ground-truth
of the Salinas scene described above. Morphological profiles were then constructed
in parallel for the selected training samples using 10 iterations, which resulted in
feature vectors with dimensionality of 20 (i.e., 10 structuring element iterations for
the opening series and 10 iterations for the closing series). The resulting features
were then used to train the parallel back-propagation neural network classifier with
one hidden layer, where the number of hidden neurons was selected empirically
as the square root of the product of the number of input features and information
classes (several configurations of the hidden layer were tested and the one that gave
the highest overall accuracies was reported). The trained classifier was then applied
to the remaining 98% of the labeled pixels in the scene, yielding the classification
accuracies shown in Table 7.1.

For comparative purposes, the accuracies obtained using the full spectral informa-
tion and PCT-reduced features as input to the neural classifier are also reported in
Table 7.1. As shown in the table, morphological input features substantially improve
individual and overall classification accuracies with regard to PCT-based features
and the full spectral information (e.g., for the directional ‘lettuce’ classes contained
in the Salinas A subscene). This is not surprising since morphological operations use
both spatial and spectral information as opposed to the other methods, which rely on
spectral information alone. For illustrative purposes, Table 7.1 also includes (in the
parentheses) the algorithm processing times in seconds for the different approaches
tested, measured on a single processor in the Thunderhead system. Experiments were
performed using the GNU-C/C++ compiler in its 4.0 version. As shown in table,
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TABLE 7.2 Execution Times (in Seconds) and Performance
Ratios Reported for the Homogeneous Algorithms Versus The
Heterogeneous Ones on the Two Considered Networks

Homogeneus Network Heterogeneus Network

Algorithm Time Homo/Hetero Time Homo/Hetero

HeteroMORPH 221 1.11 206 10.98
HomoMORPH 198 2261
HeteroCOM 289 1.12 242 11.86
HomoCOM 258 2871
HeteroNEURAL 141 1.12 130 9.70
HomoNEURAL 125 1261

the computational cost was slightly higher when morphological feature extraction
was used.

7.3.3 Assessment of the Parallel Algorithm

To investigate the properties of the parallel morphological/neural classification al-
gorithm developed in this work, the performance of its two main modules (Hetero-
MORPH and HeteroNEURAL) was first tested by timing the program using the het-
erogeneous network and its equivalent homogeneous one. For illustrative purposes, an
alternative implementation of HeteroMORPH without ‘overlapping scatter’ was also
tested; i.e., in this implementation the overlap border data are not replicated between
adjacent processors but communicated instead. This approach is denoted as Hetero-
COM, with its correspondent homogeneous version designated by HomoCOM.

As expected, the execution times reported in Table 7.2 for the three considered
heterogeneous algorithms and their respective homogeneous versions indicate that the
heterogeneous implementations were able to adapt much better to the heterogeneous
computing environment than the homogeneous ones, which were only able to perform
satisfactorily on the homogeneous network. For the sake of comparison, Table 7.2
also shows the performance ratios between the heterogeneous algorithms and their
respective homogeneous versions (referred to as Homo/Hetero ratio in the table and
simply calculated as the execution time of the homogeneous algorithm divided by the
execution time of the heterogeneous algorithm).

From Table 7.2, one can also see that the heterogeneous algorithms were always sev-
eral times faster than their homogeneous counterparts in the heterogeneous network,
while the homogeneous algorithms only slightly outperformed their heterogeneous
counterparts in the homogeneous network. The Homo/Hetero ratios reported in the
table for the homogeneous algorithms executed on the homogeneous network were
indeed very close to 1, a fact that reveals that the performance of heterogeneous al-
gorithms was almost the same as that evidenced by homogeneous algorithms when
they were run in the same homogeneous environment. The above results demonstrate
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TABLE 7.3 Communication (COM), Sequential Computation
(SEQ), and Parallel Computation (PAR) Times for the Homogeneous
Algorithms Versus the Heterogeneous Ones on the Two Considered
Networks After Processing the AVIRIS Salinas Hyperspectral Image

Homogeneous Network Heterogeneous Network

COM SEQ PAR COM SEQ PAR
HeteroMORPH 7 19 202 11 16 190
HomoMORPH 14 18 180 6 16 2245
HeteroCOM 57 16 193 52 15 182
HomoCOM 64 15 171 69 13 2194
HeteroNEURAL 4 27 114 7 24 106
HomoNEURAL 9 27 98 3 24 1237

the flexibility of the proposed heterogeneous algorithms, which were able to adapt
efficiently to the two considered networks.

Interestingly, Table 7.2 also reveals that the performance of the heterogeneous
algorithms on the heterogeneous network was almost the same as that evidenced
by the equivalent homogeneous algorithms on the homogeneous network (i.e., the
algorithms achieved essentially the same speed, but each on its network). This seems to
indicate that the heterogeneous algorithms are very close to the optimal heterogeneous
modification of the basic homogeneous ones. Finally, although the Homo/Hetero ra-
tios achieved by HeteroMORPH and HeteroCOM are similar, the processing times in
Table 7.2 seem to indicate that the data replication strategy adopted by HeteroMORPH
is more efficient than the data communication strategy adopted by HeteroCOM in our
considered application.

To further explore the above observations in more detail, an in-depth analysis of
computation and communication times achieved by the different methods is also
highly desirable. For that purpose, Table 7.3 shows the total time spent by the tested
algorithms in communications (labeled as COM in the table) and computations in
the two considered networks, where two types of computation times were analyzed,
namely, sequential (those performed by the root node with no other parallel tasks active
in the system, labeled as SEQ in the table) and parallel (the rest of the computations,
i.e., those performed by the root node and/or the workers in parallel, labeled as PAR
in the table). The latter includes the times in which the workers remain idle. It is
important to note that our parallel implementations have been carefully designed to
allow overlapping of communications and computations when no data dependencies
are involved.

It can be seen from Table 7.3 that the COM scores were very low when compared
to the PAR scores in both HeteroMORPH and HeteroNEURAL. This is mainly due
to the fact that these algorithms involve only a few inter-processor communications,
which leads to almost complete overlapping between computations and communica-
tions in most cases. In the case of HeteroMORPH, it can be observed that the SEQ
and PAR scores are slightly increased with regard to those obtained for HeteroCOM
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TABLE 7.4 Load-Balancing Rates for the Parallel Algorithms
on the Homogeneous and Heterogeneous Network

Homogeneus Network Heterogeneus Network

Algorithm DAll DMinus DAll DMinus

HeteroMORPH 1.03 1.02 1.05 1.01
HomoMORPH 1.05 1.01 1.59 1.21

HeteroCOM 1.06 1.04 1.09 1.03
HomoCOM 1.07 1.03 1.94 1.52

HeteroNEURAL 1.02 1.01 1.03 1.01
HomoNEURAL 1.03 1.01 1.39 1.19

as a result of the the data replication strategy introduced by the former algorithm.
However, Table 7.3 also reveals that the COM scores measured for HeteroCOM were
much higher than those reported for HeteroMORPH, and could not be completely
overlapped with computations due to the high message traffic resulting from commu-
nication of full hyperspectral pixel vectors across the heterogeneous network. This is
the main reason why the execution times measured for HeteroCOM were the highest
in both networks, as already reported by Table 7.2. Finally, the fact that the PAR scores
produced by the homogeneous algorithms executed on the heterogeneous network are
so high is likely due to a less efficient workload distribution among the heterogeneous
workers. Therefore, a study of load balance is highly required to fully substantiate
the parallel properties of the considered algorithms.

In order to measure load balance, Table 7.4 shows the imbalance scores achieved
by the parallel algorithms on the two considered networks. The imbalance is defined
as D = Rmax/Rmin , where Rmax and Rmin are the maxima and minima processor run-
times, respectively. Therefore, perfect balance is achieved when D = 1. In the table,
we display the imbalance considering all processors, DAll , and also considering all
processors but the root, DMinus . As we can see from Table 7.4, both the HeteroMORPH
and HeteroNEURAL algorithms were able to provide values of DAll close to 1 in
the two considered networks, which indicates that the proposed heterogeneous data
partitioning algorithm is effective. Further, the above algorithms provided almost
the same results for both DAll and DMinus while, for the homogeneous versions,
load balance was much better when the root processor was not included. While the
homogeneous algorithms executed on the heterogeneous network provided the highest
values of DAll and DMinus (and hence the highest imbalance), the heterogeneous
algorithms executed on the homogeneous network resulted in values of DMinus that
were close to optimal.

Despite the fact that conventional feature extraction algorithms (such as those
based on PCT) do not take into account the spatial information explicitly into the
computations—a fact that has traditionally been perceived as an advantage for the
development of parallel implementations—and taking into account that both Het-
eroMORPH and HeteroNEURAL introduce redundant information expected to slow
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Figure 7.4 Scalability of parallel morphological feature extraction algorithms on
Thunderhead.

down the computation a priori, the results in Table 7.4 indicate that the two het-
erogeneous algorithms are effective in finding an appropriate workload distribu-
tion among the heterogeneous processors. On the other hand, the higher imbalance
scores measured for HeteroCOM (and its homogeneous version) are likely due to the
impact of inter-processor communications. In this case, further research is required to
adequately incorporate the properties of the heterogeneous communication network
into the design of the heterogeneous algorithm.

Taking into account the results presented above, and with the ultimate goal of ex-
ploring issues of scalability (considered to be a highly desirable property in the design
of heterogeneous parallel algorithms), we have also compared the performance of the
heterogeneous algorithms and their homogeneous versions on the Thunderhead Be-
owulf cluster. Figure 7.4 plots the speedups achieved by multi-processor runs of the
heterogeneous parallel implementations of the morphological feature extraction algo-
rithm over the corresponding single-processor runs of each considered algorithm on
Thunderhead. For the sake of comparison, Figure 7.4 also plots the speedups achieved
by multi-processor runs of the homogeneous versions on Thunderhead. On the other
hand, Figure 7.5 shows similar results for the parallel neural network classifier. As
Figure 7.4 and 7.5 show, the scalability of heterogeneous algorithms was essentially
the same as that evidenced by their homogeneous versions, with both HeteroNEURAL
and HeteroMORPH showing scalability results close to linear in spite of the fact that
the two algorithms introduce redundant computations expected to slow down the
computation a priori. Quite opposite, Figure 7.4 shows that the speedup plot achieved
by HeteroCOM flattens out significantly for a high number of processors, indicating
that the ratio of communications to computations is progressively more significant as
the number of processors is increased, and parallel performance is significantly de-
graded. The above results clearly indicate that the proposed data replication strategy
is more appropriate than the tested data communication strategy in the design of a
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Figure 7.5 Scalability of parallel neural classifier on Thunderhead.

parallel version of morphological feature extraction in the context of remote sensing
applications.

Overall, experimental results in our study reveal that the proposed heterogeneous
parallel algorithms offer a relatively platform-independent and highly scalable solu-
tion in the context of realistic hyperspectral image analysis applications. Contrary
to common perception that spatial/spectral feature extraction and back-propagation
learning algorithms are too computationally demanding for practical use and/or (near)
real-time exploitation in hyperspectral imaging, the results in this chapter demonstrate
that such approaches are indeed appealing for parallel implementation, not only be-
cause of the regularity of the computations involved in such algorithms, but also
because they can greatly benefit from the incorporation of redundant information
to reduce sequential computations at the master node and involve minimal commu-
nication between the parallel tasks, namely, at the beginning and ending of such
tasks.

7.4 Conclusions and Future Research

In this chapter, we have presented an innovative parallel algorithm for hyperspectral
image analysis based on morphological neural networks, and implemented several
variations of the algorithm on both heterogeneous and homogeneous networks and
clusters. The parallel performance evaluation strategy conducted in this work was
based on experimentally assessing the heterogeneous algorithm by comparing its ef-
ficiency on a fully heterogeneous network (made up of processing units with different
speeds and highly heterogeneous communication links) with the efficiency achieved
by its equivalent homogeneous version on an equally powerful homogeneous net-
work. Scalability results on a massively parallel commodity cluster are also provided.
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Experimental results in this work anticipate that the (readily available) computational
power offered by heterogeneous architectures offers an excellent alternative for the
efficient implementation of hyperspectral image classification algorithms based on
morphological neural networks, which can successfully integrate the spatial and spec-
tral information in the data in simultaneous fashion. In future research, we are planning
on implementing the proposed parallel neural algorithm using hardware architectures
taking advantage of the efficient systolic array design already conducted by the mor-
phological and neural stages of the algorithm [18].
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Predicting the potential behavior and effects of wildland fires using remote sensing
technology is a long-awaited goal. The role of high-performance computing in this
task is essential since fire phenomena often require a response in (near) real-time.
Several studies have focused on the potential of hyperspectral imaging as a baseline
technology to detect and monitor wildland fires by taking advantage of the rich spectral
information provided by imaging spectrometers. The propagation of fires is a very
complex process that calls for the integrated use of advanced processing algorithms
and mathematical models in order to explain and further characterize the process. In
this chapter, we describe several advanced hyperspectral data processing algorithms
that are shown to be useful in the task of detecting/tracking wildland fires and further
study how such algorithms can be integrated with mathematical models, with the
ultimate goal of designing an integrated system for surveillance and monitoring of
fires.

8.1 Introduction

Many efforts have been conducted by international organizations to deal with natural
and human-induced disasters through the use of remote sensing technology. Many
of them are focused on post-evaluation and management of the disaster as a way to
improve future evaluation and prediction. Several missions operated by international
agencies are designed to produce a great amount of image data, which can be processed
to evaluate and track these disasters, but this approach introduces strong computational
requirements that are always challenging in terms of budget and, in some cases, lack
of knowledge of the remote sensing community on high-performance computing
solutions.

For instance, wildland fires represent one of the most important sources of bio-
diversity loss on our planet and introduce important requirements from the view-
point of algorithm design and high-performance implementations. This is a general
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problem that causes important environmental risks. In particular, the importance of
preserving forests is enormous since they are multifunctional in their outcome, from
economical (resources), social (recreational), and environmental perspectives (pro-
tection against atmospheric contamination and wildfires, climate control, mitigation
of climate change, and water/soil preservation).

In this chapter, we evaluate different possibilities to approach the problem of mon-
itoring and tracking wildland fires using remotely sensed hyperspectral imagery. We
also outline the design of a system to monitor and track wildland fires using image
data sets produced by both airborne and satellite hyperspectral sensors. The chapter
is organized as follows:

� Section 8.2 introduces the requirements for real-time response on hazards and
disasters, using wildland fires as a potential case study.� Section 8.3 describes the model adopted in this chapter for characterization
of wildland fires. Ideally, this model should be integrated with advanced data
processing algorithms to produce advanced fire characterization products.� Section 8.4 describes a collection of hyperspectral data processing algorithms
that may be used for detecting and monitoring wildland fires. Different ap-
proaches are evaluated in this section, including detection, classification, seg-
mentation, and spectral unmixing.� Section 8.5 details parallel implementations of some of the proposed algo-
rithms, including morphological techniques and neural networks for classifica-
tion and spectral mixture analysis of hyperspectral data sets.� Section 8.6 outlines a high-performance system that integrates the above-
mentioned parallel algorithms with mathematical models for potential pre-
vention and response to wildland fires. The proposed system integrates several
computer architectures, such as homogeneous and heterogeneous networks of
computers including grid environments, and specialized hardware platforms
such as those based on programmable hardware.� Section 8.7 provides experimental results to evaluate the accuracy and parallel
efficiency of the proposed parallel algorithms. Due to the lack of hyperspectral
images of fires with reliable ground-truth, we use standard hyperspectral data
sets collected in the framework of other applications to provide our experimental
assessment.

8.2 Real-Time Response to Hazards and Disasters:
Wildland Fires as a Case Study

Many remote sensing missions have been defined with the ultimate goal of monitor-
ing natural disasters, e.g., detection of red tides using Envisat’s Medium Resolution
Imaging Spectrometer Instrument (MERIS) [16]. In the next decade, and thanks to the
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Figure 8.1 MERIS hyperspectral image of the fires that took place in the summer
of 2005 in Spain and Portugal.

expected improvements in the spatial and spectral resolutions of hyperspectral imag-
ing instruments, it is anticipated that several missions will be focused on the detection,
monitoring, and tracking of hazards. For instance, Figure 8.1 shows a MERIS image
obtained during the summer of 2005 over Spain and Portugal. The figure reveals the
fires that occurred in the area, which caused the loss of many forest areas [17]. The
main disadvantage of monitoring fires using the MERIS instrument is that the revisit
time of MERIS is 3 days, thus limiting its exploitation for active fire tracking.

Fire is an important and recurrent phenomenon in all forested and non-forested
regions of the Earth. In some ecosystems, fire plays an ecologically significant role
in biochemical cycles and disturbance dynamics. In other ecosystems, fire may lead
to the destruction of forests or to long-term site degradation. As a consequence of
demographic and land use changes, and the cumulative effects of anthropogenic
disturbances, many forest types adapted to fire are becoming more vulnerable to
high-intensity wildfires. For several years the number of fires in European forests has
been increasing [17]. Forest fires are usually a result of the simultaneous existence
of several phenomena: droughts, the effect of air pollution (decline and decay of
trees, the formation of loose canopy and lush growth of grasses, all resulting in large
amounts of flammable material), pyromaniacs, illegal selective burning of areas for
construction, and so on.

Decades of research to understand and quantify fire, together with revolutionary
advances in computer technology and computational algorithms, have lead to the de-
velopment of sophisticated mathematical models that can predict and visualize growth
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and spread of fire under a variety of conditions. However, these models generally re-
quire substantial computational and data resources. Numerous fire spread models have
been proposed following several methods (see Figure 8.2) that can be grouped into:

Empirical (or statistical). Statistical, stochastic, also called empirical models are
predicting more probable fire behavior from average conditions and accumu-
lated knowledge obtained from laboratory and outdoor experimental fires, or
historical fires. There are two empirical models widely in use, Australian and
Canadian [18, 19]. These models make no attempt to include any physical mech-
anisms for fire spread; they are purely statistical descriptions of test fires of such
spreads. For example, the Canadian Forest Service has integrated 25 years of
researching experimental and real scenario fires to develop the Canadian Forest
Fire Behavior Prediction System, which is now available in book and electronic
forms. It consists of 89 formulas developed empirically.

Semi-empirical (semi-physical or laboratory models). Semi-empirical models
are based on a global energy balance and on the assumption that the energy
transferred to the unburned fuel is proportional to the energy released by the
combustion of the fuel. Several terms of the model must be fitted from labo-
ratory fire experimental results and field campaign data [1]. The simplicity of
this approach has allowed the development of operational tools.

Physical (theoretical or analytical). Models based on physical principles, have the
potential to accurately predict the parameters of interest over a broader range
of input variables than empirically based models. Physics based models can
also provide the basic information needed for the proper description of physical
processes (i.e., fluid flow, heat transfer, and chemical kinetics). But physics-
based models [20] imply that the developer has an adequate understanding of
the underlying physical relations sufficient to achieve the desired objectives,
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that the underlying physics can be represented mathematically in a manner that
permits numerical solution. Improved models are needed for increased accu-
racy in fire behavior prediction, fire danger rating calculations, and fuel hazard
assessment. Models with the goal to predict 3-dimensional fire shapes are often
referred to as crown fire models.

The amount of living vegetation, and its moisture content, have a strong effect on the
propagation and severity of wildland fires, and they are key components for all models
types mentioned above. The direct observation of vegetation greenness is, therefore,
essential for any fire-spread model (fuel bed component of the models), along with
other information that can be retrieved using remote sensing. Current assessment of
living vegetation moisture relies on various methods of manual sampling. While these
measurements are quite accurate, they are difficult to obtain over broad areas, so they
fail to portray changes in the pattern of vegetation greenness and moisture across the
landscape.

The current polar orbiting satellites provide the potential for delivering information
about the greenness and moisture of vegetation, along with other parameters for fire
management. Some initiatives focused on the usage of constellations of satellites,
as the FUEGO mission of the European Space Agency (http://http://virtual.vtt.fi/
space/firealert/space segment detailed.html), in order to collect data about fires over
a particular site in very small intervals of time. This will provide the scientists in-
vestigating forest fires with a great amount of data for their models, but again this
wealth of information will be very difficult to manage and compute without the aid
of high-performance computing.

In this chapter, we outline the requirements and preliminary design of a system
for forest fire monitoring and tracking, combining advanced hyperspectral data pro-
cessing techniques (implemented on high-performance computing platforms) with a
well-known semi-empirical mathematical model for forest fire spread. Although the
proposed system is aimed at wildland fire characterization, experimental results are
given using data sets in other application domains for preliminary validation purposes.

8.3 Mathematical Model for Wildland Fire Characterization

In the past years, several models and systems to evaluate and predict fire risks have
been made, as was pointed out before. The most interesting ones are the group of
models that are based on the use of Rothermel’s equations [1]. The main equations
provided by the model allow the calculation of the rate of spread (ROS) and fire
intensity Ib as follows:

ROS = IRξ (1 + φw + φs)

ρbεQig
(8.1)

where ROS is the heading fire steady state spread rate ( m
min ), IR is the reaction intensity

( k J
min·m2 ), ξ is the propagating flux ratio, φw is the wind factor (dimensionless), φs is
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the slope factor (dimensionless), ρb is the ovendry bulk density ( kg
m3 ), ε is the effective

heating number (dimensionless), and Qig is the heat of pre-ignition ( k J
kg ).

Ib = h · w · R

60
(8.2)

where Ib is the fire line intensity (kW/m) that describes the rate of energy release
per unit length in the fire front, h is the heat yielded by the fuel (k J/kg) or the total
heat less the energy required for vaporizing moisture, w is the weight of fuel per area
(kg/m2) burned in the flaming front, and R/60 is the fire spread rate converted to
units of m/sec.

Rothermel’s model is the basis for many systems in the U.S., including the BEHAVE
fire behavior prediction system, the FARSITE fire area simulator, the National Fire
Danger Rating System (NFDRS), the National Fire Management Analysis System
(NFMAS) for economic planning, the Rare Event Risk Assessment Process (RERAP)
[22], and many more.

To facilitate the use in models and systems, fuelbed inputs have been formulated
into fuel models. A fuel model is a set of fuelbed inputs needed by a particular fire
behavior or fire effects model. Although a fuel model technically includes all fuel
inputs to the model, several fuel inputs have never been subject to control by a user
when creating a custom fuel model, leaving them static, and loosing, then, some
accuracy in the predictions. The fuel models have worked well for predicting spread
rate and intensity of active fires at the peak of the fire season, in part because the
associated dry conditions lead to a more uniform fuel complex. However, they have
deficiencies for other purposes, including prescribed fire, wildland fire use, simulating
the effects of fuel treatments on potential fire behavior, and simulating the transition
to crown fire using crown fire initiation models, along with comparisons of behaviors
with similar species in different latitudes.

To solve the above-mentioned problems it is necessary to change the static nature
of the models, allowing the change of some characteristics that can be known at the
beginning of the fire season, increasing, thus, the accuracy of the predictions and
simulations. To tackle this from the point of view of the field work is impossible,
so it is necessary to work together with images provided by hyperspectral sensors
and techniques able to obtain abundance maps, which label the vegetal species in the
areas and extract further information on physical, biological, and characteristics of
plants present in the image. This can be done by developing advanced hyperspectral
data processing algorithms, as will be described in the following section.

8.4 Advanced Hyperspectral Data Processing Algorithms

In the present section, we introduce several advanced hyperspectral data processing
algorithms intended to be used as potential building blocks for an integrated system to
monitor wildland fires through the combination of field and ground-truth information,
hyperspectral and additional remote sensing data (i.e. fuelbeds characteristics), and
detailed mathematical models.
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8.4.1 Morphological Algorithm for Endmember Extraction
and Classification

The ultimate goal of endmember extraction algorithms is to select the spectrally
purest constituent spectra in a scene. These endmembers are assumed to interact
following a linear or non-linear spectral mixing model, and such models can be used
to identify land cover within a fine spatial resolution scene. For this reason, it is very
important to accurately obtain the signatures of the endmembers present in the scene.
In the following, we describe a morphological algorithm for endmember extraction
that integrates the spatial and spectral information in the analysis. Mathematical
morphology [12] is a classic non-linear spatial processing technique that provides
a remarkable framework to achieve the desired integration of spatial and spectral
information. Parallelization of this technique for efficient execution in multiprocessors
will be detailed in subsequent sections of this chapter.

Before describing our proposed approach, let us denote by F a hyperspectral data
set defined on an N -dimensional (N -D) space, where N is the number of channels
or spectral bands. The main idea of the algorithm is to impose an ordering relation,
in terms of spectral purity, in the set of pixel vectors lying within a spatial search
window or structuring element (SE) around each image pixel vector [12]. To do
so, we first define a cumulative distance between one particular pixel f(x, y), where
f(x, y) denotes an N-D vector at discrete spatial coordinates (x, y)εZ2, and all the
pixel vectors in the spatial neighborhood one given by B (B-neighborhood) as:

DB[f(x, y)] =
∑

i

∑
j

SID[f(x, y), f(i, j)] (8.3)

where (i, j) are the spatial coordinates in the B-neighborhood and SID is the spectral
information divergence, a commonly used distance in remote sensing applications [15]
defined as follows:

SID[f(x, y), f(i, j)] =
N∑

l=1

pl · log

(
pl

ql

)
+

N∑
l=1

ql · log

(
ql

pl

)
(8.4)

where

pl = fl(x, y)∑N
k=1 fk(x, y)

(8.5)

ql = fl(i, j)∑N
k=1 fk(i, j)

(8.6)

Based on the distance above, we calculate the extended morphological erosion of
F by B for each pixel in the input data scene as follows [4]:

(f�B)(x, y) = argmin(i, j){DB[f(x + i, y + j)]} (8.7)

where the argmin operator selects the pixel vector that is most highly similar, spec-
trally, to all the other pixels in the B-neighborhood. On the other hand, the extended
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morphological dilation of f by B is calculated as follows [4]:

(f ⊕ B)(x, y) = argmax(i, j){DB[f(x + i, y + j)]} (8.8)

where the argmax operator selects the pixel vector that is most spectrally distinct
to all the other pixels in the B-neighborhood. With the above definitions in mind,
we provide below an unsupervised classification algorithm for hyperspectral imagery
called the Automatical Morphological Classification (AMC), which relies on extended
morphological operations. The inputs to the algorithm are a hyperspectral data cube f,
a structuring element B, and the number of classes to be detected c. The output of the
algorithm is a 2-D matrix that contains a classification label for each pixel f (x, y) in
the input image. The algorithm can be summarized by the following steps:

1. Initialize a morphological eccentricity index score MEI(x, y) = 0 for each
pixel.

2. Move B through all the pixels of F, defining a local spatial search area around
each f(x, y), and calculate the maximum and minimum pixel, at each
B-neighborhood using dilation and erosion, respectively. Update the MEI at
each pixel using the SID between the maximum and the minimum.

3. Select the set of c pixel vectors in F with a higher associated score in the
resulting MEI image.

4. Estimate the sub-pixel abundance αi (x, y) of the pure pixels selected in the
previous stage within f(x, y), using the standard linear mixture model described
in [10].

5. Obtain a classification label for each pixel f(x, y) by assigning it to the class with
the highest sub-pixel fractional abundance score in that pixel. This is done by
comparing all estimated abundance fractions {α1(x, y), α2(x, y), . . . , αc(x, y)}
and finding the one with the maximum value, say αi∗ (x, y), with i∗ =
arg{max1≤i≤c{αi (x, y)}}.

One of the main features of the algorithm is the regularity of its computations.
As shown in previous work [4], its computational complexity is O(p f × pB × N ),
where pF is the number of pixels in the hyperspectral image F and pB is the number
of pixels in the structuring element B. This results in high computational cost in real
applications.

8.4.2 Orthogonal Subspace Projection Algorithm for Target Detection

As opposed to classification algorithms, which aim at assigning appropriate class la-
bels to each pixel, target detection algorithms aim at finding a collection of significant
pixel vectors in accordance with different criteria.

One of the most effective target detection algorithms for hyperspectral image anal-
ysis is the automatic target generation process (ATGP), developed to find potential
target pixels that can be used to generate a signature matrix using the concept of
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orthogonal subspace projection (OSP) [10]. The algorithm makes use of an OSP
projector defined defined by

P⊥
U = I − U(UT U)−1UT (8.9)

The ATGP repeatedly makes use of equation 8.9 to find target pixel vectors of
interest from the data without prior knowledge, regardless of the types of pixels that
the targets one. It can be briefly described as follows. Let’s assume that t0 is an initial
target pixel vector. The algorithm begins with the initial target pixel vector t0 by
applying an orthogonal subspace projector P⊥

t0
specified by equation 8.9 with U = t0

to all image pixel vectors. It then finds a target pixel vector, denoted by t1, with the
maximum orthogonal projection in the orthogonal complement space, denoted by
< t0 >⊥, that is orthogonal to the space < t0 > linearly spanned by t0. The reason
for this selection is that the selected t1 generally has the most distinct features from
t0 in the sense of orthogonal projection, because t1 has the largest magnitude of the
projection in < t0 >⊥ produced by P⊥

t0
. A second target pixel vector t2 can be found

by applying an orthogonal subspace projector P⊥
[t0t1] with U = [t0t1] to the original

image, and the target pixel vector that has the maximum orthogonal projection in
< t0, t1 >⊥ is selected as t2. The above procedure is repeated until a certain stopping
rule is satisfied, usually determined by an estimated number of target pixel vectors
required to generate, using several different procedures for the determination of the
number of target pixel vectors. If we consider p as the number of target pixel vectors
to generate the stopping criterion, the ATGP can be summarized by the following
steps:

1. Initial condition. Select an initial target pixel vector of interest denoted by
t0. In order to initialize the ATGP without knowing t0, we select a target
pixel vector with the maximum length as the initial target t0, namely, t0 =
arg{max{f(x, y) · f(x, y)T }}, which has the highest intensity, i.e., the brightest
pixel vector in the image scene. Set k = 1 and U = [t0]. It is worth noting
that this selection may not necessarily be the best selection. However, accord-
ing to the experiments, it was found that the brightest pixel vector was always
extracted later on, if it was not used as an initial target pixel vector in the
initialization.

2. Iterative target detection. At the k-th iteration, apply P⊥
t0

via equation 8.9 to all
image pixels f(x, y) in the image and find the k-th target, tk , generated at the
k-th stage, which has the maximum orthogonal projection.

3. Stopping rule. If k < p − 1, let Uk = [Uk−1tk] = [t1, t2, · · · , tk] be the k-th
target matrix and go to step 2. Otherwise, continue. At this point, the ATGP is
terminated. The resulting target matrix is Up−1, which contains p − 1 target
pixel vectors as its column vectors, which do not include the initial target pixel
vector t0. The final set of target pixel vectors produced comprises p target
pixel vectors, {t0, t1, · · · , tp−1} = {t0}

⋃{t1, t2, · · · , tp−1}, that where found
by repeatedly using equation 8.9. These target pixel vectors are the resulting
targets for the hyperspectral image F.
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8.4.3 Self-Organizing Map for Neural Network Classification

A further approach for advanced classification of remotely sensed data consists of
using a self-organizing map (SOM) [5]. This neural network architecture has been
demonstrated in previous work to be very useful for analyzing hyperspectral images
[8]. The main objective of the SOM model is to transform a given N -D signal or input
pattern into a multidimensional map and the adaptive refining of such transformation
using different topological criteria.

The SOM-based classification technique proposed in this chapter consists of N
input neurons and M output neurons, where N is the dimensionality of input pixel
vectors and M is the number of endmembers obtained using an endmember ex-
traction algorithm (for instance, the morphological endmember extraction procedure
described in this chapter). Therefore, our SOM neural network is composed of two
layers, with forward connections from the input layer towards the output layer and
the set of weights associated distributed in a matrix, named in the following WM×N .
The analysis process performed by the network is divided in two phases: training and
classification:

� In the training phase, the different patterns are presented to the neural network
in a way that makes the forward connections change to adapt to the information
contained in the training data.� In the classification phase, the forward connections project the input patterns,
i.e., the pixel vectors are classified in the feature space using the Euclidean
distance to identify the winning neuron.

The whole procedure can be summarized in the following steps:

1. Initialization of weights. Random values are normalized to initialize the weight
vectors: w

(0)
i , with i = 1, 2, · · · , M .

2. Training. This step makes use of the endmembers obtained using some end-
member extraction algorithm, e.g., the morphological endmember extraction
procedure described in this chapter, which is used to provide input training
patterns for the neural network.

3. Clustering. For each input pattern x , a winning neuron i∗ is obtained in time
t using a similarity criteria based on the Euclidean distance, i.e., i∗[x] =
min1<= j<=M ||x − w j ||2.

4. Adjustment of weights. The winning neuron and those in its neighborhood
change their weights following the expression w

(t+1)
i = wt

i + ∑tmax
t ′=t0

∑
α(t ′)∑

σ (t ′)
∑(

x − w
(t)
i

)
, where α(t) and σ (t) are learning and neighborhood

functions, respectively. One must take into account that the weights associated
to i∗ are modified proportionally to the learning frequency.

5. Stopping condition. The SOM algorithm ends as soon as a predetermined num-
ber of iterations, tmax , is completed.
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From the steps indicated, it is clear that the SOM algorithm is naturally sequential.
As a result, the parallelization strategies for this algorithm must particularly address
the problem of data dependencies.

8.4.4 Spectral Mixture Analysis Algorithms

To conclude this section on advanced data processing techniques, we address the
important issue of mixed pixels in hyperspectral image analysis. In several works, it
has been demonstrated that the knowledge on the endmembers present in the image is
not sufficient to characterize the different properties of plants, biomass, etc. In other
words, once a set of endmembers has been extracted, it is important to be able to ex-
press the mixed pixels as a decomposition of a collection of ‘pure’ spectral signatures
and a set of ‘abundances’ that indicate the individual proportion or contribution of
each of the pure spectra to the mixed pixel [14].

The model used to properly describe the above situation is denominated as a ‘mix-
ture model,’ which often assumes that the scene is composed of a limited set of
endmembers with unique spectral features and a majority of mixed pixels with differ-
ent endmembers participating in different proportions. In the models, two possibilities
are observed:

� Linear mixture model. It considers that each incident beam of solar radiation
only interacts with a single component or endmember, so that the total radiation
reflected by a pixel can be decomposed proportionally to the abundance of each
of the endmembers in the pixel.� Non-linear mixture model. It supposes that the endmembers interact follow-
ing a non-linear model. The non-linear effects appearing in this case are due,
fundamentally, to multiple scattering effects in the light reflected by different
materials.

In any case, one should note that the linear mixture model is not intended to fully
describe the mixture problem since it is mainly a simplification. The real situation
is dominated by secondary effects due to light multiply scattered by several covers,
absorption and diffusion effects, shadows, etc. These effects pose an interesting ques-
tion on which one of the mixture models is predominant in the mixture pixel spectra
obtained by the sensors.

In the particular case of the wildland fires, the main goal is to estimate the tempera-
ture and quantity of fire appearing in each pixel of the image in order to produce maps
of fires and hot spots that initiated the fires. For this purpose, several investigations
have been carried out on the use of linear unmixing for the detection of the fraction
of a fire endmember inside a pixel. The model proposed in [3] is the one used as a
baseline in our investigations, and its basic idea is to use the linear spectral mixing
model as an initial estimation, and then use the best fit linear spectral mixing model to
identify fire temperature and land cover within a fine spatial resolution image scene.
To accomplish this goal, we propose the use of artificial neural networks for linear
unmixing of hyperspectral data.
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8.5 Parallel Implementations

In the present section, we explore the application of parallel techniques in order to
implement the different methods described in Section 8.4. First, we provide a parallel
version of the AMC classification algorithm for both homogeneous and heteroge-
neous platforms, and then we describe a parallel version of the proposed SOM-based
classification algorithm.

8.5.1 Parallelization of Automated Morphological Classification (AMC)
Algorithm for Homogeneous Clusters

The parallel implementation of AMC is based on the definition of an efficient data
partitioning scheme for hyperspectral imagery. We have considered two different
approaches to the problem: partitioning in the spatial domain and partitioning in the
spectral domain:

� The spatial-domain partitioning option divides the hyperspectral image in mul-
tiple blocks, in a way that the pixels for each block preserve its entire spectral
identity.� The spectral-domain partitioning option divides the original image in blocks
constituted by several bands, in a way that we can preserve the spatial identity
for each band but all the pixels in each block lose their spectral identity.

In other words, in spatial-domain partitioning the information of a single pixel in
the image would be scattered across several different processing units. The selection
of a partitioning scheme in the spectral domain is critical and could substantially
increase the costs of communication and/or coordination between processors [7].
Besides, the overhead introduced by the communication increases with the number
of processors, thus introducing problems in the load-balancing accomplished by the
designed algorithms [25].

At this point, we introduce the concept of a parallelizable spatial/spectral pattern
(PSSP), which is defined as the maximum amount of information that the parallel
system can process without the need for additional communication and/or coordina-
tion between processors [24]. Such patterns are automatically generated by a spatial
domain partitioning (SDP) module.

Figure 8.3 describes the partitioning framework using two computing units. In the
example, the SDP divides the image into two PSSPs. The values of the MEI index for
two pixels of the original hyperspectral image are calculated in parallel by each of the
processors, using a square-shaped SE of 3 × 3 pixels. Such values are then updated
in a local 2-D image. At the end of the process, the SDP integrates the various local
images, obtaining a resulting 2-D image that is used as a baseline to extract a final set of
endmembers, which lead to a final classification result. An issue of major importance
in the design of SE-based parallel image processing applications is the possibility of
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Figure 8.3 Concept of parallelizable spatial/spectral pattern (PSSP) and proposed
partitioning scheme.

accessing pixels out of the spatial domain of the partition available in the processor.
This is normally managed by a determined border-handling strategy. In our parallel
implementation, two such strategies have been implemented, as described below:

� Border-handling strategy relative to the pixels out of the domain of the original
image. This strategy is necessary in the situation illustrated in Figure 8.4. In
this case, only the pixels of the SE that fall inside the image domain are used
for the MEI computation. This strategy is similar to the mirroring technique
commonly used in kernel-based image processing applications.

MEI

3 × 3 SE

MEIjPSSPj

Figure 8.4 Problem of accessing pixels outside the image domain.
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Figure 8.5 Additional communications required when the SE is located around a
pixel in the border of a PSSP.

� Border-handling strategy relative to the pixels out of the domain of the PSSP.
This strategy is applied when the pixel located in a remote processor is re-
quired in the calculation of the MEI index associated with another pixel in a
given processor (see Figure 8.5). To resolve this issue, we introduce redundant
computations to minimize the communication/coordination between proces-
sors. In other words, we replicate the information necessary to avoid border
effects between different processors, as shown in Figure 8.6.

According to our experiments [11], the cost of processing the information re-
sulting from the procedure above is sensibly inferior to dealing with the overhead

PSSP2
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Overlapping Scatter

for a 3 × 3-pixel SE

Original Image

SDP with

Overlapping

Figure 8.6 Border-handling strategy relative to pixels in the border of a PSSP.
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introduced by communication among different processors if no redundant informa-
tion is introduced in the system. Given the characteristics of the AMC algorithm,
which relies on the utilization of an SE of 3 × 3 pixels iteratively, the number of
redundant pixels pR introduced in the processing of a hyperspectral image is given
by pR = 2 × [(2� log2 N

2 �t) − 1] × IR + 2 × [(2	 log2 N
2 
) − 1] × IC , where N is the number

of processors, IR is the number of rows in the original image, and IC is the number
of columns in the original image.

All the algorithms in this section have been implemented in the C++ programming
language, using calls to a message passing interface (MPI). Specifically, we used the
MPICH-1.2.5 version due the demonstrated flexibility of this version in order to
migrate the code to different parallel architectures, which increases code reusability
and portability.

8.5.2 Parallelization of Automated Morphological Classification (AMC)
Algorithm for Heterogeneous Clusters

As has been mentioned before, spatial/spectral morphological algorithms are partic-
ularly suitable for being implemented on heterogeneous architectures. Our efforts in
this area have been directed toward the minimization of the execution time of the al-
gorithms in order to provide (near) real-time responses. To describe and calculate the
optimal data partitioning and the best data communication scheme for heterogeneous
networks of computers, we resort to the HeteroMPI [2] library.

The first step to accomplish the HeteroMPI-based implementation is to define a
performance model that is able to capture the data partitioning and communication
framework for the heterogeneous platform [24]. Listing 1 shows the most important
fragments of the code that describes the adopted performance model, which has six
input parameters. Specifically, parameter m specifies the number samples of the data
cube, while parameter n specifies the number of lines. Parameters se size and iter
respectively denote the size of the SE and the number of iterations executed by the
algorithm. Finally, parameters p and q indicate the dimensions of the computational
processor grid (in columns and rows, respectively) used to map the spatial coordinates
of the individual processors within the processor grid layout. Finally, parameter parti-
tion size is an array that indicates the size of the local PSSPs (calculated automatically
using the computing power of the heterogeneous processors).

It should be noted that some of the definitions have been removed from Listing 1
for simplicity. However, some of the most representative sections are included. The
coord section defines the mapping of individual abstract processors performing the
algorithm onto the grid layout using variables I and J . The node primitive defines
the amount of computations that will be made by every processor, which depends on
its spatial coordinates in the grid as indicated by I and J and the computing power of
the individual processors as indicated by partition size. Finally, the parent directive
indicates the spatial localization of the master processor in the grid. An additional
link section is used to define the individual communications that every processor
carries out based on its position in the grid. Further information on performance
model definition is available in [2].



Parallel Wildland Fire Monitoring and Tracking 167

Once a performance model for the parallel algorithm has been defined, implemen-
tation using the standard HeteroMPI is quite straightforward [26]. Listing 2 shows the
most interesting fragments of the HeteroMPI-based code of our parallel implemen-
tation. The HeteroMPI runtime system is initialized using operation HeteroMPI Init.
Then, operation HeteroMPI Recon updates the estimation of performances of pro-
cessors. This is followed by the creation of a group of processes using operation
HeteroMPI Group create. The members of this group then perform the computations
of the heterogeneous parallel algorithm using standard MPI mechanisms. This is
followed by freeing the group using operation HeteroMPI Group free and the final-
ization of the HeteroMPI run-time system using operation HeteroMPI Finalize. In the
code described above, the benchmark function used to measure the processing power
of the processors in HeteroMPI Recon is essential, mainly because a poor estima-
tion of the power and memory capacity of processors may result in load unbalancing
problems. In our implementation, the benchmark function is based on a simple 3 × 3
morphological computation to calculate the MEI index, as described in Figure 8.3.

Listing 1 Typical performance model for hyperspectral analysis algorithms.
algorithm hhaa rend(int m, int n, int i ter , int p, int q , int parti tion si ze[p ∗ q]) {

coord I = p, J = q;
node {I >= 0 && J >= 0: benchmark*(parti tion si ze[I ∗ q + J ]*i ter );};
parent[0, 0];

}

Listing 2 Parallel implementation of AMC algorithm with HeteroMPI directives
to calculate the load balance based on a benchmark function containing the core
computations of the method.

main(int argc, char *argv[]){
HeteroMPI Init(&argc,&argv);
If(HeteroMPI Is member(HMPI COMM WORLD GROUP)){

HeteroMPI Recon(benchmark function,dims,15,&output p);
}
HeteroMPI Group create(&gid,&MPC NetType hhaa rend,modelp,num param);
If(HeteroMPI Is free()){
HeteroMPI Group create(&gid,&MPC NetType hhaa rend,NULL,0);
}
if(HeteroMPI Is free()){
HeteroMPI Finalize(0);
}
If(HeteroMPI Is member(&gid)){
HeteroMPI Group performances(&gid,speeds);
//Calculations of the size and communications based on the obtained performance
//Definition of the best size and distribution of communications
Read image(name,image,lin,col,bands,data type,init);
for( i = Imax ; i > 1 ; i − − ){
AMC algorithm(image,lin,col,bands,sizeofB,res);
}
if(HeteroMPI Is member(&gid)){

free(image);
}
HeteroMPI Group free(&gid);
HeteroMPI Finalize(0);

}
}
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Figure 8.7 Partitioning options for the considered neural algorithm.

8.5.3 Parallelization of the SOM-based Classification Algorithm
for Homogeneous Clusters

In order to parallelize the SOM algorithm, we face similar problems to those already
addressed for the AMC algorithm in previous subsections. A straightforward approach
to parallelization of the neural algorithm is to simply replicate the whole neural
network architecture, which is a feasible approach due to the random nature of the
initial weights of the network. However, this option results in the need for very
complex rules of reduction, and integrity hazards.

Taking into account our previous studies [27] and considering the relatively small
size of the training set [28], we can state that the overhead of the neural network is
mainly located in the training process (in the form of Euclidean distance calculations
and adjustment of weight factors). This fact makes partitioning of the neural network
(weight factors matrix) an appealing solution in order to reduce the processing load
and time. Again, two main alternatives can be adopted to carry out such partitioning:
(1) division by input neurons (endmembers/training patterns); or (2) division by output
neurons (class prototypes). The two options are simply illustrated in Figure 8.7.

It should be noted that, in the latter case, the parallelization strategy is very simple.
Quite opposite, when the former approach is adopted, there is a need to communicate
both calculations and intermediate results among different processors. This introduces
an overhead in communications that may significantly slow down the algorithm:
According to our preliminary experiments, this option could even result in worse
results than those found by the sequential version of the algorithm. On the other hand,
the partitioning scheme based on dividing by class prototype only introduces a minor
communication overhead, i.e., that created by the need to obtain the winner class.
To do so, a protocol similar to log2 N synchronizing barriers is adopted. Also, there
is a need to introduce a broadcast/all-reduce protocol to obtain the class prototype
through local minimum calculations in a batch SOM processing way.

The winner neuron for each pattern needs to be tailored, and subsequent mod-
ifications for the weighting factor need to be stored for later addition/subtraction.
This approach also allows us to directly obtain the winner neuron at each iteration
without the need for any further calculations. It also facilitates a more pleasingly
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parallel solution, aimed at taking full advantage of the processing power available in
the considered parallel architecture while minimizing the communication overhead.

At this point, we must emphasize that the proposed scheme still introduces the need
to replicate calculations in order to reduce communications, as was the case with the
AMC algorithm. However, the amount of replicated data is limited to the presence of
the complete training pattern set at each processor, along with administrative informa-
tion, i.e., which processor holds the winner neuron, which processor holds the neurons
in the neighborhood of the winner neuron, etc. Such administrative information can
be used to reduce the communication overhead even further. For instance, using the
above information, we consider two implementations of the neighborhood modifica-
tion function σ (t ′), where the first one is applied when a node is in the neighborhood of
the winner neuron and the second is considered when the node is outside the domain
of that processor. To assess the integrity of the considered neighborhood function, a
look-up table is locally created at each processor so that the value of σ (t) is stored
for every pair of neurons. While in the present work the function selected is gaussian,

i.e., σ (t) = e
‖i∗−i‖

t , other neighborhood functions may also be considered [8].
In any regard, we emphasize that when the neighborhood function is applied to

the processor that holds the winner neuron, it is used in a traditional way. On the
contrary, when the function is applied to other processors, a modified version is
implemented to average the distances with all possible winners. There are two main
reasons for this decision: (1) First and foremost, this approach significantly reduces
the amount of communications; and (2) it represents a more meaningful and robust
neighborhood function [6]. As a final major remark, we must point out that our
MPI-based implementation makes use of blocking primities, thus ensuring that all
processors are synchronized and preventing integrity problems in the calculations
with the matrices of weights WM×N .

8.6 Architectural Outline of an Advanced System for
Management of Wildland Fires Using Hyperspectral Imagery

In the present section, we outline the system proposed for the surveillance and man-
agement of wildland fires. This system is built on the algorithms and models described
in Sections 8.4 and 8.5, and also on the mathematical model for characterization of
wildland fires described in Section 8.3. Figure 8.8 provides a flowchart of the proposed
design, in which each processing component and the interconnections between them
are displayed. It can be seen that the first stage of the flowchart is the extraction of the
endmembers of the image that are to be used, first, as inputs to the linear unmixing
process; second, as relevant spectra of the classes available on the scene; and, finally,
as input of the classification stage that will provide the distribution of fuels, along
with any other elements present in the image. The spectra obtained can be compared
with information about laboratory and field measurements of specimens (bulk density,
humidity, etc.) available in the database. The database gives relevant characteristics
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Figure 8.8 Functional diagram of the system design model.

of the vegetation that allows one to change the statical nature of the fuel models, thus
providing the mathematical model with more precise data, and increasing its accuracy.

After this stage, the set of endmembers obtained used as a learning pattern for the
neural network-based linear unmixing algorithm. In this particular case, we propose
the use of a Hopfield neural network to perform the unmixing [6]. This stage will
provide the abundance fractions of each endmember at each pixel in the image. In the
system, these abundances indicate the precise distribution of fuels inside each pixel
in the scene (i.e., mixture of fuelbeds, different stages of senescence for a plant, etc.).
These abundances, combined with the experimental laboratory data adjusted to the
actual conditions in the studied area, provide us with knowledge to define a particular
fire risk index. These abundances may also be combined with distribution maps
(such as those produced by the proposed SOM-based classifier), giving important
information for the mathematical models to operate.

The model can be improved for realistic modeling of the behavior of the fire
by additional information sources; i.e., the slope factor can be calculated using a
digital elevation model (DEM) of the area, the wind factor can be obtained from
meteorological measures, etc. Further, we emphasize that the proposed system adopts
a component-based approach, in which each module can be replaced with different
algorithms or enhanced versions, thus providing greater flexibility and accuracy on
the particular results obtained.

In the following, we introduce the computational resources in which the proposed
system can be implemented, including homogeneous platforms, heterogeneous plat-
forms, and specialized programmable hardware, listing the advantages and disadvan-
tages of each considered architecture from the viewpoint of their incorporation to the
system.
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8.6.1 Homogeneous Parallel Platforms

Homogeneous resources are the most widely used high-performance computer archi-
tectures. In this category, we can include architectures with shared memory multipro-
cessors (SMPs), vector processors, and homogeneous clusters.

� Vector Processors. The vector processor provides a single control flow with
serially executed instructions operating on both vector and scalar operands.
The parallelism of this architecture is at the instruction level [2].� Shared Memory Multiprocessors (SMPs). The shared memory multiprocessor
architecture consists of a number of identical processors sharing a global main
memory. In general, the processors of an SMP computer framework are of the
vector or superscalar architecture [2].� Homogeneous Clusters. A computer system of the distributed memory multi-
processor architecture consists of a number of identical processors not shar-
ing global main memory and interconnected via a communication network.
The architecture is also called the massively parallel processors (MPP)
architecture [2].

In our opinion, the main advantages of homogeneous resources from the viewpoint
of their incorporation to a remote sensing data processing system are

� Regularity of computations in the processing and data access leads to a better
understanding for new users.� In the case of vector processors, if the size of the vector register is greater than
or equal to the number of bands of the spectral signature, one can achive a very
good speedup.� Due to computer market sales and trends, it is common to buy a large number
of computers, making homogeneous clusters a reasonable solution for high-
performance computing on a large scale.� Homogeneous platforms often allow abstractions from more complex questions
(most of them at a hardware level), and allow the programmer to concentrate
only on the development of applications.

On the other hand, we believe that the main drawbacks of homogeneous platforms
for their incorporation to a remote sensing data processing development are

� The SMP and vector processors architectures tend to be very expensive and
closed solutions for high-performance computing.� Due to the price of supercomputers, they are usually only available in large
computing facilities.� The large size of hyperspectral data forces the allocation of great amounts of
data, and a bad partitioning policy may result in too many cache misses and
inefficient memory usage.
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8.6.2 Heterogenous Parallel Platforms

New research trends in high-performance computing tend to the use of heterogeneous
computing resources, such as heterogeneous networks and Grid architectures, covered
extensively in subsequent chapters of this volume. In the following, we outline the
platforms that could be integrated in our proposed system.

� Heterogeneous networks of computers (HNOCs). With the commercial avail-
ability of networking hardware, it soon became obvious that networked groups
of machines distributed among different locations could be used together by
one single parallel remote sensing code as a distributed-memory machine. As a
result, HNOCs have now become a very popular tool for distributed computing
with essentially unbounded sets of machines, in which the number and location
of machines may not be explicitly known.� Grid architectures. The grid is a new class of infrastructure. By providing scal-
able, secure, high-performance mechanisms for discovering and negotiating ac-
cess to remote resources, the grid promises to make it possible for scientific col-
laborations to share resources on an unprecedented scale, and for geographically
distributed groups to work together in ways that were previously impossible.

In our opinion, the main advantages of heterogeneous platforms for their incorpo-
ration to a remote sensing data processing system are

� Distribution of data based on availability processing power, which produce a
better utilization of the resources in terms of usage and accessibility for different
users.� Greater supercomputing structures with different functionalities can be created
with the use of grid infrastructure, allowing the interconnection of systems
geographically distributed and the sharing of functionalities, databases, etc.� Due to the inclusion of some homogeneous resources, even in the case of having
them distributed in several centers or laboratories, one can still make use of the
advantages indicated for homogeneous resources locally.

The main disadvantages of this platforms in the context of our considered applica-
tion are, in our opinion

� The cost is still an issue, even though reusability of components allows inte-
gration of existing resources.� There is a deep need for knowledge of compilers and libraries, although access
to large computing infrastructures is often provided at a high level.� The control of load balance and correct communication between several con-
figurations is, in some situations, not fully defined and correctly exploited by
general-purpose libraries, which forces the developers to explicitly expose the
parallelism through compiler directives.� The programming paradigms are generally more complex.
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These architectures are especially indicated for embarrassingly parallel applica-
tions, which need great processing power and small communication, allowing data
scattering in terms of availability of processing resources. This is indeed the case
for the AMC, ATGP, and SOM algorithms described in Section 8.5 and also for the
mathematical model in Section 8.6.

8.6.3 Programmable Hardware

To conclude this section, we emphasize the importance of specialized hardware for
onboard processing as part of any integrated system for remote sensing data analysis.
By means of onboard processing, one can drastically reduce the size of the data to be
communicated by means of compression (e.g., for real-time surveillance).

In order to consider the design of a specialized electronic system for remote sensing
data processing, there are several possibilities for implementation, each with their
own advantages and disadvantages in terms of cost, flexibility, performance, and
complexity. On the one hand, the best performance is usually given by full-custom
designs. On the other hand, semi-custom designs based on programmable hardware
provide a very good compromise in terms of cost-performance ratio. Examples include
field-programmable gate arrays (FPGAs) and graphics processing units (GPUs). The
application of these specialized hardware platforms for remote sensing data analysis
are extensively covered in several chapters of the present volume and therefore are
out of the scope of this chapter.

8.7 Experimental Results

In the present section, we illustrate the classification accuracy and parallel perfor-
mance of the parallel algorithms described in Section 8.5. First, a brief overview
of the parallel architectures used in this study is provided. Then, performance data
for the parallel algorithm are given and discussed in light of realistic hyperspectral
imaging applications.

8.7.1 Parallel Computer Architectures

Two parallel computers have been used to evaluate the computational performance of
the morphological algorithm proposed. The first parallel computer used in the study is
a Beowulf-type cluster called Thunderhead, located at NASA’s Goddard Space Flight
Center in Maryland (a detailed system description is available at http://thunderhead.
gsfc.nasa.gov). The second architecture used for experiments is available at the Het-
erogeneous Computing Laboratory (HCL), University College Dublin (UCD). This
heterogeneous cluster is composed of 16 heterogeneous nodes of two types (Xeon
and CSUltra), running Fedora Core Linux and Sun Os operating systems. The MPI
implementation is MPICH-1.2.5 with the HeteroMPI library installed. The nodes
are interconnected via a 100 Mbit Ethernet communication network with a switch
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enabling parallel communication among the processors. Although this is a simple
configuration, it is also a quite typical and realistic heterogeneous platform as well.

8.7.2 Hyperspectral Data Sets

The hyperspectral scene used for the experiments in this chapter was collected by the
NASA Jet Propulsion Laboratory Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) sensor and is characterized by very high spectral resolution (1939×614 pix-
els with 224 narrow spectral bands in the range 0.4μm−2.5μm and moderate spatial
resolution 20-m pixels). It was gathered over the Indian Pines test site in Northwestern
Indiana, a mixed agricultural/forested area, early in the growing season.

The data set represents a very challenging classification problem. The primary
crops of the area, mainly corn and soybeans, were very early in their growth cy-
cle with only about 5% canopy cover. This fact makes most of the scene pixels
highly mixed in nature. Discriminating among the major crops under these cir-
cumstances can be very difficult, a fact that has made this scene a universal and
extensively used benchmark to validate classification accuracy of hyperspectral imag-
ing algorithms [29]. Figure 8.9 shows the spectral band at 587 nm of the orig-
inal scene. Part of these data, including ground-truth, are available online (from
http://dynamo.ecn.purdue.edu/b̃iehl/MultiSpec). Apart from the availability of de-
tailed ground-truth information, we have particularly selected this scene because it
contains several agricultural classes at different stages of growth and senescence and
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Corn-CleanTill-EW
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Corn-MinTill-EW
Corn-MinTill-NS
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Corn-NoTill-EW
Corn-NoTill-NS
Fescue
Grass
Grass/Trees
Grass/Pasture-mowed
Grass/Pasture
Grass-runway
Hay
Hay?
Hay-Alfalfa
Lake
NotCropped
Oats

Figure 8.9 (Left) Spectral band at 587 nm wavelength of an AVIRIS scene com-
prising agricultural and forest features at Indian Pines, Indiana. (Right) Ground-truth
map with 30 mutually exclusive land-cover classes.
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with variable water content, which makes it a perfect scenario for testing the ability
of the algorithms presented in this chapter in the task of generating accurate biomass
fuel maps.

8.7.3 Performance Evaluation

Before analyzing its parallel performance, we first briefly discuss the classification
accuracy obtained by the AMC algorithm with the different ground-truth classes
available for the AVIRIS Indian Pines scene. For this purpose, Table 8.1 shows the

TABLE 8.1 Classification Accuracy Obtained by the
Proposed Parallel AMC Algorithm for Each Ground-Truth
Class in the AVIRIS Indian Pines Data

Class Classification Accuracy (%)

BareSoil 98.05
Buildings 30.43
Concrete/Asphalt 96.24
Corn 99.37
Corn? 86.77
Corn-EW 37.01
Corn-NS 91.50
Corn-CleanTill 65.39
Corn-CleanTill-EW 69.88
Corn-CleanTill-NS 71.64
Corn-CleanTill-NS-Irrigated 60.91
Corn-CleanTilled-NS 70.27
Corn-MinTill 79.71
Corn-MinTill-EW 65.51
Corn-MinTill-NS 69.57
Corn-NoTill 87.20
Corn-NoTill-EW 91.25
Corn-NoTill-NS 44.64
Fescue 42.37
Grass 70.15
Grass/Trees 51.30
Grass/Pasture-mowed 79.87
Grass/Pasture 66.40
Grass-runway 60.53
Hay 62.13
Hay? 61.98
Hay-Alfalfa 83.35
Lake 83.41
NotCropped 99.20
Oats 78.04
Road 86.60
Woods 88.89

Overall: 72.35
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Figure 8.10 Speedups achieved by the parallel AMC algorithm using a limited
number of processors on Thunderhead.

overall and individual classification accuracies (in percentages) achieved by the pro-
posed parallel AMC algorithm, using a 3 × 3 structuring element for the construction
of morphological operations and IM AX = 7 algorithm iterations (the classification
accuracies obtained for less iterations were lower).

As shown by Table 8.1, the lowest classification accuracies were reported for the
buildings class, due to the presence of mixed pixels in this area as a result of the
coarse spatial resolution of the scene, and for some of the corn classes due to the early
growth stage of the crops in these areas, which also results in heavily mixed pixels.
Quite opposite, very high classification accuracies were reported for macroscopically
pure classes such as BareSoil, Concrete/Asphalt, and Woods. The measured overall
accuracy of 72.35% is a very good classification result given the extremely high
complexity of the data set, as reported in previous studies [15]. In addition, Table 8.1
also reveals that the results obtained are sufficient to meet the requirements of the
system proposed in terms of accuracy, for the generation of biomass maps, and the
capacity to discriminate between several vegetation canopies at different stages of
growth and senescence.

Figure 8.10 shows the speedup achieved by the parallel AMC algorithm using a lim-
ited number of processors on Thunderhead. As we can see in the figure, the speedups
achieved were better when the number of iterations (parameter IM AX ) were increased,
thus revealing that the algorithm scales better when the amount of data to be processed
is higher. On the other hand, Figure 8.11(a)–(b) reports the speedup and parallel ef-
ficiency achieved by the first three steps of the AMC algorithm (which extract the
most relevant endmembers from the Indian Pines scene), using much larger numbers
of processors on the Thunderhead system. As we can see, the speedup and parallel
efficiency were better when the number of iterations (parameter IM AX ) was increased,
thus revealing that the algorithm scales better when the amount of data to be processed
is higher. On the other hand, Figure 8.11(c) and (d) illustrates the performance of the
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Figure 8.11 Speedups achieved by the parallel SOM-based classification algorithm
(using endmembers produced by the first three steps of the AMC algorithm) using a
large number of processors on Thunderhead.

parallel SOM-based classification stage (only a maximum of four Thunderhead pro-
cessors were required to complete all calculations), which also scales well and even
results in super-linear scalability. Finally, Figure 8.12 shows performance results for
a straightforward master-slave parallelization of the ATGP algorithm, in which the
data one partitioned and processed locally at each worker and the targets identified
locally at each processor are gathered at the master processor. This implementation
suffers from unbalanced communications, which lead to low speedups. Here, the lack
of an appropriate benchmark function for dynamic distributions may also be an issue
affecting parallel performance.

In order to illustrate the performance of our proposed HeteroMPI-based implemen-
tation of the AMC algorithm on the HCL heterogeneous cluster at UCD, Table 8.2
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Figure 8.12 Speedups achieved by the parallel ATGP algorithm using a limited
number of processors on Thunderhead.

shows the execution times obtained for each heterogeneous processor. The process-
ing times reported in Table 8.2 are well balanced as indicated by Table 8.3, which
shows the minima (tmin) and maxima (tmax ) processing times (in seconds) and the
load imbalance (defined as R = tmax

tmin
).

To conclude this chapter, we provide a preliminary evaluation (in terms of elapsed
time) of the different stages in order to evaluate the global response time that we expect
for our proposed fire tracking/surveillance system. We emphasize that the fire model
used in our experimentation is the one available in the Firelib software package [22],

TABLE 8.2 Execution Times (Seconds) of the HeteroMPI-Based
Parallel Version of AMC Algorithm on the Different Heterogeneous
Processors of the HCL Cluster

IM AX 1 2 3 4 5 6 7

0 45.37 92.81 135.15 180.23 226.41 266.37 311.95
1 43.31 92.63 135.42 180.15 225.79 279.03 315.19
2 46.84 92.15 134.23 178.81 226.79 272.02 314.95
3 45.73 92.16 139.06 185.82 226.41 271.77 329.92
4 45.55 92.79 137.15 184.96 221.29 265.24 318.17
5 44.93 93.65 135.11 185.14 224.56 274.07 323.19
6 46.86 90.55 135.79 180.23 228.80 278.85 315.95
7 46.38 91.82 137.82 187.15 229.43 274.45 325.80
8 54.57 107.41 161.06 204.08 268.01 314.47 357.69
9 54.90 108.67 158.50 201.71 266.86 315.72 350.59

10 54.43 105.76 158.10 201.46 262.69 315.14 356.83
11 53.28 105.94 158.48 199.51 262.71 315.30 349.34
12 52.49 106.81 157.97 198.88 259.77 311.86 346.56
13 49.98 102.27 158.63 193.45 257.12 308.38 347.03
14 50.10 87.64 158.68 196.05 250.73 308.77 328.95
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TABLE 8.3 Minima (tmin) and Maxima (tmax ) Processor Run-Times
(In Seconds) and Load Imbalance (R) of the Heterompi-Based
Implementation of AMC Algorithm on the HCL Cluster

IM AX 2 3 4 5 6 7

tmax 54.90 108.67 161.06 204.08 268.01 315.72 357.69
tmin 43.31 87.64 134.23 178.81 221.29 265.24 311.95
R = tmax

tmin
1.26 1.23 1.19 1.14 1.21 1.19 1.13

with the inclusion of the results from previous hyperspectral analysis stages in order
to refine and complement the static nature of the method.

Specifically, the execution of the Firelib software [22] (software based on the
Rothermel model described in Section 8.6) resulted in an average elapsed time of
60 seconds for an image grid of a size similar to the hyperspectral scene considered
in Figure 8.9. The execution time for the parallel AMC method is 18 seconds when
256 processors are used on Thunderhead (it should be noted that the HeteroMPI-
based version of AMC took 358 seconds to be executed on the HCL heterogeneous
cluster with 16 processors). On the other hand, the proposed parallel SOM-based
classification algorithm resulted in an execution time of 560 seconds on Thunderhead.
This algorithm employs the endmembers provided by the parallel AMC algorithm
as input. Therefore, the estimated execution time of the whole system (including the
parallel version of Firelib and the combined AMC/SOM classification), which would
be able to accurately characterize the fire risk, is around 660 seconds. This response
time can be further reduced by incorporating specialized hardware implementations
of AMC and SOM on GPUs and reconfigurable hardware architectures, as indicated
by subsequent chapters.

8.8 Conclusions

In this chapter, we have outlined the preliminary design of a fire tracking/surveillance
system based on the integration of remotely sensed hyperspectral imagery and ad-
vanced processing algorithms implemented on a parallel computing infrastructure.
The system is inspired by semi-empirical fire models such as the one proposed by
Rothermel. In particular, this chapter conducts a preliminary evaluation on how the
proposed parallel processing algorithms can be used to transform the (generally) static
nature of fire models into a more dynamic framework, able to incorporate features that
are highly relevant to characterize the evolution of wildland fires, such as automatic
characterization of water content and distribution of biomass using spectral mixture
analysis techniques. Further, we evaluated the performance of the proposed parallel
algorithms using high-performance architectures such as homogeneous and heteroge-
neous supercomputers, and also studied their scalability and parallel efficiency from
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a computational standpoint. From our experimental assessment, we conclude that the
strong real-time restrictions required for a complex system of this kind are still sub-
ject to future developments and investigations. Our future research will be directed
toward the optimization of the parallel algorithms proposed in this chapter for more
efficient execution on distributed platforms and specialized hardware architectures.
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This chapter introduces fundamental concepts for grid computing, Web services,
and service-oriented architectures. We briefly discuss the drawbacks of previous ap-
proaches to distributed computing and how they are addressed by service architectures.
After presenting the basic service architecture components, we discuss current Web
service implementations, and how grid services are built on top of them to enable the
design, deployment, and management of large, distributed systems. After discussing
best practices and emerging standards for grid infrastructure, we also discuss some
end-user tools. We conclude with a short review of some scientific grid projects whose
science goals are directly relevant to remote sensing.
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9.1 Introduction

The concept of distributed computing has been around since the development of net-
works and many computers could interact. The current notion of grid computing,
however, as a field of distributed computing, has been enabled by the pervasive avail-
ability of these devices and the resources they represent. In much the same way that
the World Wide Web has made it easy to distribute Web content, even to PDAs and
cell phones, and engage in user-oriented interactions, grid computing endeavors to
make distributed computing resources easy to utilize for the spectrum of application
domains [26].

Managing distributed resources for any computational purpose, however, is much
more difficult than simply serving Web content. In general, grids and grid users
require information and monitoring services to know what machines are available,
what current loads are, and where faults have occurred. Grids also require scheduling
capabilities, job submission tools, support for data movement between sites, and
notification for job status and results. When managing sets of resources, the user may
need workflow management tools. When managing such tasks across administrative
domains, a strong security model is critical to authenticate user identities and enforce
authorization policies.

With such fundamental capabilities in place, it is possible to support many different
styles of distributed computing. Data grids will be used to manage access to massive
data stores. Compute grids will connect supercomputing installations to allow cou-
pled scientific models to be run. Task farming systems, such as SETI@Home [29],
and Entropia [9], will be able to transparently distribute independent tasks across
thousands of hosts. Supercomputers and databases will be integrated with cell phones
to allow seamless interaction.

This level of managed resource sharing will enable resource virtualization. That
is to say, computing tasks and computing resources will not have to be hard-wired
in a fixed configuration to fixed machines to support a particular computing goal.
Such flexibility will also support the dynamic construction of groups of resources and
institutions into virtual organizations.

This flexibility and wide applicability to the scientific computing domain means
that grids have clear relevance to remote sensing applications. From a computational
viewpoint, remote sensing could have a broad interpretation to mean both on-orbit
sensors that are remote from the natural phenomena being measured, and in-situ
sensors that could be in a sensor web. In both cases, the sensors are remote from the
main computational infrastructure that is used to acquire, disseminate, process, and
understand the data.

This chapter seeks to introduce grid computing technology in preparation for the
chapters to follow. We will briefly review previous approaches to distributed com-
puting before introducing the concept of service architectures. We then introduce
current Web and grid service standards, along with some end-user tools for building
grid applications. This is followed by a short survey of current grid infrastructure and
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science projects relevant to remote sensing. We conclude with a discussion of future
directions.

9.2 Previous Approaches

The origins of the current grid computing approach can be traced to the late 1980’s
and early 1990’s and the tremendous amounts of research being done on parallel
programming and distributed systems. Parallel computers in a variety of architectures
had become commercially available, and networking hardware and software were
becoming more widely deployed. To effectively program these new parallel machines,
a long list of parallel programming languages and tools were being developed and
evaluated to support both shared-memory and distributed-memory machines [30].
With the commercial availability of networking hardware, it soon became obvious
that networked groups of machines could be used together by one parallel code as a
distributed-memory machine. NOWs (network of workstations) became widely used
for parallel computation. Such efforts gave rise to the notion of cluster computing,
where commodity processors are connected with commodity networks. Dedicated
networks with private IP addresses are used to support parallel communication, access
to files, and booting the operating system on all cluster nodes from a single OS “image”
file. A special, front-end machine typically provides the public interface.

Of course, networks were originally designed and built to connect heterogeneous
sets of machines. Indeed, the field of distributed computing deals with essentially
unbounded sets of machines where the number and location of machines may not
be explicitly known. This is, in fact, a fundamental difference between clusters and
grids, as a distributed computing infrastructure. In a cluster, the number and location
of nodes are known and relatively fixed, whereas in a grid, this information may be
relatively dynamic and have to be discovered at run-time. Indeed, early distributed
computing focused on basic capabilities such as algorithms for consensus, synchro-
nization, and distributed termination detection, using whatever programming models
were available.

At that time, systems such as the Distributed Computing Environment (DCE) [44]
were built to facilitate the use of groups of machines, albeit in relatively static, well-
defined, closed configurations. DCE used the notion of cells of machines in which
users could run codes. Different mechanisms were used for inter-cell and intra-cell
communication.

The Common Object Request Broker Architecture (CORBA) managed distributed
systems by providing an object-oriented, client-side API that could access other ob-
jects through an Object Request Broker (ORB) [43]. CORBA is genuinely object-
oriented and supports the key object-oriented properties such as encapsulation of state,
inheritance, and methods that separate interfaces from implementations. To manage
interfaces, CORBA used the notion of an Interface Definition Language (IDL), which
could be used to produce stubs and skeletons. To use a remote object, a client would
have to compile-in the required stub. If an object interface changed, the client would
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have to be recompiled. Interoperability was not initially considered by the CORBA
standards and many vendor ORBs were not compatible. Hence, deploying a distributed
system of any size required deploying the same ORB everywhere. Interoperability
was eventually addressed by the Internet Inter-ORB Protocol (IIOP) [42].

While CORBA provided novel capabilities at the time, some people argued that
the CORBA paradigm was not sufficiently loosely coupled to manage open-ended
distributed systems. Interfaces were brittle, vendor ORBs were non-interoperable,
and no real distinction was made between objects and object instances.

At roughly the same time, the term metacomputing was being used to describe the
use of aggregate computing resources to address application requirements. Research
projects such as Globus [38], Legion [41], Condor [33], and UNICORE [46] were
underway and beginning to provide initial capabilities using ‘home-grown’ imple-
mentations. The Globus user, for instance, could use the Globus Monitoring and Dis-
covery Service (MDS) to find appropriate hosts. The Globus Resource Access Manager
(GRAM) client would then contact the Gatekeeper to do authentication, and request
the local job manager to allocate and create the desired process. The Globus Access to
Secondary Storage (GASS) (now deprecated) could be used to read remote files. Even-
tually the term metacomputing was replaced by grid computing by way of the analogy
with the electrical power grid, where power is available everywhere on demand.

While these early grid systems also provided novel capabilities, they nonetheless
had design issues, too. Running a grid task using Globus was still oriented toward
running a pre-staged binary identified by a known path name. Legion imposed an
object model on all aspects of the system and applications regardless of whether it
was necessary or not. The experience gained with these systems, however, was useful
since they generated widespread interest and motivated further development.

9.3 The Service-Oriented Architecture Concept

With the rapid growth of interest in grid computing, it quickly became clear that
the most widely supported models and best practices needed to be standardized. The
lessons learned from these earlier approaches to distributed computing motivated the
adoption and development of even more loosely coupled models that required even
less a priori information about the computing environment. This approach is generally
called service-oriented architectures. The fundamental notion is that hosts interact
via services that can be dynamically discovered at run-time.

Of course, this requires some conventions and at least one well-known service
to enable the discovery process. This is illustrated in Figure 9.1. First, an available
service must register itself with a well-known registry service. A client can then query
the registry to find appropriate services that match the desired criteria. One or more
service handles are returned to the client, which may select among them. The service
is then invoked with any necessary input data and the results are eventually returned.
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Figure 9.1 The service architecture concept.

This fundamental interaction identifies several key components that must all be
clearly defined to make this all work:

� Representation. Service-related network messages and services must observe
some common, base-level representation. In many cases, the eXtensible Markup
Language (XML) is used.� Transport Protocol. A network transport protocol is necessary for simply
transferring service-related messages between the source and destination.� Interaction Protocol. Each service invocation must observe a protocol where-
by the requester makes the request, the service acknowledges the request, and
eventually returns the results, assuming no failures occur.� Service Description. For each service that is available, there needs to be an
on-line service description that captures all relevant properties of the service,
e.g., the service name, what input data are required, what type of output data
is produced, the running time, the service cost, etc.� Service Discovery. In a loosely coupled, open-ended environment, it is unten-
able that every client must know a priori of every service it needs to use. Both
client and service hosts may change for a variety of reasons, and being able to
automatically discover and reconfigure the interactions is a key capability.

The clear benefit of this architectural concept is that service selection, location, and
execution do not have to be hard-wired. The proper representations, descriptions, and
protocols enable services to be potentially hosted in multiple locations, discovered
and utilized as necessary. Service discovery enables a system to improve flexibility
and fault tolerance by dynamically finding service providers when necessary. Of
course, a service does not have to be looked up every time it is used. Once discovered,
a service handle could be cached and used many times. It is also possible to compose
multiple services into a single, larger, composite service.

Another extremely important concept is that service architectures enable the man-
agement of shared resources. We use the term resource, in its most general sense,
to mean all manners of machines, processes, networks, bandwidth, routing, files,
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data, databases, instruments, sensors, signals, events, subsystems comprised of sets
of resources, etc. Such resources can be made accessible as services in a distributed
environment, which also means they can be shared among multiple clients. With mul-
tiple clients potentially competing for a shared resource, there must be well-defined
security models and policies in place to establish client identity and determine who,
for example, gets to use certain machines, what services or processes they can run
there, who gets to read/write databases containing sensitive information, who gets
notified about available information, etc.

Being able to manage shared resources means that we can virtualize those resources.
Systems that are ‘stovepiped’ essentially have system functions that are all hard-wired
to specific machines, and the interactions among those machines are also hard-wired.
Hence, it is very difficult to modify or extend those systems to interact, or interoperate,
with systems that they were not designed for. If specific system functions are not
hard-wired to certain machines, and can be scheduled on different hosts while still
functioning within the larger system, we have virtualized that system function. Hence,
if system functions are addressed by logical name, they can be used regardless of what
physical machine they are running on.

Note that data can also be virtualized. Data storage systems can become ‘global’
if the file name space is mapped across multiple physical locations. Again, by using
a logical name, a file can be read or written without the client having to know where
the file is physically stored. In fact, files could be striped or replicated across multiple
locations to enable improved performance and reliability.

9.4 Current Approaches

This tremendous flexibility of virtualization is enabled by the notion of a service
architecture, which is clearly embodied by design in Web services. As we shall see,
each of the key components are represented. While the basic Web services stack
provides the fundamental mechanism for discovery and client-server interaction, there
are many larger issues associated with managing sets of distributed resources that are
not addressed. Such distributed resource management, however, was the original focus
of grid computing to support large-scale scientific computations. After introducing
the Web services stack, we shall look at how grid services build on top of them, and
some of the current and emerging end-user grid tools.

9.4.1 Web Services

Web services are not to be confused with Web pages, Web forms, or using a Web
browser. Web services essentially define how a client and service can interact with a
minimum of a priori information. The following Web service standards provide the
necessary key capabilities [47]:

� XML (eXtensible Markup Language). XML is a common representation
using content-oriented markup symbols that has gained wide-spread use in
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many applications. Besides providing basic structuring for attribute values,
XML namespaces and schemas can be defined for specific applications.� HTTP (Hyper Text Transport Protocol). HTTP is the transport protocol
developed for the World Wide Web to move structured data from point A to B.
While its use for Web services is not mandatory, it is nonetheless widely used.� SOAP (Simple Object Access Protocol). SOAP provides a request-reply in-
teraction protocol with an XML-based message format. At the top level, SOAP
messages consist of an envelope with delivery information, a header, and a
message body with processing instructions. (We note that while SOAP was
originally an acronym, it no longer is since technically it is not used for
objects.)� WSDL (Web Services Description Language). WSDL provides an XML-
based service interface description format for interfaces, attributes, and other
properties.� UDDI (Universal Description, Discovery and Integration). UDDI provides
a platform-independent framework for publishing and discovering services. A
WSDL service description may be published as part of a service’s registration
that is provided to the client upon look-up.

9.4.2 Grid Architectures

While Web services were originally motivated to provide basic client-server discovery
and interaction, grids were originally motivated by the need to manage groups of
machines for scientific computation. Hence, from the beginning, the grid community
was concerned about issues such as the scheduling of resources, advance reservations
(scheduling resources ahead of time), co-scheduling (scheduling sets of resources),
workflow management, virtual organizations, and a distributed security model to
manage access across multiple administrative domains. Since scientific computing
was the primary motivation, there was also an emphasis on high performance and
managing massive data.

With the rapid emergence of Web services to address simple interactions in support
of e-commerce, however, it quickly became evident that they would provide a widely
accepted, standardized infrastructure on which to build. What Web services did not
initially address adequately, however, was state management, lifetime management,
and notification.

State management determines how data, i.e., state, are handled across successive
service invocations. Clearly a client may need to have a sequence of related interac-
tions with a remote service. The results of any one particular service invocation may
depend on results from the previous invocations. This would suggest that, in general,
services may need to be stateful. However, a service may be servicing multiple clients
with separate invocation streams. Also, successive service invocations may, in fact,
involve the interaction of two different services in two different locations. Hence,
given these considerations, managing the context or session state separately from
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the service, such that the service itself is stateless rather than stateful, has distinct
advantages such as supporting workflow management and fault tolerance.

There are several design choices for how to go about this. A simple avenue is to
carry all session states on each service invocation message. This would allow services
to be stateless, enabling better fault tolerance because multiple servers could be used
since they don’t encapsulate any state. However, this approach is only reasonable
for applications with small data sets, such as simple e-commerce interactions. For
scientific applications where data sets may involve megabytes, gigabytes, or more,
this is simply not scalable.

Another approach is to use a service factory to create a transient service instance
that manages all states relevant to a particular client and invocation context. After the
initial call, a new service handle is returned to the client that is used for all subsequent
interactions with the transient service. While this approach may be somewhat more
scalable, it means that all data are hidden in the service instance.

WS-Context [48] is yet another approach where explicit context structures can be
defined that capture all relevant context and session information for a set of related
services and calls. While context structures can be passed by value (as part of a
message), they can also be referenced by a URI (Uniform Resource Identifier) and
accessed through a separate Context Service that manages a store of context structures.
Contexts are created with a begin command and destroyed with a complete command.
A timeout value can also be set for a context.

A fourth, similar, approach is the Web Services Resource Framework (WSRF)
[12], where all relevant data, local or remote, can be managed as resources. Resources
are accessed through a WS-Resource-qualified endpoint reference that is essentially
a ‘network-wide’ pointer to a WS-Resource. Such endpoints may be returned as a
reply to a service request, returned from a query to a service registry, or from a request
to a resource factory to create a new WS-Resource. In fact, WSRF does not define
specific mechanisms for creating resources. Nonetheless, the lifetime of a resource
can be explicitly managed. A resource may be immediately destroyed with an explicit
destroy request message, or through a scheduled destruction at a future time.

Equally important as the management of states is the management of services them-
selves. Services can be manually installed on particular hosts and registered with a
registry, but this can become untenable for even moderately sized systems. If a process
or host should crash, identifying the problem and manually rebooting the system can
be tedious. Hence, there is clearly a need to be able to dynamically install, boot, and
terminate services. For this reason, the concept of service containers was developed.
Services are typically deployed within a container and have a specific time-to-live. If
a service’s time-to-live is not occasionally extended, it will eventually be terminated
by the container, thereby reclaiming the resources (host memory and cycles) for other
purposes without having to have a distributed garbage collection mechanism.

Event notification is an essential part of any distributed system [19]. Events can
be considered to be simply small messages that have the semantics of being de-
livered and acted up on as quickly as possible. Hence, events are commonly used to
asynchronously signal any system occurrences that have a time-sensitive nature. Sim-
ple, atomic events can be used to represent occurrences such as process completion,
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failure, or heartbeats during execution. Events could also be represented by attribute-
value pairs with associated metadata, such as changes in a sensor value that exceeds
some threshold. Events could also have highly structured, compound attributes, such
as the ‘interest regions’ in a distributed simulation. (Interest regions can be used by
simulated entities to ‘advertise’ what types of simulated events are of interest.)

Regardless of the specific representation, events have producers and consumers.
In simple systems, event producers and consumers may be explicitly known to one
another and be connected point-to-point. Many event systems offer topic-oriented
publish/subscribe where producers (publishers) and consumers (subscribers) use a
named channel to distribute events related to a well-known topic. In contrast, content-
oriented publish/subscribe delivers events by matching an event’s content (attributes
and values) to content-based subscriptions posted by consumers.

In the context of grid service architectures, WSRF uses WS-Notification [28],
which supports event publishers, consumers, topics, subscriptions, etc., for XML-
based messages. Besides defining NotificationProducers and NotificationConsumers
that can exchange events, WS-Notification also supports the notion of subscriptions
to WSRF Resource Properties. That is to say, a client can subscribe to a remote
(data) resource and be notified when the resource value changes. In conjunction with
WS-Notification, WS-Topics presents XML descriptions of topics and associated
meta-data, while WS-BrokeredNotification defines an intermediary service to manage
subscriptions.

Along side all of these capabilities is an integral security model. This is critical
in a distributed computing infrastructure that may span multiple administrative do-
mains. Security requires that authentication, authorization, privacy, data integrity,
and non-repudiation be enforced. Authentication establishes a user’s identity, while
authorization establishes what they can do. Privacy ensures that data cannot be seen
and understood by unauthorized parties, while data integrity ensures that data cannot
be maliciously altered even though it may be seen (regardless of whether it is un-
derstood). Non-repudiation between two partners to a transaction means that neither
partner can later deny that the transaction took place.

These capabilities are commonly provided by the Grid Security Infrastructure (GSI)
[40]. GSI uses public/private key cryptography rather than simply passwords. User
A’s public key can be widely distributed. Any User B can use this public key to encrypt
a message to User A. Only User A can decrypt the message using the private key. In
essence, public/private keys make it possible to digitally ‘sign’ information. GSI uses
this concept to build a certificate that establishes a user’s identity. A GSI certificate has
a subject name (user or object), the public key associated with that subject, the name
of the Certificate Authority (CA) that signed the certificate certifying that the public
key and identity belong to the subject, and the digital signature of the named CA.
GSI also provides the capability to delegate trust to a proxy using a proxy certificate,
thus allowing multiple entities to act on the user’s behalf. This, in turn, enables the
capability of single sign-on where a user only has to ‘login once’ to be authenticated
to all resources that are in use. Using these capabilities, we note that it is possible
to securely build virtual organizations across physical organizations by establishing
one’s grid identity and role within the VO.
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Figure 9.2 The OGSA framework.

The GridShib project is extending GSI with work from the Internet2’s Shibboleth
project [24]. Shibboleth is based on the Security Assertion Markup Language (SAML)
to exchange attributes between trusted organizations. To use a remote resource, a
user authenticates to their home institution, which, in turn, authenticates them to the
remote institution based on the user’s attributes. GridShib introduces both push and
pull modes for managing the exchange of attributes and certificates.

Up to this point, we have presented and discussed basic Web services and the ad-
ditional fundamental capabilities that essentially extend these into grid services. We
now discuss how these capabilities can be combined into a coherent service archi-
tecture. The key example here is the emerging standard of the Open Grid Services
Architecture (OGSA) [10, 39]. Figure 9.2 gives a very high-level view of how OGSA
interprets basic Web services to present a uniform user interface and service archi-
tecture for the management of servers, storage, and networks. OGSA provides the
following broad categories of services:� Execution Management Services

– Execution Planning
– Resource Selection and Scheduling
– Workload Management� Data Services

– Storage Management
– Transport
– Replica Management� Resource Management Services

– Resource Virtualization
– Reservations
– Monitoring and Control
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� Security Services

– Authentication and Authorization
– Virtual Organizations
– Policy Implementation and Enforcement� Self-Management Services

– Service-Level Agreements and Managers
– Autonomic Behaviors
– Configuration Management� Information Services

– Resource Discovery
– Status Monitoring
– Event Notification

The Globus Toolkit 4 (GT4) [38] is now based on OGSA, which, in turn, is based
on WSRF. Standardization of OGSA is underway in the Global Grid Forum [36].
WSRF is also undergoing standardization. We note that while WSRF came out of
the GGF OGSA Working Group, it was sent through the standardization process of
the Organization for the Advancement of Structured Information Standards (OASIS).
This was done with significant overlap in the technical personnel serving in both
working groups to get ‘buy-in’ from the core Web services community.

Since there is so much interest and activity in Web service standards, it has be-
come a difficult topic since there are so many proposed standards across multiple
organizations to address different, narrow technical issues. To alleviate the confusion
and bring some coordination to the table, the Standards Development Organizations
Collaboration on Networked Resources Management (SCRM) Working Group [11]
was started at GGF. SCRM has the charter to develop a ‘landscape’ document and
taxonomy of Web service standards, with the goal of identifying areas of synergy and
redundancy, and ultimately promoting consensus in the technical marketplace.

As a case in point, even though Globus is felt by many to be a de facto grid standard
since it is used by so many projects and organizations, competing camps have emerged
motivated by the desire to develop simple standards that can even more quickly
promote stability and the widespread adoption of grid technology in the marketplace.
This has been characterized as the minimalist approach as opposed to the advanced
approach [31]. Web Services Interoperability Plus (WS-I+) is the WS-I Basic Profile
(including SOAP and WSDL) [17] plus UDDI, BPEL, WS-ReliableMessaging, and
WS-Addressing to provide the most basic capabilities for building grids. The fact that
these standards are considered to be more stable can be a significant issue for grid
projects that must be operational in the near term.

Besides near-term versus long-term issues, there has also been fragmentation along
corporate boundaries. Fortunately, however, in March 2006, Hewlett-Packard, IBM,
Intel, and Microsoft announced their intent to converge some of the competing Web
standards [18]. At the risk of over-simplification, this effort will attempt to merge
WS-Management and WS-Distributed Management, WS-Notification and WS-
Eventing, and refactor services for managing resources and metadata. While no time
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table was announced for this convergence, the need for a commonly accepted infras-
tructure is clear to all.

This convergence is actually indicative of the larger convergence between Web and
grid services. While the Web and grid service concepts had different motivations,
there is clearly extensive overlap in the fundamental capabilities they are addressing.
Hence, it is natural that there should be convergence. Whether the terms ‘Web’ and
‘grid’ persist as distinct concepts is less important since there will always be support
for the fundamental capabilities of information discovery, remote job management,
data movement, etc. Any distinctions will be based on the style of application and
how it uses these fundamental capabilities. That is to say, service architectures will
enable a wider range of peer-to-peer computing, Internet computing, high-throughput
computing, distributed supercomputing, or ubiquitous computing.

9.4.3 End-User Tools

Thus far, we have described the service-oriented architecture concept and current
approaches to building grids. While these concepts and standards are intended to
enable the construction of enterprise-scale grids, they are generally not intended for
use by end-users. Depending on the scope of deployment, grids will be installed by
system builders and maintained by administrators. The real benefits of grids, however,
will be seen when end-users have simple tools that hide most of the complexity of
the infrastructure while enabling the flexible integration of distributed resources [20].
To this end, much work is being done on making the fundamental operations of file
transfer and job submission as easy as possible.

GridFTP. GridFTP [37] is an extension of the established File Transfer Protocol
(FTP) that is integrated with the Globus Toolkit. GridFTP can use GSI to manage
authentication across different administrative domains. GridFTP can also manage
striped transfers where a data file is striped across multiple disks, thereby achieving
higher aggregate disk bandwidth. GridFTP can also stripe across multiple network
connections, thereby utilizing higher aggregate network bandwidth. Most importantly,
the integration with GSI enables GridFTP to manage secure, third-party transfers,
i.e., Client A can have data transferred between Servers B and C.

GridRPC. GridRPC [22] defines a basic API for Remote Procedure Calls (RPC).
Calls are provided to do lookups for desired remote services that are identified by
function handles. Function handles are then used to make service invocations using
data passed essentially as arguments in a remote procedure call. In this context,
GridRPC manages the data transfer from the client to server and the return of results.
The GridRPC standard was motivated by network-enabled service systems, such as
NetSolve, Ninf-G, and DIET.

SAGA. The Simple API for Grid Applications (SAGA) Working Group at GGF
is endeavoring to define an API that is simple yet will serve the widest segment of
grid applications [13, 35]. Data movement is managed using namespaces, physical
files and directories, and logical files and replicas. Service execution is managed as
synchronous jobs and asynchronous tasks. Interprocess communication is supported
using a stream construct. Security is managed as part of a session with a session
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handle. Different language bindings are possible with C++ and Java implementations
underway.

Workflow Engines. With the flexible management of data movement and service
invocation, many grid applications are essentially instances of a workflow. Hence, grid
workflow engines have been developed to make it easier to specify and manage these
service aggregations. DAGMan (Directed Acyclic Graph Manager) [34] expresses
workflows as a DAG and follows dependencies between the tasks to determine the
set of ready tasks. GridAnt [4] extends the Ant Java build tool, which manages de-
pendencies in the project build process, to manage task dependencies in a distributed
environment. Other systems, such as Triana [32], Kepler [3], and Taverna [25], en-
able users to graphically construct workflows and then execute them in a variety of
environments such as peer-to-peer networks and grids.

Portals. Another approach to making grids easier to use is portals. A Web-based
interface can be used that hides as much complexity as possible while providing sim-
ple, domain-specific functionality to the end-user. The Grid Portal Toolkit (GridPort)
[23] provides client interface tools that enable custom portal development without
requiring the user to have any specialized knowledge of the underlying portal tech-
nology. GridSphere [1] is an open-source, JSR-168 compliant portal framework that
provides the GridPortlets package to support building grid portals. The Open Grid
Computing Environments (OGCE) Portal Toolkit [2] integrates portlets from several
different projects including some third-party software, such as GridSphere.

9.5 Current Projects

Having introduced the fundamental concepts of Web services and grid architectures
and the infrastructure capabilities they will enable, we now illustrate their actual
deployment and use in a number of important grid infrastructure projects. More
importantly, we then describe just a few science projects relevant to the remote sensing
application domain.

9.5.1 Infrastructure Projects

TeraGrid. The Distributed Terascale Facility, or simply the TeraGrid [45], is a na-
tional grid project funded by the National Science Foundation that started with four
core sites: Argonne National Lab, the National Center for Supercomputing Applica-
tions, the San Diego Supercomputing Center, and the Caltech Center for Advanced
Computing Research. Five other partner sites have since been integrated. Currently
an aggregate 102 teraflops and 15 petabytes have been integrated, along with over 100
domain-specific databases. A wide variety of science domains are involved, includ-
ing high-energy physics, astronomy, computational fluid dynamics, medical therapies,
and geology, to name a few. The NSF’s new Office of Cyberinfrastructure plans to
support even larger peta-scale facilities.
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Naregi. The Japanese NaReGI (National Research Grid Initiative) [21] will facil-
itate collaboration among academia, industry, and government by supporting many
virtual organizations with resources across the country. Super-SINET is the NaReGI
network infrastructure and provides a 10-Gbps photonic backbone stretching 6000
km. The initial NaReGI testbed will have almost 3000 processors online with an ag-
gregate of nearly 18 teraflops. When fully integrated, NaReGI will have over 7000
processors online. One of the key application areas for these machines is the devel-
opment of nanoscience simulation applications for the discovery and development of
new materials that will lead to the next-generation nano-devices.

UK e-Science Programme. The UK e-Science Programme [27] is supported
through a joint collaboration of the UK Research Councils and likewise aims to
facilitate joint academic and industrial research. Supported application domains in-
clude astronomy, physics, biology, engineering, finance, and health care. The Open
Middleware Infrastructure Institute (OMII-UK) maintains an open-source Web ser-
vice infrastructure and provides comprehensive training for application stakeholders.
Besides just building the infrastructure, the e-Science Programme also has a Digital
Curation Centre that addresses the preservation of digital documents and data prod-
ucts. In addition to cataloging and making documents available, the DCC captures the
provenance of data and guards against the technical obsolescence of storage media.

EGEE. The Enabling Grids for E-SciencE (EGEE) [8] project is primarily funded
by the European Union but is comprised of more than 90 institutions in 30 countries,
spanning Europe, the Americas, and the Far East. Specific EGEE projects target col-
laboration with underrepresented regions such as the Baltic nations and Latin America.
This wide collaboration is accomplished through an International Grid Trust Federa-
tion (IGTF) where EGEE sites trust IGTF root Certificate Authorities. Again, a wide
variety of application domains are supported, including astrophysics, biomedicine,
chemistry, earth science, fusion, finance, and multimedia, with an Industry Task Force
and Industry Forum to facilitate technology transfer. Grid education is also supported
for both students and educators with the development of curricula and educational
events that will produce future generations of grid professionals.

9.5.2 Scientific Grid Projects

While these large grid projects will provide national and international grid infrastruc-
tures and facilitate science discovery and engineering advancement, the immediate
goal now is to connect them to remote sensing applications.

DAME. As part of the UK e-Science Programme, the Distributed Aircraft Main-
tenance Environment (DAME) project endeavored to build a grid-based diagnosis
and prognosis system for jet engines [5]. Vibration sensor data from in-service Rolls-
Royce jet engines was captured and later downloaded when the aircraft was on the
ground. This time series data was processed against historical data by a suite of anal-
ysis codes that would identify anomalies and determine failure mode probabilities.
A portal-based Signal Data Explorer could be used to interactively examine and pro-
cess data that were managed and archived using the Storage Resource Broker. The
ultimate goal of the project was to process data from multiple aircraft whenever they
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arrived at an airport and have enough throughput to do an analysis within the aircraft’s
turn-around time. Clearly, though, with the advent of satellite-based, in-flight Internet
access, such sensor data could be streamed in real-time to analysis facilities.

IVOA. The goal of the International Virtual Observatory Alliance (IVOA) [16]
is to develop a grid infrastructure for the utilization of international astronomical
archives as ‘integrated and interoperating virtual observatory.’ At least fifteen funded,
national virtual observatory projects are collaborating in eight working groups to
address issues such as space-time coordinate metadata, uniform access standards for
spectra and images, and virtual observatory resource metadata. This collaboration
is motivated by the tremendous amount of digital astronomy data being generated
by new observatories and sky surveys with instruments that produce two giga-pixel
images every few seconds. Using the type of remote sensing, 31 new supermassive
black holes were discovered.

SERVOGrid. SERVOGrid is the computational infrastructure for the Solid Earth
Research Virtual Observatory (SERVO) project [7] whose goal is the study and pre-
diction of earthquakes. SERVO will integrate many distributed data sources with
high-performance computational resources to facilitate discovery in this area. Data
will be assimilated from GPS-located sensors in the field that measure 3-D earth sur-
face displacements in the California region. Space-based, interferometric, synthetic
aperture radar (InSAR) will also be used to collect geodetic data characterizing geo-
dynamic crustal deformations. Once the data are acquired, hidden Markov models,
pattern informatics, finite element models, and other techniques will be used to make
and evaluate predictions.

CEOS and GEOSS. The Committee on Earth Observation Satellites (CEOS)
(www.ceos.org) is an international coordinating body for civil spaceborne missions
for the study of the planet Earth. In support of this goal, CEOS maintains a Work-
ing Group on Information Systems and Services (WGISS) with the responsibility
to promote the development of interoperable systems for the management of Earth
Observation data internationally. Hence, the CEOS/WGISS Grid Task Team is co-
ordinating efforts such as the European Space Agency (ESA) Global Satellite O3

Measurements project (also supported by EGEE), the National Oceanic and Atmo-
spheric Administration’s (NOAA) Operational Model Archive and Distribution Sys-
tem (NOMADS), and the NASA LandSat Data Continuity Mission Grid Prototype.
In a closely related effort, the Group on Earth Observations plans to build a Global
Earth Observation System of Systems (GEOSS) in 10 years [14]. GEOSS’s 10 Year
Implementation Plan, which targets 2015 for completion, calls for the development
of a global, interoperable geospatial services architecture.

9.6 Future Directions

Grids have come a long way from initial research efforts to build distributed infras-
tructure prototypes to the current efforts in Web/grid service architectures. Grids still,
however, have a tremendous amount of unrealized potential.
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Seamless Integration of Resources in a Ubiquitous Service Architecture: Grids will
not begin to reach their full potential until (1) there is a core set of grid services, with
(2) sufficient reliability, that are (3) widely deployed enough to be usable. At this
point, it will be useful to speak of a seamless integration of resources in a service
architecture that is just expected to be there. In much the same way that networking
research produced what is now known as the Internet and the World Wide Web once
the technology became sufficiently reliable and widespread, grid computing and grid
services will become more commonplace. Besides various national grid projects,
enterprise-scale grids are also being deployed. At some point, some grids will start
peering to one another and begin to form a ubiquitous infrastructure. The ability to
do resource and data discovery along with resource scheduling and management in a
secure, scalable, open-ended environment based on well-known and widely adopted
services will enable a wide variety of application domains and styles of computation.
Likewise, a wide variety of machines, from wireless PDA/smartphones, to big-iron
supercomputers, to embedded devices will be combinable into a flexible spectrum of
virtual organizations driven by the needs and requirements of the participants.

Autonomic Behaviors: As soon as we begin to speak about computing infrastruc-
tures with this inherent scale, heterogeneity, dynamism, and non-determinism, current
system management paradigms begin to break down, making both the infrastructure
and applications brittle and insecure. The notion of a system administrator that has
complete, or even ‘good enough,’ information about the system status to be effective
is just not reasonable anymore. Hence, to manage large distributed infrastructures,
system components will have to become more autonomous and require a minimum
of human intervention. In general terms, autonomic systems are considered to be self-
configuring, self-managing, self-optimizing, and self-healing. To express this a little
more concretely, autonomic systems must be able to follow the autonomic control
cycle of monitor, analyze, plan, and act. This means that systems must be able to mon-
itor their environment and events, analyze and understand their meaning, plan some
feasible response to achieve a goal state, and finally act on that plan. Besides requiring
the integration of event notification and workflow management, this requires well-
known semantics and effective planning (inference) engines. These are fundamental
aspects of artificial intelligence that have been worked on for many years.

Non-Technical Barriers to Acceptance: Finally, we wish to emphasize that the non-
technical issues facing grid computing will be just as important, if not more so, than
any technical issues, such as scalability, interoperability, reliability, and security. In
many aspects, grid computing is about the managed sharing of resources while the
‘corporate culture’ of many organizations is diametrically opposed to this. Organiza-
tional units may jealously guard their machines or data out of a perceived economic
or security threat. On a legal level, grid computing may require the redefinition of
ownership, copyrights, and licensing. Clearly, as grid computing progresses, such
cultural, economic, and legal issues will have to be resolved by adjusting our cultural
and economic expectations and our legal statutes to integrate what the technology
will provide.
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10.1 Introduction

In the last 40 years, remote sensing of the Earth has seen a continuous growth in the
capabilities of the instrumentation (satellites, airborne, and ground-based sensors that
monitor and measure the environment) that provides the fundamental data sets and
an increase in the complexity of the data analyses and modeling that these data sets
support. The rate of increase in the remote sensing data volume continues to grow.
Additionally, the number of organizations and users is also expanding and is now a
worldwide community struggling to share data and resources. These trends necessitate
a shift in the way in which remote sensing systems are designed and implemented in
order to manage and process these massive data sets and support users worldwide.

Grid computing, as originally described by Foster et al. [1, 2], provides a new and
rich paradigm with which to describe and implement various distributed computing
system architectures. The promise of grid computing for science users is a shared
environment that will facilitate their scientific research and provide them access to an
unprecedented range of resources: instrumentation, data, high-performance compute
engines, models, and software tools. Ultimately this access will be two-way, one in
which the remote sensing scientist will not only receive and process data from remote
sensors and instrumentation, but will be able to reconfigure them as well.

In a 2002 GridToday [3] article, Ian Foster further clarifies the definition of a grid
as a system with these three elements: (1) coordination of resources not subject to
centralized control; (2) utilizes standard, open, and general-purpose protocols and
interfaces; (3) delivery of non-trivial qualities of service. We will show that these
elements map nicely into the remote sensing domain.

The goal of this chapter is to apply the grid computing paradigm to the domain of
Earth Remote Sensing Systems. These systems involve the collection, processing, and
distribution of large amounts of data and often require massive computing resources
to generate the data products of interest to users. Current systems, such as the NASA
EOS mission, generate hundreds of gigabytes of raw sensor data per day that must
be ingested and processed to produce the mission data products. The trend in both
scientific and operational1 weather forecasting is a steady increase in the amount, and
types, of data necessary to support all the applications in this problem domain.

10.1.1 Remote Sensing and Sensor Webs

There are many definitions of remote sensing in the literature [4, 5, 6]. The common
theme in all of these definitions is the measurement of some physical property associ-
ated with the object under observation without being in physical contact with the object

1The term operational as used here is intended to convey the fact that the capability is required on a con-
tinuous and reliable basis and that the performance meets some minimum quality of service requirements.
In the case of weather forecasting, the capability to continuously generate weather forecasts with specific
latency and accuracy is the key requirement.
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(hence the term remote). This form of remote sensing generally involves the detection
of some form of electromagnetic energy either reflected by, or emitted from, the object
(e.g., visible light reflected from the ocean surface or infrared radiation emitted from a
cloud top), which is then fed to an inversion algorithm to retrieve specific geophysical
parameters such as sea surface temperature or atmospheric vertical moisture profile.

For the sake of the present discussion, we generalize this definition to include not
only the traditional concept of remote sensing but also that of in-situ sensing, where the
measurements are made by instrumentation in contact with, or close proximity to, the
object of interest. In either case, the results of these measurements are sent to a location
remote from the source for further processing and distribution. Thus we include a
wide range of sensors and instrumentation that perform their measurements either
remotely or in-situ and then transmit those observations to remote data collection,
processing, and distribution sites. We also consider the concept of a sensor web as
defined by Higgins, et al., in their report to the NASA Earth Science Technology
Office (ESTO) [7]:

A sensor web is a distributed, organized system of nodes, interconnected
by a communications fabric that behaves as a single, coherent instru-
ment. Through the exchange of measurement data and other information,
produced and consumed by its sensing and non-sensing nodes, the sen-
sor web dynamically reacts causing subsequent sensor measurements
and node information processing states to be appropriately modified to
continually ensure optimal science return.

The sensor web concept considers a highly distributed system that includes feed-
back between various nodes. Such a concept is consistent with the fundamental notions
of grid computing. By combining the sensor web and grid computing paradigms we
create what we term a remote sensing grid (RSG). This is a highly distributed system
that includes resources that support the collection, processing, and utilization of the
remote sensing data. Many of the resources are not under a single central control, yet
we have the ability to coordinate the activities of any of these resources. It is possi-
ble to construct a remote sensing grid using standard, open, protocols and interfaces.
Finally, many of the operational remote sensing systems are required to support highly
non-trivial quality of service requirements, such as availability.

10.1.2 Remote Sensing System Architectures and Grid Computing

The goal of this chapter is to provide a description of remote sensing grids by com-
bining the concepts of remote sensing or sensor web systems with those of grid
computing. In order to do this one needs to understand how remote sensing systems
are described and specified, and similarly how grids are described and specified, and
how these two approaches are merged to describe and specify remote sensing grids.

We draw on the approach traditionally employed by systems engineering to specify
a system as consisting of various elements and subsystems [8]. The remote sensing
system is designed to be an organized assembly of resources and procedures united and
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Figure 10.1 High-level architectural view of a remote sensing system.

regulated by interaction or interdependence to accomplish a set of specific functions,
which are performed by the various elements and subsystems. The system, as com-
posed of these elements and subsystems, is described by specifying, at various levels
of detail, the system architecture. The term architecture refers to a formal description
of a system, defining its purpose, functions, externally visible properties, and inter-
faces. It also includes the description of the system’s internal components and their
relationships, along with the principles governing its design, operation, and evolution.

In order to provide a specific example and context for discussing remote sensing
grids, we consider the design of a notional weather forecasting and climate science
(WFCS) grid. This notional system is motivated by several projects including LEAD
[13] and NOMADS [17] (discussed in Section 10.4.1), and The Aerospace High Reso-
lution Forecast Prototype [20]. This system is intended to support weather forecasting
and climate studies and is described in more detail in Section 10.2.1.

A high-level view of the WFCS system architecture is shown in Figure 10.1. This
figure describes the architecture primarily in terms of the various elements and sub-
systems, and in later sections of this chapter we will work towards a description in
terms of grid computing concepts.

We envision the WFCS system as being made up of resources from a variety of
organizations (the notional system is illustrated with examples that include FNMOC,
AFWA, NCAR, NESDIS/NWS, and others). The organizations provide specific ca-
pabilities necessary to implement such a system, but there may also be additional
capabilities required for the realization of a grid architecture. Figure 10.1 illustrates
the following elements of the WFCS architecture:

� Observing Elements: in-situ sensors, ground based, airborne, and spaceborne
instruments that collect the basic environmental measurements
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� Data Management Elements: data transport, storage, archive discovery, and
distribution� Data Processing and Utilization Elements: user applications, modeling and
assimilation, forecasting, etc.� Communications, Command, and Control Elements: the resources that allow
all elements to work together; includes interaction and feedback between any
of the sensor web elements� Core Infrastructure: underlying resources needed to tie all elements together,
including networks, communication links, etc.

In order to map the system engineering view of the WFCS system into grid com-
puting terms, we need to understand how grid architectures are described. The grid
computing community has developed an approach to describing grids known as the
Open Grid Services Architecture (OGSA) [9], using the concepts of a service-oriented
architecture (SOA). It is therefore prudent to define some of the terminology used
in OGSA and SOA. The Global Grid Forum (GGF) and others [10, 11] provide the
following definitions:

Service is a software component that can be accessed via a network to provide
functionality to a service requester.

Service Oriented Architecture refers to a style of building reliable distributed sys-
tems that deliver functionality as services, with the additional emphasis on
loose coupling between interacting services.

Workflow is the structured organization of a set of activities, their relative ordering
and synchronization, and data needs necessary to accomplish a specific task or
goal. The workflow may also specify any necessary participants.

Given these definitions, we see that SOA refers to the design of a system and
not how it is implemented. It is also possible to describe, at least in part, various
workflows using a service-oriented description. Following Srinivasan and Treadwell
[11], we employ SOA as an architectural style that utilizes components as modular
services (generally considered to be atomic in that they provide one service) that can
be discovered and used to build workflows by clients. We further assume that services
have the following characteristics [11]:

Composition — may be used alone or combined with other services.

Communication via Messages — communicates with clients or other services by
exchanging messages.

Workflow Participation — services may be aggregated to participate in a specified
workflow.

Interaction — services may perform their key functions as stand-alone entities or
require interactions with other services to fulfill their functions.

Advertise — services advertise their capabilities, interfaces, polices, etc., to clients.
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It should also be remarked that SOA reinforces the software engineering princi-
ples of encapsulation, modularization, and separation between implementation and
interface. Grid computing concepts and frameworks may be used to not only describe
the architecture of a remote sensing system, but also to build the specific services
required to implement such an architecture.

There are many advantages for remote sensing systems to employ a grid computing
approach to system architecture and implementation:

� Cost savings through the sharing of resources, the ability to grow as you
go, and avoid cost impact and technology obsolescence common with over-
provisioning;� Scalability to meet variations in resource demands and balance work loads;� Shorter time to results, which allows for the provisioning of extra time and
resources to solve problems that were previously unsolvable; this is critical for
operational systems that have stringent latency requirements;� Increased flexibility and resilient operational infrastructures (allows for im-
proved fault tolerance);� Enable collaboration across organizations and among widely distributed users,
by sharing resources (data, software, and hardware);� More efficient use of available resources; ability to combine resources for sys-
tems that are naturally distributed and whose user communities are naturally
distributed;� Increased productivity through standardization and access to additional re-
sources.

We hope that after reading this book the reader will have a better appreciation of these
benefits.

The remaining sections of this chapter describe the notional WFCS architecture
and implementation, addressing issues relevant to constructing such a grid, provid-
ing examples of similar systems in production or research and finally ending with a
discussion of various issues related to the adoption of grid computing. Section 10.2
discusses the architecture of our notional example of a remote sensing grid, the WFCS
grid. This discussion is framed using the grid computing architectural principles ex-
pressed by the OGSA. This allows us to define the architecture and describe the
system using a common set of grid services. In Section 10.3 we discuss the imple-
mentation of the WFCS using grid technologies that are consistent with the OGSA
approach. We discuss the relevant technological, managerial, and policy issues and
identify specific current technologies one might consider in building the system de-
scribed in Section 10.2. Issues such as workflow management and problem solving
environments are briefly discussed. Section 10.4 provides a brief discussion of sev-
eral examples of remote sensing grid projects. Section 10.5 discusses the paths to
adoption of grid computing technology for scientific computing and remote sensing
applications.
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10.2 Remote Sensing Grids: Architecture

In order to discuss remote sensing system architectures, we first define the key
requirements that drive these architectures and implementation, then express these
architectures using the principles of grid computing (as discussed in Chapter 9). We
will use the specifications and standards provided by the OGSA as our basis for de-
scribing the notional WFCS architecture. It is important to note that OGSA builds
upon Web services and the Web Services Resource Framework (WSRF). Many of
these underlying technologies, as well as OGSA, are still evolving. That is not to say
that they are not sufficiently mature for deployment; rather, one should be aware that
the standards and technologies are still evolving.

To define the architecture of the WFCS grid we follow a top-down approach. We
present a high-level summary of the mission goals for our notional system, followed
by some operational requirements that are derived from the high priority needs of the
operational users, and then discuss the use of existing architectural elements, as this is
one of the mission goals. We also discuss the needs of the different users of the WFCS
grid and provide example workflow scenarios from which we can derive additional
requirements. These requirements are mapped into the functional requirements and
resource needs of the WFCS grid. From these functional requirements we then define
the grid services (following OGSA) necessary to meet these requirements, and, finally,
we present the notional WFCS grid architecture using these services.

10.2.1 Weather Forecasting and Climate Science Grid

To define the notional WFCS grid architecture we first start with an elucidation of
the mission and system requirements for this notional system. We envision building
this as a sensor web using a grid service architecture that links a wide array of instru-
mentation with data storage and computation facilities that enable the operational and
scientific workflows necessary to accomplish the WFCS mission. We next translate
those requirements into specific functionality and resources necessary and then into
the specific grid services that allow construction of the the WFCS grid using an SOA.
Given that a key requirement for the WFCS is operational weather forecasting, we
also assume the use of existing capabilities at many of the national weather forecasting
sites within the United States as elements within the architecture.

In defining the requirements we follow the approach used by many projects, and
similar to that employed by the GGF, we use case examples to present a description
of the WFCS grid requirements [21].

Summary Description of the WFCS Grid. The WFCS grid is envisioned as a no-
tional sensor web created by combining existing resources from government forecast
centers, national laboratories, university research centers, and a wide array of in-
strumentation, and adding new resources as required, to support operational weather
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forecasting and climate science research. The glue that binds all the elements together
and allows for interoperability is the SOA implementation using grid services.

The mission-level requirements (high-level system goals) of the WFCS grid may
be stated as:

� Provide operational synoptic and regional/mesoscale weather forecasting2;� Provide research scientists an environment to analyze meteorological and cli-
mate data in support of their climate science studies;� Provide an environment for research in the improvement of forecast and climate
models;� Insure that proper security is maintained throughout the system regarding
access to all systems, data, and information; all users require authentication
and authorization for resource utilization and data access;� Create a virtual organization to achieve these goals from existing organizations
that currently perform the necessary functions, augmenting them as necessary.

The WFCS grid will also be required to meet several operational-level requirements
that are primarily intended to address quality of service (QoS) requirements and entail
service-level agreements (SLA) between the organizations participating in the WFCS
grid. These requirements would include latency and data refresh requirements for
the production of weather forecasts; ability to maintain long-term data archives and
retrieval; ability to reprocess specific volumes of data faster than real time to support
climate research; and automation of as much of the workflow as possible. To achieve
the required QoS, it is necessary to define a high-level policy model for the WFCS
grid that addresses the high priority and SLA requirements of the operational users
and the needs of the research community. These would include:

� Operational weather forecasting workflow has priority� Climate studies and science users have lower priority� Some resources are only shared among forecasting services� Some resources may be shared by both forecasting and climate workflow

In order to meet these high-level requirements, the WFCS will require the types of
elements shown in Figure 10.1, which may be categorized as:

Observational Elements — includes all ground, air, and space assets that perform
basic measurements of the environmental and geophysical parameters; satellites
in LEO or GEO orbits, research aircraft or UAVs, ground sensor networks or
webs, etc. These components provide the basic observational data necessary to
support both operational weather forecasting and climate research;

2Synoptic generally refers to weather phenomena with spatial scales ≥ 2000 km and temporal scales of
days, and Mesoscale refers to spatial scales less than 2000 km, down to 2 km, and temporal scales from
days down to minutes.
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Data Management and Distribution Elements — provides data transport and stor-
age, including long-term archives (LTA); provides metadata search engines and
tools to map logical data pointers to physical data locations;

Data Processing Elements — includes CPU subsystems (HPC, clusters, etc.),
models, and software tools;

Infrastructure Elements — networks (wired and wireless), communication links
(satellite-ground, aircraft-ground), system monitoring tools, and security

From these basic requirements we must also derive additional requirements for
interfaces and interoperability of all of these elements.

Customers. Since the intent of the WFCS grid is to provide the various user com-
munities with the services and data products they require, it is important to capture
their specific needs. These are of course captured at a high level in the overall mission
requirements previously mentioned. As this is not intended to be a complete require-
ments analysis, we focus on the driving requirements for the system architecture
and implementation. These users include operational weather forecast centers (e.g.,
FNMOC, AFWA, NOAA/NWS in the USA or ECMWF in Europe) and a set of sci-
ence users distributed worldwide (interested in weather forecast model development
and climate modeling and research).

We have identified three categories of users:

� Operational Users — These are users from government organizations (NOAA,
DoD, NASA, etc.) that have a sustained requirement for timely weather fore-
casts to support the needs of various civilian agencies and military operations.� Science Users — These are research scientists from a variety of organizations
(NOAA, NASA, ESA, universities, private industry) interested in studying
some aspect of the Earth system or weather and climate modeling.� Commercial Users — These include users that apply the data products and
model results for business or commercial purposes. These might include the
news media (Web, TV, and radio), agri-business, logging, and shipping (land,
air, sea).

Each category of users has specific workflow and data utilization that they need
to implement to exploit the remote sensing data collected by the observational re-
sources and models. Operational users are interested in performing timely synoptic
and mesoscale weather forecasting, or measuring the tracks of hurricanes in order to
predict location and time of landfall; science users may be interested in studying the
Earth’s climate variation on decadal time scales; commercial users maybe interested
in resource monitoring or techniques to provide improved crop yield estimates.

It is not possible to list all user requirements in this chapter, but rather we wish to
provide the reader with examples of the types of user requirements that drive the need
for grid computing technology to best achieve the desired goals of these users. To do
this we draw upon typical examples of user requirements that also provide examples
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of the needs that different users have now and in the future. We draw upon examples
from operational weather forecasting and from various climate research activities.
These are presented below in the form of a few representative scenarios.

Scenarios. We now present several examples of remote sensing data processing and
analysis workflows for the WFCS grid. These workflows are presented as typical sce-
narios that describe what is done but not how it is implemented. The implementation
is discussed in Section 10.3 when we consider the actual implementation using grid
technology. These examples are intended to be illustrative of the kinds of workflows
that we envision for the WFCS grid and have their basis in several existing or proposed
projects [22, 23, 24]. The scenarios include:

� Weather Forecast Model (WFM) Runs: Operational and Research� Climate Data Reprocessing� Calibration and Validation (Cal/Val) and Data Ingest

Scenario 1: Weather Forecast Model Runs: Operational and Research. This
scenario involves running a high-resolution, near-real-time, mesoscale weather fore-
cast model (such as MM5 or Weather Research and Forecasting (WRF)) [25, 26, 27]
to produce routine operational weather forecasts for specific geographical regions on
a fixed time line. For example, the forecast might be for a region covering southern
California, with forecast outputs at (0, 3, 6, 9, 12, 15, 18, 21) Z hours.3 This scenario
is motivated by a prototype system developed at The Aerospace Corporation [20]
and the NOMADS project [17]. Various organizations currently run various numer-
ical weather prediction (NWP) models: AFWA runs MM5 and WRF, FNMOC runs
COAMPS, and both NASA and NOAA/NWS run a variety of synoptic and mesoscale
models (and many of the research organizations within NOAA also run forecast mod-
els). NASA and NOAA also run a wide range of climate forecast and study models.

This scenario illustrates an example of workflows that are similar but have different
constraints. The first, operational weather forecasts, is configured such that the users
are only consumers of the output results and have no ability to adjust the processing,
and in the second, research weather forecast model runs, the user is given complete
control over the parameter space needed to fully specify the computation.

Specifically, this scenario requires the following capabilities:

� NWP Models — Run configurable NWPs covering both synoptic and mesoscale
spatial and temporal ranges; various users may require the ability to tailor the
model runs to their specific needs, for example, optimizing performance and
forecast skill for a given geographical region or types of weather conditions.
In addition to the operational NWP runs, we also consider the case where a
researcher would like the ability to specify more details regarding the model
runs and parameters.

3 Z refers to the reference time zone, which is the same as GMT or currently referred to as UTC.
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� Data Assimilation — Includes a variety of data sources (satellite observa-
tions, aircraft observations, ground networks, ocean buoys, etc.) that are in-
gested by the model assimilation system to prepare these diverse inputs for
the forecast model; define the boundary and initial conditions for the
model run.� Post-Processing — Provides model output in a variety of standard formats and
includes a set of standard analysis and visualization tools.� Data Archives — The output products are stored in near-line storage for a spec-
ified period of time, after which they are purged (these operational forecasts
are not stored in LTA as they can be recreated since all input data and models
are archived).� Software Management — Ensure configuration management of all NWP and
related software across the participating organizations; maintain both opera-
tional and research code branches. Due to the nature of the operational weather
forecasts, it is critical to maintain detailed provenance of all software. This
requires the creation of a software management working group to review and
approve all revisions and version releases. The group would include members
from all operational and research organizations involved in developing and
running these models.� Verification and Validation (V&V) — Ability to perform software and model
V&V for all NWP models and software tools; perform automated regression
testing and operational testing of model quality and performance. This may
require the capability to archive operational forecasts as workflow instructions
for retrospect analyses.� Ensemble Forecasts — Most NWPs runs are deterministic, however, it is often
useful to run a set of multiple NWP runs that vary the initial and boundary
conditions and the model physics to generate a set of predictions. This set of
predictions is then analyzed to assess, for example, the ensemble variance and
evaluate the forecast uncertainties.� Tools for the Human Forecaster — Ultimately, most of the forecasts will still
require a human-in-the-loop to make the final forecast and issue warnings or
hazard assessments. These forecasters will require visualization and analysis
tools to support these tasks.

As a specific example, consider that running NWP models such as MM5 and WRF
typically requires HPC clusters with on the order of 200 processors, 500 GB of
memory per run, 10–100 GB of near-line storage per run, throughput on the order of
1 GB/s, and latencies of 1 hour or less.

Scenario 2: Climate Data Reprocessing. A very important aspect of climate data
analysis is the ability to reprocess various data sets as algorithms and knowledge
improve. This is necessary since the goal is to observe small, long-term trends in
various environmental parameters (such as sea surface temperature (SST)) that may



214 High-Performance Computing in Remote Sensing

be easily masked by systematic errors in the observing system or data processing
algorithms.

The key requirement is to be able to reprocess possibly years’ worth of satellite
and related data at a rate much higher than the original real-time data acquisition
rate. To illustrate this we consider the following example: 5 years of raw sensor data
(Level 0) are collected and archived. An improvement to the algorithm to produce
calibrated data is developed and a scientist wishes to reprocess all 5 years’ worth of
data from Level 0 to Level 1. However, she doesn’t want to do this at the original
data rate, but rather wants it reprocessed in 3 months (90 days). As a comparison
we assume the original data rate was 10 Mbps, and the full 5 years’ worth of Level
0 data would be � 200 pB. The effective reprocessing data rate would be about
10 × (365 × 5)/90 = 200 Mbps. This is a tremendous throughput requirement and
has significant impact on how the data stored, retrieved, and reprocessed.

To put this into perspective, consider that NASA has currently archived massive
amounts of satellite data stored in robotic tape drives. These archives have limited
throughput (� 25 TB/month) and are the main bottleneck in climate data analysis
[28]. In order to facilitate timely climate data studies and other data mining activities,
much higher data access rates are desired by the climate researchers. As a goal they
would like to be able to analyze 1 pB/month. Thus the throughput rate requires about
a factor of 40 increase. The WFCS grid architecture must provide a mechanism to
address this data access bottleneck.

Scenario 3: Cal/Val and Data Ingest. An important remote sensing workflow in-
volves the calibration and validation of new instruments as they are deployed and
their associated data retrieval algorithms (most commonly applied for spaceborne
sensors). As new instrumentation is deployed, it is necessary to verify the calibra-
tion and validate the derived data products against other measurement systems and
standards. This effort usually involves focused measurement campaigns over specific
Cal/Val sites, such as the DOE ARM sites [29]. The Cal/Val activities involve not
only the collection of data from the new instrument(s), but also include a wide range
of ground-based and airborne validation sensors deployed at the Cal/Val sites. All
of there data must be collected, quality controlled, archived, and made available to
the Cal/Val science teams for timely analysis in conjunction with the satellite data.
A common set of data preprocessing is typically involved that includes subsetting
the satellite data to the spatial and temporal coordinates of the Cal/Val activities and
performing match-ups, between the Cal/Val instrumentation and the satellite data.

10.2.2 Derived Functional Requirements and Resources

We now translate the scenarios and mission requirements discussed above into the
functional and resource requirements for the WFCS grid. These requirements are then
mapped into the definition of specific grid services that will be used to construct the
WFCS as an SOA.
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Workflow Management: The management of workflow is probably one of the
most critical requirements for the WFCS grid. Support is required at the user level in
a very high level form, using domain-specific terminology to allow users to create their
workflows. Support is also required down to much lower levels to create workflows
that will be invisible at the user level. Users must be able to create workflows to execute
their applications and models with specified data sets and perform post-processing
and visualization of the results.

Data Management and Processing: The various WFCS grid workflows all involve
the management of massive amounts of data, from raw sensor data to high-level
data products created by the system. The WFCS grid will have to support various
metadata standards for all data, data formats (HDF, NetCDF, BUFR, etc.), and tools
to support reading and writing these formats. All WFCS grid clients (human users
and applications) will require support for data discovery, replica location, and data
movement. In many cases it will be necessary to provide data preprocessing tools
collocated with the data to facilitate various filtering or data mining operations locally,
so that user data requests don’t unnecessarily utilize bandwidth. For example, there
maybe cases where a user only requires a specific spatial/temporal subset of a larger
data set, so it should be possible to specify the subsetting operation as part of the data
request. Federation of various types of databases will also be required to support ease
of access to data and resources, as well as provide system performance and reliability.

Resource Management: Management of grid resources involves resource discovery,
brokering, and scheduling in order to support the QoS requirements. The WFCS grid
must provide resource registries so that clients may automatically discover what
resources are available, what access they have to these resources, and the specific
attributes these resources provide. This is critical to the execution of workflows. The
automation of WFCS grid workflow execution requires sophisticated tools for the
scheduling, reservation, and brokering necessary to carry out the workflow execu-
tion. Implementing these functions relies on the ability to perform load balancing,
notification/messaging, and logging.

Core Functions: These include the base level functions that will be pervasive across
the whole WFCS grid and include security, grid monitoring, and resource fault and
recovery management.

Given the complex nature of the WFCS and the fact that this system is created by
combining services and resources from many different service providers, each with
their own local policies, there will be a significant amount of coordination to develop
grid-wide security policies and practices. These policies will address client authentica-
tion and authorization; however, to facilitate automated and arbitrary user workflows,
a single sign-on process will be required. Role-based authorization will also be an
important approach. This will also need to be extended to all the data that flow within
the WFCS grid, regarding all aspects of data life cycle (creation, edit, read/write,
delete).
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The large simulations must be monitored constantly to make sure they have the
compute resources to continue. The entire grid of instruments and the compute/data
grid must be constantly monitored.

The WFCS grid must be highly fault tolerant and have robust disaster recovery
mechanisms in place. Operational forecasts are required 24×7 so that the systems
and software must have robust fault detection and handling mechanisms. In the event
of a system failure, there must be a very fast mechanism for fail-over. This maybe ac-
complished using local backups or having mirrored resources that provide duplication
services for all operational forecasts.

Policy Specification: Given the high-level priorities specified above and the fact
that the WFCS grid requires utilization of resources that cross different administrative
domains, there are specific policy requirements that will need to be agreed upon by
all participating organizations and users and enforced using the appropriate software
and hardware mechanisms:

� Workflow Prioritization and Conflict Resolution: operational weather forecast-
ing workflow has priority over climate studies and science users;� User Authentication and Authorization: single sign-on and proxying not only
for hardware resources but data resources as well;� Resource Usage: may require defining roles and categories that specify resource
access, utilization, and priorities.

There are a very large number of policies that must be defined in a system such as the
WFCS grid. This is discussed further in Section 10.3.

Performance Considerations: The performance of the WFCS grid is one of the
key requirements. Performance may be specified by the various Quality of Service
requirements that are either explicitly stated or derived. Performance may be broken
down into a potentially large number of metrics. Here we will just discuss a few of the
more critical performance metrics. For example, since operational weather forecasting
has priority over all other applications, and has specific latency requirements, this
application will receive all required computing and network bandwidth resources
necessary to meet this requirement.

Performance Parameters: these quantify the behavior of the system using well-
defined and measurable quantities. Some of these parameters will have a first order
impact on the user experience, while others will have a higher order impact and
are utilized by the underlying infrastructure to keep the system running to maintain
system performance requirements. Also, many of these parameters are not completely
independent (for example, throughput and latency are often key parameters from a
user perspective as they can interact to determine the user’s time to solution). We
are interested in quantifying the performance of algorithms, software, and systems at
various levels of abstraction.
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An important aspect of performance measurement is that many of the grid services
may need to utilize performance parameter measurements to optimally perform their
functions. One example might be a scheduler that requires resource utilization and
loading in order to perform job scheduling and planning. The term often applied is
performance aware services.

It is not possible within this chapter to provide a complete list, however, some
important examples include:

Throughput: generally measured as the amount of information (bits/seconds)
that may be transfered between two points over a specified channel or
connection.

Latency: the time (seconds) taken between when a request is made and a response
is received.

Resource Utilization: the definition will depend on the specific resource under con-
sideration, CPU, node, cluster, disk storage space, etc.

Given this overview of the WFCS grid system requirements, we next discuss how
this may be mapped into a grid services architectural description.

10.2.3 WFCS Grid Services Architecture

The high-level system architecture and requirements analysis for the WFCS system
addressed the system elements and subsystems required to achieve the necessary
functionality for the WFCS. Given this view of the WFCS system architecture, we now
wish to cast it in terms of a service-oriented architecture using the framework provided
by the OGSA. The OGSA defines a set of basic capabilities with which to express
service-oriented functionality (see [9] for complete details): Execution Management
Services, Data Services, Resource Management Services, Security Services, Self-
Management Services, and Information Services. These services allow one to achieve
the necessary resource virtualization, common management capabilities, resource
discovery, and standardization (protocols and schemas) throughout the WFCS grid.
These OGSA defined services are built upon the physical resources that include
subsystems and interconnections (CPUs, storage systems, networks, etc.) as well as
instrumentation (e.g., spaceborne sensors).

Using these principles as a starting point we define an SOA view of the WFCS Grid
as shown in Figure 10.2. This figure illustrates the standard layered view (similar to
that shown in the overview to Section III, Introduction to Grids). The layers present
the physical resources at the lowest level that are distributed throughout the different
organizations that would constitute the WFCS grid, as well as the elements that
provide connectivity of the compute and sensor resources. The physical resource
layer is virtualized from the perspective of the user or application layer by the grid
services layer. This layer includes web services as a fundamental building material
upon which all services are built. At the user or application layer, the scientists have
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WFCS Grid Services Architecture
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Figure 10.2 WFCS grid services architecture.

access through a variety of high-level applications, APIs, or SDK. Some examples
have been discussed in the Grid Overview, including Web-based portals and specific
end-user grid applications.

These services are summarized below:

Workflow Management Services — general set of tools to allow clients to config-
ure and execute their operational and scientific research workflows within the
WFCS grid. These provide access to various underlying resources (such as HPC
systems) and are configured to enforce the prioritization policies. Following the
work of Deelman and others [31, 32], we envision workflow management that
allows users to express abstract workflows at the application domain level, and
these workflows are then translated into concrete workflows that are automat-
ically built from application services and optimally executed. By employing
Artificial Intelligence-based planning and scheduling techniques, it may be pos-
sible to optimize workflow execution. This automation has several advantages,
as discussed later in this chapter:� Workflow Composition Services – allowing users to define specific work-

flows to be executed within the WFCS grid. This service would operate
in the application domain, providing users a familiar set of terms with
which to define their workflow.� Workflow Scheduling, Brokering, and Execution Service – handles the ac-
tual execution of the workflow on behalf of the user. Ideally, these services
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would employ a high level of automation and optimization capabilities
that free the operational and science user from the low-level job execu-
tion details. Given the QoS requirements for operational forecasting, these
workflows would require a high degree of reliability in their execution.
This service should allow for the execution of very complex workflows,
such as those that might be built by a climate scientist analyzing several
decades worth of climate record data from various sources.� Execution Monitoring Service – allows clients to monitor the progress
and status of their workflow.

Data Management Services — this covers a range of services, including:� Data Ingest Services – ingest data into the WFCS grid from all sources
(ground, air and space), apply Quality Control/Quality Assurance analy-
sis, format and reformat and apply specific metadata schemas, and store
the data in various storage systems, including an LTA.� Metadata Catalog, Replica Location, and Retrieval Services – allow users
to find data using high-level domain language queries and retrieve or move
physical replicas to where the data are needed. Also performs replica
management (data revision control). The retrieval services include tools
such as GridFTP.� Long-Term Archive Service – long-term archival storage of all raw instru-
ment data as well as other data products generated within the WFCS grid.

Weather Forecast and Climate Model Services — services to support both oper-
ational and research forecast generation and analysis.� Synoptic Model Services – provides access to operational or research

synoptic weather forecast models.� Mesoscale Model Services – provides access to operational or research
mesoscale weather forecast models.� Ensemble Forecast Service – interfaces with the synoptic or mesoscale
services to allow users to compose ensemble forecasts.� Data Assimilation (DA) Services – a set of DA tools that can be used with
a variety of models for data assimilation.� Post-Processing Tools — basically a library of tools that the user can
have applied to model output; include output format selection, statistical
analysis tools, and plot generation. This would include tools to analyze
ensemble forecasts.� NWP Verification and Validation Service – a set of services that support
the verification and validation of NWP models; most likely constructed
from a set of lower level services and components (a generalized testing
framework that is implemented in such a manner as to allow grid-enabled
testing).� Forecaster Data Analysis and Visualization Service – a suite of tools that
allows human forecasters to visualize and analyze the model outputs on
their local workstations.



220 High-Performance Computing in Remote Sensing

� Climate Model Services – services to set up and execute specified climate
models.

Core Grid Services — underlying services that support all the higher level grid
services.� Security and Policy Management – provides authentication and autho-

rization for all users across the entire WFCS grid. The goal would be
to have single sign-on as well as proxy capabilities to allow services to
perform their functions on behalf of the authenticated user.� Grid Monitoring Services – general performance monitoring as well as
monitoring to support performance-aware grid services the require these
data to achieve the necessary QoS.� Software Configuration Management Services – grid-wide configuration
management and software repository/registry services.� Fault Handling and Disaster Recovery Services – due to the high QoS for
operational workflows, the underlying resources required to maintain the
necessary reliability would be handled by these services, catching system
faults and switching to backup systems and resuming workflows.

Next we consider some of the issues one would face in the implementation of the
WFCS grid architecture.

10.3 Remote Sensing Grids: Implementation

Given the requirements and architecture discussed in the previous section, we now
turn our attention to the practical implementation of a remote sensing grid such
as the WFCS. When combining heterogeneous and distributed resources to build
the WFCS grid one must address issues related not only to the grid middleware
technology but also the issues of grid management and policies. We first summarize the
management, policy, and staffing issues, and then discuss the necessary grid services
to support specific WFCS grid architectures, concentrating on data management, job
management, and monitoring.

10.3.1 Management and Policy Considerations

One of the key aspects of grid technology is the construction of virtual organizations
that constitute remote sensing grids or sensor webs. These virtual organizations are
constructed using the physical resources provided by different organizations, each
with their own administrative domains. The importance of understanding and ad-
dressing the policy aspects of building remote sensing grids or sensor webs can-
not be overstated and often is more of a bottleneck to implementation than any
aspect of the underlying technologies. In the early planning stages it is important
to build working groups that include the relevant information technology (IT) staff
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to address issues related to network management, information security, and resource
allocation.

The fundamental considerations for security deal with authentication and autho-
rization. Authentication addresses the ability to verify that a user or client (other
process or agent) is indeed who they claim to be. Authorization addresses the issue
of whether that user has rights or permissions to access and utilize grid resources
as part of the current request. Another real security issue for the construction of a
grid, such as the WFCS, is firewall policy. Local organization firewall and security
administrators have developed specific policies that do not necessarily include the
needs and requirements of the grid users. In the past, many grid tools required a wide
range of ports to be open in order to properly operate, and this was often in conflict
with existing firewall rules. The transition to a Web services-based implementation
has helped to alleviate this to some extent.

Beyond authentication and authorization is the general issue of identity manage-
ment. This is not only managing user accounts across multiple organizations but also
managing virtual organizations that rely on multiple certificate authorities. Another
important issue, driven by the creation of VOs, is that of the timely propagation of
certificate revocation lists among multiple certificate authorities.

An often overlooked area when setting up a grid environment is that of the types
and levels of expertise required by the support staff who maintain the grid resources
at each site and across the entire VO. The types of support staff and their functions
that may be required to support the grid are summarized below:

� Systems Administration — provides administration of all computer systems
at a particular grid site. A key function is keeping the system up-to-date with
respect to software patches, especially security patches. Those resources that
provide operational QoS to the WFCS grid would need full-time systems ad-
ministration support.� Database Administration — provides administration of the various databases
that exist at any given grid site. A key function of the database administra-
tor (DBA) position is the initial setup and optimization of a given DB. An
operational system may require a full-time DBA with on-call support.� Grid Services Administration and Application Support — provides specific
support to particular grid service applications. This does not necessarily need
to be a person separate from the systems administrator, but could be a sys-
admin who is familiar with the grid software. They also provide support to
scientific applications running on the WFCS grid as a service. Depending
on the application, it may require small teams that maintain the specific
applications.� Network Support — provides administration and maintenance of network in-
frastructure at a particular grid site. The key function here is to interface with
network support personnel at each local site to guarantee QoS and security. An
operational system may require full-time network support including on-call
support. The VO will also require support for intra-grid network management
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between sites and interfaces with various service providers. Another often over-
looked issue is that of IP address space management. Grid implementation often
requires large blocks of IP addresses or mechanisms to dynamically manage a
range of addresses.� Programmers — provide specialized tools based on various grid tool APIs or
SDKs. For applications with stressing QoS requirements these will have to be
programmers very familiar with how to develop optimized code on a range of
platforms, or may be a team at a particular organization within the WFCS grid
VO.� Training — provides training to grid users. The level of effort required will
vary depending on the user base of the system.

10.3.2 Data Management

Clearly the WFCS will need to manage data, from ingest to long-term archiving. At
the lowest level, data will reside in local file systems. This could be in simple flat
files, various types of databases, or structured file formats for scientific data such as
HDF [41] and NetCDF [42]. These file formats are sometimes referred to as self-
describing since the files contain metadata describing the data, such as the number,
dimensionality, size, and type of arrays.

Of course, WFCS users will be distributed and want to access data that are also
distributed. This means that files must be accessible from remote locations. One way
of doing this is with a distributed file system. The Network File System (NFS) is
essentially a distributed file system since it allows files to be accessed over a local
area network. Systems such as the Andrew File System (AFS), however, enable
multiple, distributed file servers to be federated under the same file namespace [43].
This is a conceptually simple approach where remote files can be read and written,
assuming that the path name to the physical file is explicitly known. Systems such
as the Storage Resource Broker (SRB) [44] and the Metadata Catalogue Service
(MCS) [45], however, allow data discovery using metadata catalogs. Data are then
accessed by attribute or logical file name, such that the user does not have to know
the physical location of the data. Replica management services may be invoked to
determine an optimal physical location for data access based on the user and specific
data destination. It should be pointed out that often the data transfer is not from
the physical storage location to the user proper, but rather to a third location for
data processing. This allows applications, such as the SRB, to transparently manage
multiple storage facilities and archives, resulting in a virtualization of the data storage
from a user perspective.

However the desired data are identified, they may have to be moved from one grid
location to another for processing or any other subsequent use. For basic data transfers
GridFTP was developed that extends the traditional File Transfer Protocol by using
the Grid Security Infrastructure. Not only does this enable strong authentication, it
also enables secure third-party transfers. This is very important in grid environments
where a client may want to use multiple resources in different locations.
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10.3.3 Job Management and Workflow

Even with an installed grid infrastructure, each user application will need specific
services built to provide the capabilities to achieve the user’s goals. While domain-
specific applications can be built using grid middleware and Web services (e.g., Globus
toolkit) directly, many scientific users feel that this interface is too low-level and
detailed and desire higher level access to the underlying capabilities.

The development of grid enabled applications, either new applications or grid-
enabling legacy applications, has proved to be somewhat of an impediment to the
implementation of grid technology. Tools are also being developed, however, that are
allowing for easier application development.

At the highest, most specific level, grids may be used to provide services to users
in a manner that is essentially indistinguishable from desktop implementations. One
approach to this is via network-enabled services (NES). This follows the traditional
paradigm of servers providing services to clients over networks, but in the case of
network-enabled services, there is a resource manager that brokers the client-server
interaction to take advantage of the distributed and dynamic nature of the available
resources. This formalism is implemented in the GridRPC protocol, which extends
the remote procedure call (RPC) protocol, a well-established client-server interface
standard.

GridRPC has been implemented in various network-enabled services that aim to
provide high level functionality to the end user, such as the NetSolve/GridSolve
project that provides a client interface in the Matlab and Mathematica computing
environments, Ninf and DIET which provide a framework for writing GridRPC en-
abled applications in high level programming languages.

There have been several attempts to produce more general purpose application
programming interfaces (API) to facilitate grid application authoring, resulting in
the creation of the Simple API for Grid Applications (SAGA), within the GGF [39].
SAGA is an attempt to provide a basic interface to the most commonly used grid
functionalies. It does not attempt to encompass the full capabilities of the underlying
middleware, but allows for rapid development of software. It attempts to capture
80 percent of the functionality with perhaps 20 percent of the effort as compared to
directly interfacing at the lowest level. The SAGA working group of the GGF is basing
the requirements for the API on submitted use cases for a variety of grid applications.
A strawman API specification is being developed using the object-oriented Scientific
Interface Description Language (SIDL) with object abstractions for complex entities
such as a handle to a remote procedure call. The API includes functionalies for
Security via a session paradigm; Data Management including remote file access and
replica cataloging; Job Management including remote job startup and asynchronous
operations; and Inter-Process Communications via a stream mechanism. Work is in
progress on specific bindings to C++ and Java. Commodity Grid Kits (CoG Kits)
also provide a direct interface to the functionality of grid back-ends via high level
languages such as Java and Python.

Although stand-alone services may be offered with grid back-ends, more often
the desired product requires considerable flexibility that is best accomplished by
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combining and chaining grid applications and services into workflows. From the user
perspective, one would like to focus their attention on their specific workflow and not
the underlying grid infrastructure and computing technologies. Thus grid technology
should enable the remote sensing scientists to build and execute their workflows
with little or no understanding of the underlying technologies (they don’t need to be
computer scientists). They would like to be free from the low-level details involved
with the execution of these workflows; this is the virtualization of scientific workflow,
one of the visions for the grid.

Automation of workflow has several advantages. It improves usability from the
perspective of the scientific user, who is now freed from the complexity of the grid
and can focus on their application. The users interested in very complex workflows
(such as the climate scientist wishing to analyze and data mine massive amounts
of satellite data) are freed from the details of how their application level workflow
specifications are mapped to the concrete workflow and executed on the grid. It is
also possible to address the policy issues of user authorization and task priorities
(recall that operational tasks have priority over research tasks in the WFCS grid).
Additional automation helps to also address issues with cost to solution, reliability
(fault detection and handling), and performance issues.

The development of sophisticated workflow managers that allow users to employ
high level, domain-specific commands is a critical need. There are several ongoing
projects attempting to address this problem. Pegasus (Planning for Execution in Grids)
[30, 31, 32] is a workflow construction tool that allows the mapping of an abstract
workflow to a specific grid implementation. The abstract workflow is portable in the
sense that the operations are not tied to particular grid resources. Pegasus uses artificial
intelligence (AI) methods to heuristically optimize the resulting concrete workflow.
Pegasus guarantees that the necessary data are transferred to the appropriate execution
nodes, and also attempts to minimize redundancy by removing processes from the
workflow that produce intermediate data that are already available. The input to
Pegasus is in the form of abstract Directed Acyclic Graphs (DAGs), which may be
created by the Chimera package, and it produces concrete DAGs compatible with the
Condor DAG Manager (DAGMan) for execution [46].

XWorkflow [47] is a graphical tool for producing general workflows from Web
services. It provides a GUI that allows the developer to chain outputs from one Web
service to another’s input and generates Jython [48] scripts that execute the workflows.

10.3.4 Grid Monitoring and Testing

The purpose of a grid performance monitoring (GPM) system is to reliably provide
timely and accurate measurements regarding various grid services and resources,
without perturbing the grid operation or performance. Monitoring is important for
understanding the overall operation of the WFCS grid, detection of failures, and
optimization of performance. Information on grid health and status is used by some
services to optimize and schedule resource utilization.

GPM provides the data and analysis to identify performance problems and issues
so that performance may be optimized for specific applications or conditions. In the
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WFCS grid we are interested in not only monitoring the underlying grid infrastructure,
resources, and services, but the applications (e.g., weather forecast model execution)
as well. The GPM system must provide real-time information about the state of the
WFCS, as well as measurements of specific events (e.g., failures). GPM also provides
fault tolerance required by operational systems and those that have service level agree-
ments to provide minimum quality of service. GPM also provides the data required
by performance prediction models that may assist with various resource scheduling
and load balancing services. The GPM system must itself be fault tolerate in order to
provide continuous and reliable observations. Typical parameters monitored as part
of a GPM system include:

� Network bandwidth utilization (past, present, and future)� Storage utilization and availability� Storage archive transfer rates� Processor utilization� Data transfer latency� Metadata query rates

Performance monitoring in a grid environment is different than that typically per-
formed within a local administrative domain. Grid performance monitoring systems
must be scalable over a wide-area network and will involve a large number of hetero-
geneous resources, many within different administrative domains.

The GGF has defined a baseline architecture for grid performance monitoring, the
Grid Monitoring Architecture (GMA) [33]. The GMA consists of three components:
producers, consumers, and a registry. The producers are sources of grid performance
measurements and are registered with the registry service so that consumers may
discover their existence. Once a consumer discovers the existence of a particular
producer, the consumer and producer may communicate directly. The producers are
the source of grid measurements, coupled with either software or hardware sensors
that perform the basic measurements. Producers and consumers may be composed
to build complex producers that provide higher level measurement information (for
example, by ingesting network bandwidth measurements, one could build a bandwidth
prediction producer).

Ignoring for the moment the details of instrumentation and data collection, we
observe that the WFCS grid performance data resembles, in many respects, the sensor
data that the WFCS grid is designed to catalog, store, and distribute. In other words,
from a sufficiently abstract perspective, the WFCS grid performance data are produced
by sensors (performance probes implemented in hardware or software) on platforms
(hosts, CPUs, disk arrays, network routers, and the like). Consequently, many of
the generic attributes of the metadata schemata such as producer, platform, sensor,
and time of collection (to name a few) can also be applied to data sets of WFCS
grid performance measurements. In addition, these performance data sets can be
stored, archived, and replicated using the same infrastructure that the WFCS grid
uses for its science data. Finally, the same execution and scheduling mechanisms
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that are used by the science codes executing on the WFCS grid can also be used
by performance analysis tools for postmortem analysis of the measurement data sets
generated by the performance monitors. In other words, WFCS grid performance
data are essentially no different, in principle, from any other science data set, and
the WFCS grid infrastructure can support performance monitoring and analysis just
as easily as it supports the collection, generation, and analysis of earth sciences data
products.

Testing is an area that is often only given consideration late in system development.
However, we would argue that testing should be designed into the grid architecture
and implementation from the very beginning. The GPM architecture and tools may
also be used for testing the grid.

In addition to the core services there will be the need to develop services unique to
grids such as the WFCS that provide capabilities unachievable without the integration
of the components. One such example is the steering of instruments based on in-depth
data analysis and model predictions. Such feedback is extremely difficult currently
because of the barriers separating the observation and computational elements. This
capability would greatly enhance observational efficiency and is an important goal of
LEAD (Linked Environments for Atmospheric Discovery), a remote sensing/weather
forecasting grid currently under development and discussed in the next section.

Finally, we mention a few examples of some of the grid performance monitoring
tools that have been employed by other grid projects. NetLogger (short for Net-
worked Application Logger) is a system for performing detailed end-to-end analysis
of distributed applications [35]. It includes tools for instrumenting applications, host
systems, and networks and has a powerful visualization tool for correlating monitoring
data from all components. NetLogger is extremely useful for debugging and tuning
distributed applications, and for bottleneck detection. The Network Weather Service
(NWS) is a distributed system that periodically monitors and dynamically forecasts
the performance that various network and computational resources can deliver over
a given time interval [36]. There is also an open source host, service, and network
monitoring application called Nagios [37]. Nagios uses a plug-in architecture and
provides current status information, historical logs, and various reports all accessible
from a Web browser.

10.4 Remote Sensing Grids: Examples

10.4.1 Example 1: Linked Environments for Atmospheric Discovery
(LEAD)

Linked Environments for Atmospheric Discovery (LEAD) is a National Science Foun-
dation (NSF) Large Information Technology Research (ITR) project that is creating
an integrated, scalable cyber-infrastructure for mesoscale meteorology research and
education [12]. It is designed to allow weather forecasts and atmospheric analysis
that can adapt to rapidly changing conditions and take advantage of large amounts
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of computing resources that may only be needed for a relatively short amount of
time but are required on-demand. These applications are also characterized by large
amounts of streaming data from sensors that would ideally interact with the analysis.
The general concept of LEAD is a group of services that may be linked together in
workflows to accomplish the task at hand, but whose workflows may be dynamically
and automatically modified based on feedback from the sensor observations [13].

A grid architecture is an ideal solution to this sort of problem. The architecture
consists of a sequence of layers spanning the distributed resources to the user, but
there are several ‘cross-cutting’ services that are available to all layers, encompass-
ing authorization, authentication, monitoring, notification, and a personal metadata
catalog service, known as MyLEAD. LEAD stores metadata using an XML schema
that is an extension of the Federal Geographic Data Committee (FGDC) standard.
These services, along with the portal service, are persistent and form a robust core
upon which workflows can be built with specific instances of the layered services.

The base software layer, the resource access layer, is built on Globus grid services,
Unidata’s Local Data Manager (LDM), Open-Source Project for a Network Data
Access Protocol (OPeNDAP), the Open Grid Service Architecture Data Access and
Integration (OGSA-DAI) service, and other data access services. On top of this is
a LEAD-specific middle layer that contains five basic functional blocks: a resource
broker; application and configuration services that provide the facilities to launch
instances of the needed forecasting and analysis applications (WRF, ADaM, ADAS,
etc.); a catalog service with a virtual organization catalog allowing access to public-
domain data sources and services; data services that allow for access, query, and trans-
formation of data products; and workflow services to build and monitor workflows.

LEAD specifies workflows using the Business Process Execution Language for
Web Services (WS-BPEL), which has facilities allowing for event detection and
dynamic modification of workflows. This is a key requirement for LEAD’s goal of
adaptability. Currently, only static workflows are being supported, but dynamic user-
initiated modification capabilities are being developed with automatic modification
to follow. Workflow status is monitored via a system that utilizes the Autopilot and
SvPablo performance monitoring toolkits as well as a newly built Health Application
Monitoring Interface and a workflow annotation system to report on currently running
workflow elements.

Figure 10.3 shows a high-level view of the LEAD architecture. This is similar to
the WFCS Grid architecture illustrated in Figure 10.1, with the resource, middleware,
and application layers. In the case of the LEAD system, the middleware services are
accessed by various portlets that provide access to the various high-level functions,
such as workflow design and data visualization. Workflows are graphically defined,
then converted into WS-BPEL for execution by the workflow service. The user inter-
acts with the portlets through a Web-based portal or using desktop serviceware. Also
note that the cross-cutting services in Figure 10.3 are the core grid services mentioned
earlier in this chapter.

The current instance of LEAD is being prototyped on a grid based at several member
institutions with hardware varying from single-CPU servers to large clusters. Later
instances will be expanded to other grids such as the TeraGRID.
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Figure 10.3 LEAD software architecture.

10.4.2 Example 2: Landsat Data Continuity Mission (LDCM)
Grid Prototype (LGP) Project

The Landsat Data Continuity Mission (LDCM) Grid Prototype (LGP) offers a specific
example of distributed processing of remotely sensed data. The LGP is a proof-
of-concept system using distributed computing to generate single, cloud and shadow
free Landsat-like scenes from the composite of multiple input scenes, the data for
which may be physically distributed [14, 15, 16]. The system ingests multiple scenes
from the Landsat Enhanced Thematic Mapper+ (ETM+), calibrates the intensities,
applies cloud and shadow masks, calculates surface reflectance (based on ancillary
data for atmospheric ozone and water vapor profiles), registers the images with respect
to their geographic location, and forms a single composite scene.

These computational tasks are performed within a virtual organization with com-
puting resources consisting of Linux servers located at USGS offices in South Dakota,
USA, and the NASA Goddard Space Flight Center in Maryland, USA. The Globus
toolkit (version 2.4.3) provides middleware services with the Java Commodity Grid
Kit (CoG) overlayer. Workflows are initiated via Perl scripts that form a command line
user interface and generate XML files that are interpreted by the Karajan workflow
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engine. Specifically, two elements of Globus are used in this project: GridFTP for
file transfer, and the Globus Resource Allocation Manager (GRAM) for resource
allocation and job execution. Authentication is accomplished via the Grid Security
Infrastructure (GSI) using host certificates issued by the Committee on Earth Obser-
vation Satellites (CEOS) certificate authority.

The user initiates a workflow by creating a file that specifies the geographic areas
and times of interest. (Additionally, the network location of initial data is currently
specified manually.) XML files generated from this product specification direct the
transfer of input data files to the compute machines, which are allocated in a round-
robin fashion. Processing of an input image takes place serially on the compute node to
which it is assigned. The intermediate results are then gathered for final compositing
and transferred back to the initiating computer.

10.4.3 Example 3: NOAA National Operational Model Archive
and Distribution System (NOMADS)

The National Oceanic and Atmospheric Administration (NOAA) National Opera-
tional Model Archive and Distribution System (NOMADS) is a pilot project allowing
access to historical and real-time climate and weather data both from observations
and models [17, 18, 19]. It is built as a collection of Web services that provide data
spanning multiple government agencies and academic institutions in a format-neutral
manner. The data available include input and output from the Numerical Weather Pre-
diction (NWP) models from National Centers for Environmental Prediction (NCEP);
Global Climate Models (GCM); simulations from Geophysical Fluid Dynamics Lab-
oratory (GFDL); global and regional reanalysis from NCEP and the National Center
for Atmospheric Research (NCAR); and limited surface, upper-air and satellite ob-
servational data sets from NCDC, NOAA’s National Ocean Data Center (NODC),
and NOAA’s Forecast System Laboratory (FSL).

While NOMADS is not strictly implemented as a grid service, it is based on Web
services and as such fits into the architectural approach outlined for the WFCS grid.
NOMADS consists of a variety of services, but it is primarily based on the Open
Source Project for a Network Data Access Protocol (OPeNDAP). OPeNDAP is a
system to allow abstract access to differently formatted, physically distributed data.
It handles a wide variety of formats for translation (e.g. HDF, netCDF, GRIB, etc.)
and allows for subsetting and variable isolation on the server side. There are mul-
tiple NOMADS servers located at NCEP, GFDL, and NCDC. The NCDC instance
provides 20 TB of online storage where near-term data are archived. The remain-
der of the deep archives are accessed via the High-Performance Storage System
(HPSS).

The data are served to the user via HTTP or FTP using the Grid Analysis and
Display System (GrADS) Data Server (GDS) and the Live Access Server (LAS).
There are also lower level access capabilities that utilize http transfers of data served
by Perl scripts. These capabilities allow high-volume access to experienced users with
more specific knowledge of the data.
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10.5 Remote Sensing Grids: Adoption

Building a system such as the WCFS grid will actually require paths to adoption for
all the major stakeholders. Besides defining and building desired new capabilities,
many legacy systems will have to be incorporated into the grid architecture. Grid
enabling the legacy systems requires creating the necessary services based on these
capabilities. One of the primary advantages offered by the service-oriented architec-
ture approach is the ability to provide continuity to the user during system evolution.
Only the client-service interface need remain fixed to guarantee compatibility. Gen-
erally, the implementation of a grid such as the WFCS would be undertaken with
the aim of minimally disrupting the existing structure of the individual organizations
forming the VO. Given this constraint, there is a wide range of accessibility that the
individual organizations can offer. An operational weather forecasting organization
will still be expected to generate an accurate and timely product without disruption
and consequently is unlikely to offer low-level resource access to outside users. Such
an entity is likely to join the VO as a highly vertically integrated module with a
service cap that provides an interface to the final product. Conversely, a university
or other research organization may be able to offer access at all levels providing
finer granularity modules for tighter horizontal integration of the VO. The ability to
handle this heterogeneity (of organizational structure as well as system architecture)
is a key aspect of grid computing. Furthermore, as the system evolves, the grid al-
lows for gradual blurring of the lines of the vertically integrated organizations to share
resources at lower levels. As such, the system can evolve in capabilities and efficiency
while still providing continuity to the user.

Ultimately we want to enable the complete non-computer specialist to be a routine
grid user. This means that we must build easy-to-use tools using widely accepted user
interfaces. Perhaps the most popular mechanism to provide these end-user tools is
via Web interfaces or grid portals. Tools are available to speed the development of
these interfaces, such as GridPort, which allows for the generation of customizable
Web interfaces. The concepts discussed here have been brought together in grid-based
problem solving environments (PSE). PSEs provide all the functionality and resources
necessary to solve a specific domain of problems at a high level. The syntax of these
environments is that of the target application domain removing the user from any of
the details of the underlying computational system, here the grid computing paradigm.
Research is progressing in the use of PSEs to provide remote sensing functionality,
e.g., processing of synthetic aperture radar (SAR) images to the science user [40].

Grids have come a long way and the technology is maturing with standards emerg-
ing in the marketplace and major vendors staking out positions. However, we still do
not quite have turnkey grid solutions. Designing and deploying a grid infrastructure
to support a particular project or community still requires a core IT staff that is knowl-
edgeable about grids. Nonetheless, grid middleware has matured over the past few
years, and the development of grid services by leveraging Web services has improved
adoptability. As the grid standards become more mature and stable, it is expected that
the rate of adoption and implementation of remote sensing grids will increase.
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10.6 Acronyms

Term Description
3DVar 3-Dimensional Variational (data assimilation)
AdaM Algorithm Development and Mining System
ADAS Atmospheric Data Assimilation System
AFS Andrew File System
AFWA Air Force Weather Agency
AI Artificial Intelligence
API Application Programming Interface
ARM Atmospheric Radiation Measurement
BUFR Binary Universal Form for Representing meteorological data
CA Certificate Authority
CEOS Committee on Earth Observation Satellites
CPU Central Processing Unit
COAMPS Coupled Ocean/Atmosphere Mesoscale Prediction System
DB Database
DBA Database Administrator
DAG Directed Acyclic Graph
DoD Department of Defense
DOE Department of Energy
ECMWF European Center for Medium-range Weather Forecasting
EOS Earth Observing System
ESTO Earth Science Technology Office
FGDC Federal Geographic Data Committee
FSL Forecast Systems Laboratory
FNMOC Fleet Numerical Meteorology and Oceanography Center
FTP File Transfer Protocol
GCM Global Climate Models
GDS GrADS Data Server
GFDL Geophysical Fluid Dynamics Laboratory
GGF Global Grid Forum
GPM Grid Performance Monitoring
GrADS Grid Analysis and Display System
GRAM Globus Resource Allocation Manager
HDF Hierarchical Data Format
HPC High Performance Computing
HTTP Hypertext Transfer Protocol
IDV Integrated Data Viewer
LAS Live Access Server
LEAD Linked Environments for Atmospheric Discovery
LEO Low Earth Orbit
LDCM LandSat Data Continuity Mission
LGP LDCM Grid Prototype
LTA Long Term Archive
MM5 PSU/NCAR mesoscale model
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MCS Metadata Catalog Service
NASA National Aeronautics and Space Administration
NCAR National Center for Atmospheric Research
NCDC National Climatic Data Center
NCEP National Centers for Environmental Prediction
NES Network Enabled Services
NetCDF Network Common Data Format
NOAA National Oceanic and Atmospheric Administration
NODC National Ocean Data Center
NOMADS National Operational Model Archive & Distribution System
NWP Numerical Weather Prediction
NWS National Weather Service
OGSA Open Grid Services Architecture
OGSA-DAI Open Grid Services Architecture Data Access & Integration
QoS Quality of Service
PSE Problem Solving Environment
RPC Remote Procedure Call
RSG Remote Sensing Grid
SAGA Simple API for Grid Applications
SDK Software Development Kit
SIDL Scientific Interface Description Language
SLA Service Level Agreement
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SRB Storage Resource Broker
USGS United States Geological Survey
VO Virtual Organization
V&V Verification and Validation
WFCS Weather Forecasting and Climate Science
WRF Weather Research and Forecasting Model
WS Web Services
WS-BPEL Business Process Execution Language for Web Services
WSDL Web Services Description Language
XML eXentsible Markup Language
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The ESA Science and Application Department of Earth Observation Programmes
Directorate at ESRIN has focused on the development of a dedicated Earth Science
grid infrastructure, under the name Earth Observation Grid Processing On-Demand
(G-POD). This environment provides an example of transparent, fast, and easy access
to data and computing resources. Using a dedicated Web interface, each application
has access to the ESA operational catalogue via the ESA Multi-Mission User Inter-
face System (MUIS) and to storage elements. It furthermore communicates with the
underlying grid middleware, which coordinates all the necessary steps to retrieve, pro-
cess, and display the requested products selected from the large database of ESA and
third-party missions. This makes G-POD ideal for processing large amounts of data,
developing services that require fast production and delivery of results, comparing
scientist approaches to data processing, and permitting easy algorithm validation.
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11.1 Introduction

Following the participation of the European Space Research Institute (ESRIN) at ESA
in DataGrid, the first large European Commission funded grid project [1], the ESA
Science and Application Department of Earth Observation Programmes Directorate
has focused on the development of a dedicated Earth Science grid infrastructure, under
the name Earth Observation Grid Processing on-Demand [2]. This generic grid-based
environment (G-POD) ensures that specific Earth Observation (EO) data handling
and processing applications can be seamlessly plugged into the system. Coupled with
high performance and sizeable computing resources managed by grid technologies,
G-POD provides the necessary flexibility for building a virtual environment that gives
applications quick access to data, computing resources, and results. Using a dedicated
Web interface, each application has access to a catalogue like the ESA Multi-Mission
User Interface System (MUIS) and storage elements. It furthermore communicates
with the underlying grid middleware, which coordinates all the necessary steps to
retrieve, process, and display the requested products selected from the large database
of ESA and third-party missions.

Grid On-Demand provides an example of transparent, fast, and easy access to data
and computing resources. This makes G-POD an ideal environment for processing
large amounts of data, developing services that require fast production and deliv-
ery of results, comparing approaches, and fully validating algorithms. Many other
grid-based systems are being proposed by various research groups using similar and
alternative approaches, although sharing the same ambition for improved integration
of the emerging Information and Communication Technologies (ICT) technologies
exploitable by the Earth Science community.

In the Sections 11.2 and 11.3 we give an overview of selected ESA Earth Ob-
servation missions and related software tools that ESA provides for facilitating data
handling and analysis. In Section 11.4 we describe how the EO community can ben-
efit from grid technology for data access and sharing. In this context, some examples
of ESA and EU projects are described. Section 11.5 describes in detail the G-POD
environment, its infrastructure, the intermediary layer developed to interface with the
application, and the grid computer and storage resources, the Web portals. Differ-
ent examples of EO applications integrated in G-POD are described in Section 11.6.
Section 11.7 briefly documents the use of grid technology in Earth Science Knowledge
Infrastructures. Conclusions are drawn in Section 11.8.

11.2 ESA Satellites, Instruments, and Products

This section briefly overviews the ESA European Remote Sensing satellite (ERS) and
Envisat missions and the sensors on-board these satellites, with special attention to
the data used in the context of ESA’s activities on grids.
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11.2.1 ERS-2

The ERS-2 Earth Observation mission [3] has been operating since 1995. The ERS-2
satellite carries a suite of instruments to provide data for scientific and commercial ap-
plications. ERS-1, the ERS-2 predecessor, was launched in July 1991 and was ESA’s
first sun-synchronous polar-orbiting remote sensing mission, operated until March
2000. It continued to provide excellent data, far exceeding its nominal lifetime. ERS-
2 is nearly identical to ERS-1. The platform is based on the design developed for the
French SPOT satellite. Payload electronics are accommodated in a box-shaped hous-
ing on the platform; antennas are fitted to a bearing structure. On-board ERS-2 there
are seven instruments to support remote sensing applications: RA, ATSR, GOME,
MWR, SAR, WS, and PRARE. In particular we wish to refer to:

� SAR: Synthetic Aperture Radar (SAR) wave mode provides two-dimensional
spectra of ocean surface waves. For this function the SAR records regularly
spaced samples within the image swath. The images are transformed into di-
rectional spectra providing information about wavelength and the direction of
the wave systems. Automatic measurements of dominant wavelengths and di-
rections will improve sea forecast models. However, the images can also show
the effects of other phenomena, such as internal waves, slicks, small-scale vari-
ations in wind, and modulations due to surface currents and the presence of
sea ice.� GOME: The GOME instrument, which stands for Global Ozone Monitoring
Experiment, is a newly developed passive instrument that monitors the ozone
content of the atmosphere to a degree of precision hitherto unobtainable from
space. This highly sophisticated spectrometer was developed by ESA in the
record time of five years. GOME is a nadir-scanning ultraviolet and visible
spectrometer for global monitoring of atmospheric ozone. It was launched on-
board ERS-2 in April 1995. Since the summer of 1996, ESA has been delivering
to users three-day GOME global observations of total ozone, nitrogen dioxide,
and related cloud information, via CD-ROM and the Internet. A key feature of
GOME is its ability to detect other chemically active atmospheric trace gases
as well as the aerosol distribution.� ATSR: The Along-Track Scanning Radiometer consists of an InfraRed Ra-
diometer (IRR) and a Microwave Sounder (MWS). On-board ERS-1, the IRR
is a four-channel infrared radiometer used for measuring sea-surface tempera-
tures (SST) and cloud-top temperatures, whereas on-board ERS-2 the IRR is
equipped with additional visible channels for vegetation monitoring.

11.2.2 Envisat

The Environmental Satellite (Envisat) [4] is an advanced polar-orbiting Earth Ob-
servation satellite that provides measurements of the atmosphere, ocean, land, and
ice. The Envisat satellite has an ambitious and innovative payload that ensures the
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continuity of the data measurements of the ERS satellites. The Envisat data sup-
port Earth Science research and allow monitoring of the evolution of environmental
and climatic changes. Furthermore, they facilitate the development of operational
and commercial applications. On-board Envisat there are ten instruments: ASAR,
MERIS, AATSR, GOMOS, MIPAS, SCIAMACHY, RA-2 (Radar Altimeter 2), MWR
(Microwave Radiometer), DORIS (Doppler Orbitography and Radio-positioning),
LRR (Laser Retro-Reflector). In particular we wish to refer to:

� ASAR: ASAR is the Advanced Synthetic Aperture Radar. Operating at C-band,
it ensures continuity with the image mode (SAR) and the wave mode of the
ERS-1/2 AMI (Active Microwave Instrument). It features enhanced capability
in terms of coverage, range of incidence angles, polarization, and modes of
operation. This enhanced capability is provided by significant differences in
the instrument design: a full active array antenna equipped with distributed
transmit/receive modules that provide distinct transmit and receive beams, a
digital waveform generation for pulse ‘chirp’ generation, a block adaptive
quantization scheme, and a ScanSAR mode of operation by beam scanning
in elevation.� MERIS: MERIS is a programmable, medium-spectral resolution imaging
spectrometer operating in the solar reflective spectral range. Fifteen spec-
tral bands can be selected by ground command, each of which has a pro-
grammable width and a programmable location in the 390 nm to 1040 nm
spectral range. The instrument scans the Earth’s surface by the so-called push-
broom method. Linear CCD arrays provide spatial sampling in the across-
track direction, while the satellite’s motion provides scanning in the along-
track direction. MERIS is designed so that it can acquire data over the Earth
whenever illumination conditions are suitable. The instrument’s 68.5◦ field
of view around nadir covers a swath width of 1150 km. This wide field of
view is shared between five identical optical modules arranged in a fan-shape
configuration.� AATSR: The Advanced Along-Track Scanning Radiometer (AATSR) is one
of the Announcement of Opportunity (AO) instruments on-board Envisat.
It is the most recent in a series of instruments designed primarily to mea-
sure Sea Surface Temperature (SST), following on from ATSR-1 and ATSR-
2 on-board ERS-1 and ERS-2. AATSR data have a resolution of 1 km at
nadir and are derived from measurements of reflected and emitted radiation
taken at the following wavelengths: 0.55 μm, 0.66 μm, 0.87 μm, 1.6 μm,
3.7 μm, 11 μm, and 12 μm. Special features of the AATSR instrument
include its use of a conical scan to give a dual view of the Earth’s sur-
face, on-board calibration targets, and use of mechanical coolers to main-
tain the thermal environment necessary for optimal operation of the infrared
detectors.� GOMOS: The Global Ozone Monitoring by Occultation of Stars instrument is
a medium-resolution spectrometer covering the wavelength range from 250 nm
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to 950 nm. The high sensitivity down to 250 nm required the design of an all-
reflective optical system for the UVVIS part of the spectrum and the functional
pupil separation between the UVVIS and the NIR spectral regions. Due to the
requirement of operating on very dim stars (magnitudes ≤ 5), the sensitivity
requirement for the instrument is very high. Consequently, a large telescope
with 30 cm × 20 cm aperture had to be used in order to collect sufficient signals.
Detectors with high quantum efficiency and very low noise had to be developed
to achieve the required signal to noise ratios (SNR).� MIPAS: The Michelson Interferometer for Passive Atmospheric Sounding is
a Fourier transform spectrometer for the detection of limb emission spectra in
the middle and upper atmosphere. It observes a wide spectral interval through-
out the mid infrared with high spectral resolution. Operating in a wavelength
range from 4.15 μm to 14.6 μm, MIPAS detects and spectrally resolves a large
number of emission features of atmospheric trace gas constituents playing a
major role in atmospheric chemistry. Due to its spectral resolution capabili-
ties and low-noise performance, the detected features can be spectroscopically
identified and used as input to suitable algorithms for extracting atmospheric
concentration profiles of a number of target species.� SCIAMACHY: The Scanning Imaging Absorption Spectrometer for Atmo-
spheric Cartography instrument is an imaging spectrometer whose primary
mission objective is to perform global measurements of trace gases in the tro-
posphere and in the stratosphere. The solar radiation transmitted, backscattered,
and reflected from the atmosphere is recorded at high resolution (0.2 μm to
0.5 μm) over the range 240 nm to 1700 nm, and in selected regions between
2.0 μm and 2.4 μm. The high resolution and the wide wavelength range make
it possible to detect many different trace gases despite low concentrations. The
large wavelength range is also ideally suited for the detection of clouds and
aerosols. SCIAMACHY has three different viewing geometries: nadir, limb,
and sun/moon occultations, which yield total column values as well as distri-
bution profiles in the stratosphere and even the troposphere for trace gases and
aerosols.

11.3 Example of Specialized User Tools for Handling ESA
Satellite Data

To facilitate users in accessing ERS and Envisat instrument’s data products, ESA
has developed a set of software utilities with the contribution and validation of key
instrument scientists. All these tools can be downloaded for free at [5].

Among these tools, some of them have been integrated in the ESA grid environment,
and for this reason we briefly describe them in the following. Greater details can be
obtained from the aforementioned Website.
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Figure 11.1 The BEST Toolbox.

11.3.1 BEST

The Basic Envisat SAR Toolbox (BEST) is a collection of executable software tools
that has been designed to facilitate the use of ESA SAR data. The purpose of the
Toolbox is not to duplicate existing commercial packages, but to complement them
with functions dedicated to the handling of SAR products obtained from ASAR and
AMI on-board Envisat, ERS-1, and ERS-2, respectively. BEST has evolved from the
ERS SAR Toolbox (see Figure 11.1).

The Toolbox operates according to user-generated parameter files. The interface
does not include a display function. However, it includes a facility to convert images
to TIFF or GeoTIFF format so that they can be read by many commonly available
visualization tools. Data may also be exported in the BIL format for ingestion into
other image processing software.

The tools are designed to achieve the following functions: data import and quick
look, data export, data conversion, statistical analysis, resampling, co-registration,
basic support for interferometry, speckle filtering, and calibration.

11.3.2 BEAM

The Basic ERS & Envisat (A)ATSR and MERIS Toolbox is a collection of executable
tools and APIs (Application Programming Interfaces) that have been developed to fa-
cilitate the utilization, viewing, and processing of ERS and Envisat MERIS, (A)ATSR,
and (A)SAR data. The purpose of BEAM is to complement existing commercial pack-
ages with functions dedicated to the handling of MERIS and AATSR products. The
main components of BEAM are:� A visualization, analyzing, and processing software (VISAT).� A set of scientific data processors running either from the command line or

invoked by VISAT.
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Figure 11.2 The BEAM toolbox with VISAT visualization.

� A data product converter tool allowing a user to convert raw data products to
RGB images, HDF-5, or the BEAM-DIMAP standard format.� A Java API that provides ready-to-use components for remote sensing related
application development and plug-in points for new BEAM extensions.� MERIS/(A)ATSR/(A)SAR product reader API for ANSI C and IDL, allowing
read access to these data products using a simple programming model.

VISAT (see Figure 11.2) and the scientific data processors use a simple data input/
output format, which makes it easy to import ERS and Envisat data in other imaging
applications. The format is called DIMAP and has been developed by SPOT-Image
in France. The BEAM software uses a special DIMAP profile called BEAM-DIMAP,
which has the following characteristics:

� A single product header (XML) containing the product metadata.� An associated data directory containing ENVI-compatible images for each
band.

Each image in the directory is composed of a header file (ASCII text) and an image
data file (flat binary) source code. The complete BEAM software has been developed
under the GNU public license and comes with full source code (Java and ANSI C).
All main components of the toolbox are programmed in pure Java for maximum
portability. The product reader API for C has been developed exclusively with the
ANSI-compatible subset of the C programming language. The BEAM software has
been successfully tested under MS Windows 9X, NT4, 2000, and XP, as well as
under Linux and Solaris operating systems. BEAM is intended to also run on other
Java-enabled UNIX derivates, e.g., Mac OS X.



Open Grid Services for Envisat and Earth Observation Applications 245

11.3.3 BEAT

The Basic ERS and Envisat Atmospheric Toolbox aims to provide scientists with
tools for ingesting, processing, and analyzing atmospheric remote sensing data. The
project consists of several software packages, with the main packages being BEAT
and VISAN. The BEAT package contains a set of libraries, command line tools, and
interfaces to IDL, MATLAB, FORTRAN, and Python for accessing data from a range
of atmospheric instrument product files. The VISAN package contains an application
that can be used to visualize and analyze data retrieved using the BEAT interface.
The primary instruments supported by BEAT are GOMOS, MIPAS, SCIAMACHY
(Envisat), GOME (ERS-2), OMI, TES, and MLS (Aura), as well as GOME-2 and IASI
(MetOp). BEAT, VISAN, and an MIPAS processor called GeoFit are provided as Open
Source Software, enabling the user community to participate in further development
and quality improvements.

The core part of the toolbox is the BEAT package itself. This package provides
data ingestion functionalities for each of the supported instruments. The data access
functionality is provided via two different layers, called BEAT-I and BEAT-II:

� BEAT-I: The first layer of BEAT provides direct access to data inside each
file that is supported by BEAT. The supported instruments include GOMOS,
MIPAS, SCIAMACHY, GOME, OMI, TES, and MLS. All product data files
are accessible via the BEAT-I C library. On top of this C library there are several
interfaces available to directly ingest product data using, e.g., FORTRAN, IDL,
MATLAB, and Python. Furthermore, BEAT also comes with a set of command
line tools (beatcheck, beatdump, and beatfind).� BEAT-II: The second layer of BEAT provides an abstraction to the product
data to make it easier for the user to get the most important information ex-
tracted. Using only a single command you will be able to ingest product data
into a set of flexible data types. These predefined data types make it easier
to compare similar data coming from different instruments and also simplify
the creation of general visualization routines. Furthermore, the BEAT-II layer
provides some additional functions to manipulate and import/export these spe-
cial data types. The layer 2 interface is built on top of the BEAT-I C library,
but BEAT-II also supports reading of additional products that are stored in,
e.g., ASCII, HDF4, or HDF5 format. As for BEAT-I, all BEAT-II function-
ality is accessible via the BEAT-II C. Moreover, BEAT contains interfaces of
BEAT-II for FORTRAN, IDL, MATLAB, and Python, and a command line
tool.� VISAN: VISAN (see Figure 11.3) is a cross-platform visualization and anal-
ysis application for atmospheric data, where the user can pass commands in
Python language. VISAN provides powerful visualization functionality for two-
dimensional plots and worldplots. The Python interfaces for BEAT-I and BEAT-
II are included so one can directly ingest product data from within VISAN.
By using the Python language and some additional included mathematical
packages it is possible to perform an analysis on selected data.
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Figure 11.3 The BEAT toolbox with VISAN visualization.

� GeoFit: BEAT also contains the GeoFit software package, which is used to
process MIPAS special mode measurements.

11.4 Grid-Based Infrastructures for EO Data Access
and Utilization

While conducting their research, Earth scientists are often hindered by difficulties lo-
cating and accessing the right data, products, and other information needed to turn data
into knowledge, e.g., interpretation of the available data. Data provision services are
far from optimal for reasons related both to science and infrastructure capabilities. The
process of identifying and accessing data typically takes up the most time and money.
Of the different base causes of this, those most frequently reencountered relate to:

� The physical discontinuity of data. Data are often dispersed over different data
centers and local archives distributed all over Europe and abroad and, inher-
ent to this, the different policies applied (e.g., access and costs), the variety of
interoperability, confidentiality, and search protocols as well as the diversity
of data storage formats. To access a multitude of data storage systems, users
need to know how and where to find them and need a good technical/system
background to interface with the individual systems. Furthermore, often only
the metadata catalogues can be accessed online, while the data themselves have
to be retrieved offline.
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� The diversity of (meta)data formats. New data formats are being introduced
daily, not only due to the individual needs of a multitude of data centers, but
also due to advances in science and instrumentation (satellites and sensors)
creating entirely new types of data for research.� The large volume of data. The total quantity of information produced, ex-
changed, and requested is enormous and is expected to grow exponentially
during the next decades, even faster than it did before. This is partly the result
of the revolution in computational capacity and connectivity and advances in
hardware and software, which, combined together, are expanding the quality
and quantity of research data and are providing scientists with a much greater
capacity for data gathering, analysis, and dissemination [6]. For example, the
ESA Envisat satellite [4] launched in early 2002, with ten sensors on-board,
increases the total quantity of data available each year by some 500 Terabytes,
while the ESA ERS satellites produced roughly five to ten times less data per
year. Moreover, large volume data access is a continuous challenge for the Earth
Science community. The validation of Earth remote sensing satellite instrument
data and the development of algorithms for performing the necessary calibration
and geophysical parameters extraction often require a large amount of process-
ing resources and highly interactive access to large amounts of data to improve
the statistical significance of the process. The same is true when users need to
perform data mining or fusion for specific applications. As an alternative to the
traditional approach of transferring data products from the acquisition/storage
facilities to the user’s site, ad-hoc user-specified data processing modules could
be moved in real-time to available processing facilities situated more optimally
for accessing the data, in order to improve the performance of the end-to-end
EO data exploitation process.� The unavailability of historic data. Scientists do not only work with ‘fresh’
data, they also use historic data, e.g., global change research, over multiple
time periods. Here, different problems can be distinguished. First, it is evi-
dent that often no metadata are defined, or no common metadata standards
are being used, and auxiliary knowledge needed by scientists to understand
and use the data is missing, e.g., associated support information in science
and technical reports. Although the problem also exists for fresh data, it is
exacerbated when using historic data. Metadata will be at the heart of ev-
ery effort to preserve digital data in the next few decades. It will be used to
create maintenance and migration programs and will provide information on
collections for the purpose of orienting long-term preservation strategies and
systems [7]. Second, there are insufficient preservation policies in place for
accessing historical data. After longer periods of time, new technologies may
have been introduced, hardware and software upgraded, formats may have
changed, and systems replaced. For example, it is almost impossible today to
read files stored on 8-inch floppy disks that were popular just 25 years ago. Vast
amounts of digital information from just 25 years ago are lost for all practical
purposes [8].
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� The many different actors involved. Science is becoming increasingly inter-
national and interdisciplinary, resulting in an increased total number of dif-
ferent actors involved (not only human). For example, ESA currently serves
approximately 6000 users in the Earth Observation domain, many of whom
need to exchange data, information, and knowledge.

The International Council for Science, for example, deals with data access issues
on a global scale [6]. In Europe, different initiatives are supported by the European
Commission (EC), e.g., as part of their specific action on research infrastructures
(part of the 6th Framework Programme), which aims to promote the development
of a fabric of research infrastructures of highest quality and performance, and their
optimum use on a European scale to ensure that researchers have access to the data,
tools, and models they need.

ESA is participating in different initiatives focusing, in particular, on the use of
emerging technologies for data access, exploitation, user information services and
long-term preservation. For example, [9] provides an overview of the use of grid,
Web services, and Digital Library technology for long-term data preservation. The
same technologies can be used for accessing data in general. Moreover, emerging
technologies can support data access, e.g., via infrastructures based on high-speed
networks that could drastically speed up the transfer of the enormous quantities of
data; the use of grids for managing distributed heterogeneous resources including stor-
age, processing power, and communication, offering the possibility to significantly
improve data access and processing times; and digital libraries that can help users lo-
cate data via advanced data mining techniques and user profiling. A shared distributed
infrastructure integrating data dissemination with generic processing facilities shall
be considered a very valuable and cost-effective approach to support Earth Science
data access and utilization.

Of the specific technologies that have had an important role in the ES commu-
nity, Web services in particular have played a key role for a long time. Web services
technologies have emerged as a de facto standard for integrating disparate applica-
tions and systems using open standards. One example of a very specialized ES Web
service is the Web mapping implementation specification proposed by the OpenGIS
Consortium [10]. Thanks to Web services, the Internet has become a platform for
delivering not only data but also, most importantly, services. After a Web service is
deployed on a Web server and made discoverable in an online registry of services,
other applications can discover and invoke the deployed service to build larger, more
comprehensive services, which in turn deliver an application and a solution to a user.
Web-based technologies also provide an efficient approach for distributing scientific
data, extending the distribution of scientific data from a traditional centralized ap-
proach to a more distributed model. Some Web services address catalogue services
to help users to locate data sets they need or at least narrow the number of data sets of
interest from a large collection. The catalogue contains metadata records describing
the datasets.

As discussed in Chapter 9 of the present volume, Web services provide the fun-
damental mechanism for discovery and client-server interaction and have become a
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widely accepted, standardized infrastructure on which to build simple interactions.
On the other hand, grids were originally motivated by the need to manage groups of
machines for scientific computation. For these reasons, Web services and grids are
somehow complementary and their combination results in grid services (e.g. Open
Grid Services Architecture).

In the following subsections we briefly describe some specific European experi-
ences involving Earth Science users at various levels for data access, sharing, and
handling as well as service provisions based on interfacing grid infrastructures.

11.4.1 Service Support Environment

The Service Support Environment (SSE) can be considered as a market place that
interconnects users (e.g. customers) and Earth observation providers (data, value-
adding industry, and service industry), and allows them to register and provide their
services via the SSE portal [11]. Depending on their profiles, SSE users gain access
to a set of services on the SSE portal via an Internet connection.

The SSE is aimed at providing an opportunity for improving the market expansion
and penetration of existing or prototyped Earth observation products and services, as
well as into the Geographic Information Systems (GIS) world, through an enabling,
open environment for service providers and potential users. The SSE will also offer
the European development and service industry the opportunity to take a leading role
in the installation, maintenance, and operation on request of personalized systems
and services related to the future EO related business-to-business (B2B) market.

The SSE service directory provides access to a continuously expanding set of basic
and complex Earth observation and GIS services, and also a large variety of services
from a diverse set of contributors such as space agencies, data processing centers,
data providers, educational establishments, private companies, and research centers.

11.4.2 GeoNetwork

The United Nations (UN) Food and Agriculture Organization (FAO) has developed a
standardized and decentralized spatial information management environment called
GeoNetwork [12]. The GeoNetwork Open Source system implements and extends
the ISO 19115 geographic metadata standard. It facilitates sharing of geographically
referenced thematic information between different FAO Units, UN agencies, NGOs,
and other institutions. GeoNetwork is designed to enable access to georeferenced
databases, cartographic products, and related metadata from a variety of sources,
enhancing the spatial information exchange and sharing between organizations and
their audience, by using the capacities of the Internet. This approach of geographic
information management aims to give a wide community of spatial information users
easy and timely access to available spatial data and existing thematic maps to support
informed decision making. ESA/ESRIN hosts a GeoNetwork node.

GeoNetwork has improved the accessibility of a wide variety of data, together
with the associated information/metadata, at different scales and from multidisci-
plinary sources, organized and documented in a standard and consistent way. This
has enhanced the data exchange and sharing between the organizations, avoiding
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duplication, and has increased the cooperation and coordination of efforts in collect-
ing data. The data are made available to benefit everyone, saving resources and at the
same time preserving data and information ownership.

FAO, the World Food Programme (WFP), and the United Nations Environment
Programme (UNEP) have combined the strategy to effectively share their spatial
databases including digital maps, satellite images, and related statistics. The three
agencies make extensive use of computer-based data visualization tools, based on
Open Source, proprietary Geographic Information System, and Remote Sensing (RS)
software, used mostly to create maps that combine various layers of information.
GeoNetwork offers a single entry point for accessing a wide selection of maps and
other spatial information stored in different databases worldwide.

11.4.3 CCLRC DataPortal and Scientific Metadata Model

The Central Laboratory of the Research Councils (CCLRC), on behalf of the UK
research community, operates on a multitude of next-generation of powerful scientific
facilities and recognizes the vital role that e-Science will have for their successful
exploitation. These facilities (synchrotrons, satellites, telescopes, and lasers) will
collectively generate many Terabytes of data every day. Their users will require
efficient access to geographically distributed leading-edge data storage, computational
and network resources in order to manage and analyze these data in a timely and
cost-effective way. Convenient access to secure and affordable medium- to long-
term storage of scientific data is important to all areas of CCLRC’s work and to
all users of CCLRC’s facilities. It will help to facilitate future cross-disciplinary
activities and will constitute a major resource within the UK e-Science grid. CCLRC is
exploring the opportunities within this context for developing a collaborative approach
to large-scale data storage spanning the scientific program of CCLRC and the other
Research Councils. To support data description and facilitate data reuse, CCLRC has
developed the scientific metadata model and the CCLRC DataPortal [13]. In addition,
CCLRC is collaborating with the San Diego Super Computing Centre (SDSC) on
the development and deployment of the Storage Resource Broker (SRB) for large-
scale, cross-institutional data management and sharing, bringing secure long-term
data storage to the scientist’s desktop and supporting secure international data sharing
amongst peers. In collaboration with the Universities of Reading and Manchester,
CCLRC will be investigating the state of the art in long-term metadata management
and the usage of Data Description Languages for data curation.

ESA and CCLRC cooperate in many Earth Science related technologies and ap-
plication domains. In particular it is worthwhile to mention the cooperation for
long-term scientific data and knowledge preservation via the CASPAR project [14]
(cf. Section 11.7.4).

11.4.4 Projects@ReSC

The Reading e-Science Center (ReSC) [15] is very active in promoting e-Science
methods in the environmental science community. As for other EO domains, modern
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computer simulations of the oceans and atmosphere produce large amounts of data on
the Terabyte scale. Consequently, data providers need a manageable system for storing
these data sets whilst enabling the data consumer to access them in a convenient and
secure manner. The matter is complicated by the plethora of file formats (e.g. NetCDF,
HDF, and GRIB) that are used for holding environmental data. For this reason ReSC
has set up database management systems for storing and manipulating gridded data.
Among operational and demonstration projects, the following examples are worth
introducing here:

� Grid Access Data Service (GADS), a Web service that provides access to
distributed climatological data in an intuitive and flexible manner. Users do
not need to know any details about how, where, or in what format the data
are stored. Data can be downloaded in a variety of formats (e.g., netCDF and
GRIB) and the service is readily extensible to accommodate new formats.� GODIVA (Grid for Ocean Diagnostics, Interactive Visualization and Analysis)
allows users to interactively select data from a file access server for download
and for creating movies on the fly. Recent features include the visualization of
environmental data via the Google Maps and Google Earth clients [16].

11.4.5 OPeNDAP

An Open Source Project for a Network Data Access Protocol [17] is a data transport
architecture and protocol widely used by Earth scientists. The protocol is based on
HTTP, and the current specification includes standards for encapsulating structured
data, annotating the data with attributes, and adding semantics that describe the data.

An OPeNDAP server can handle an arbitrarily large collection of data in any format
including a user-defined format. OPeNDAP offers the possibility to retrieve subsets
of files, and to aggregate data from several files in one transfer operation. OPeNDAP
is widely used by governmental agencies such as the National Aeronautics and Space
Administration (NASA) and the National Oceanic & Atmospheric Administration
(NOAA) to serve satellite, weather, and other observed Earth Science data.

11.4.6 DataGrid and Follow-up

DataGrid was the first large-scale international grid project and the first aiming to
deliver a grid infrastructure to several different Virtual Organizations (High Energy
Physics, Biology, and Earth Observation) simultaneously. The objective was to build a
next-generation computing infrastructure, providing intensive computation and anal-
ysis of shared large-scale databases, from hundreds of Terabytes to Petabytes, across
widely distributed scientific communities. After a very successful final review by the
European Commission, the DataGrid project was completed at the end of March 2004.

Many of the products (e.g., technologies and infrastructure) of the DataGrid project
have been included in the follow-up EU grid project called Enabling Grids for
E-sciencE (EGEE) [18], already introduced in Chapter 10 of this book. EGEE, funded
by the EC Framework Programme (FP), aims to develop a European-wide service grid



252 High-Performance Computing in Remote Sensing

infrastructure available to scientists 24 hours a day. The EGEE project also focuses
on attracting a wide range of new users to the grid. The second 2-year phase of the
project started 1 April 2006 and includes:

� More than 90 partners in 32 countries, organized in 13 Federations.� A grid infrastructure spanning almost 200 sites across 39 countries.� An infrastructure of over 20000 CPUs available to users 24 hours a day, 7 days
a week.� About 5 Petabytes of storage.� Sustained and regular workloads of 20000 jobs/day.� Massive data transfers > 1.5 Gigabytes/s.

A few companion DataGrid and EGEE projects have been focusing on Earth science
applications, responding to Earth science key requirements, such as handling spatial
and temporal metadata, near-real-time (NRT) features, dedicated data modeling, and
data assimilation. ESA has been involved in various workshops and publications or-
ganized specifically and jointly by the grid and the Earth Science community, for
example:

� EOGEO: It exists to deliver sustainable Earth Observation and Geospatial In-
formation and Communication Technologies (EOGEO ICTs), which are vital
to the operation of the Civil Society Organization and to the well-being of
individual citizens [19].� CEOS: The purpose of the Committee on Earth Observation Satellites (CEOS)
Task Team is to investigate the applicability of grid technologies for CEOS
needs, to share experience gained from the effective use of these technologies,
and to make recommendations for their application [20].� ESA grid and e-collaboration workshops: ESA periodically organizes work-
shops dedicated to reviewing the status of grid and e-collaboration projects for
the Earth science community [21].

11.4.7 CrossGrid

CrossGrid [22] is an example of other EC Information Society Technologies (IST)
FP5 funded projects that are focusing on key functionalities dedicated to the Earth
science community. This R&D project aimed at developing techniques for real-time,
large-scale grid-enabled simulations and visualizations. The issues addressed include:

� Distribution of source data.� Simulation and visualization.� Virtual time management.� Interactive simulation.� Platform-independent virtual reality.
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The application domains addressed by the CrossGrid project include environmental
protection, flood prediction, meteorology, and air pollution modeling.

With regard to floods, the usefulness of grid technology for supporting crisis teams
is being studied. The challenges in this task are the acquisition of significant resources
at short notice, NRT response, the combination of distributed data management and
distributed computing, the computational requirements for the combination of hydro-
logical (snowmelt-rainfall-runoff) and hydraulic (water surface elevation, velocity,
dam breaking, damage assessment etc.) models, and, eventually, mobile access under
adverse conditions.

The interactive use and scalability of grid technology is being investigated, in
order to meet atmospheric research and application user community requirements.
A complete application involves grid tools that enable remote, coordinated feedback
from atmospheric models and wave models, based on local coastal data and forced
by wind fields generated by atmospheric components of the system.

11.4.8 DEGREE

DEGREE (Dissemination and Exploitation of GRids in Earth sciencE) [23] is a co-
ordinated action, funded within the last grid call of EC FP6. It is proposed by a
consortium of Earth Science (ES) partners that integrates research institutes, Euro-
pean organizations, and industries, complementary in activity and covering a wide
geo-cultural dimension, including Western Europe, Russia, and Slovakia. The project
aims to promote the grid culture within the different areas of ES and to widen the use
of grid infrastructures as platforms for e-collaboration in the science and industrial
sectors and for select thematic areas that may immediately benefit from it.

DEGREE aims to achieve this by showing how grid services can be integrated
within key selected ES applications, approaching the operational environment and
shared within thematic community areas. The DEGREE project will also tackle certain
aspects presently considered as barriers to the widespread uptake of the technology,
such as the perceived complexity of the middleware and insufficient support for certain
required functionality. The ES grid expertise, application tools, and services developed
so far will be promoted within the DEGREE consortium and throughout the ES
community. Collective grid expertise gathered across various ES application domains
will be exchanged and shared in order to improve and standardize application-specific
services. The use of worldwide grid infrastructures for cooperation in the extended
ES international community will also be promoted.

In particular, the following objectives are to be achieved:

� Disseminate, promote uptake of grid in a wider ES community, and integrate
newcomers.� Reduce the gap between ES users and grid technology.� Explain and convince ES users of grid benefits and capability to tackle new and
complex problems.
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11.5 ESA Grid Infrastructure for Earth Science Applications

In previous sections we analyzed how Web services and grid technologies can com-
plement each other forming so-called grid services.

The ESA-developed Grid on-Demand Service Infrastructure allows for autonomous
discovery and retrieval of information about data sets for any area of interest, exchange
of large amounts of EO data products, and triggering concurrent processes to carry
out data processing and analysis on-the-fly.

Access to grid computing resources is handled transparently by the EO grid inter-
faces that are based on Web services technologies (HTTP, HTTPS, and SOAP with
XML) and developed by ESA within the DataGrid project. As a typical application,
the generation of a 10-day composite (e.g., Normalized Difference Vegetation Index
(NDVI)) over Europe derived from Envisat/MERIS data involves the reading of some
10–20 Gigabytes of Level 2 MERIS data for generation of a final Level 3 product of
some 10–20 Megabytes, with a great saving of data circulation and network bandwidth
consumption.

In the following, we analyze in detail the Grid on-Demand Service Infrastructure.

11.5.1 Infrastructure and Services

Following the successful experience in the EU DataGrid project (2001–2004) [1], in
which the focus was to demonstrate how Earth Observation could take benefit from the
large infrastructure deployed by the High Energy Physics community in Europe, the
Grid on-Demand Infrastructure and Services project was initiated. Since then it has
demonstrated how internal and external users can benefit from a very articulated orga-
nization of applications that can interface locally and remotely accessible computing
resources, in a way that is completely transparent to the Earth Science end user.

Using an ubiquitous Web interface, each application has access to the ESA cata-
logue and storage facilities, enabling the definition of a new range of Earth Observation
services.

The underlying grid middleware coordinates all the necessary steps to retrieve,
process, and display the requested products selected from a vast catalogue of remote
sensing data products and third-party databases. The integration of Web mapping
and EO data services using a new generation of distributed Web applications and the
OpenGIS [10] specification provided a powerful new capability to request and display
Earth Observation data products in a given geotemporal coverage area.

The ESA Grid on-Demand Web portal [2] is a demonstration of a generic, flexible,
secure, re-usable, distributed component architecture using grid and Web services
to manage distributed data and computing resources. Specific and additional data
handling and application services can be seamlessly plugged into the system. Coupled
with the high-performance data processing capability of the grid, it provides the
necessary flexibility for building an application for virtual communities with quick
accessibility to data, computing resources, and results.
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At present, the ESRIN-controlled infrastructure has a computing element (CE) of
more than 150 PCs, mainly part of four clusters with storage elements of about 100
Terabytes, all part of the same grid LAN in ESRIN, partially interfaced to other grid
elements in other ESA facilities such as the European Space Research and Technology
Centre (ESTEC), the European Space Astronomy Centre (ESAC), and EGEE.

The key feature of this grid environment is the layered approach based on the GRID-
ENGINE, which interconnects the application layer with different grid middleware (at
present interfaced with three different brand/releases of middleware: Globus Toolkit
4.0 [24], LCG 2.6 [25], and gLite 3.0 [26]). This characteristic enables the clear
separation and development path between the Earth Observation applications and the
middleware being used.

11.5.2 The GRID-ENGINE

The GRID-ENGINE is an intermediary layer developed to interface the application
and the grid computer and storage resources. In computational terms, the GRID-
ENGINE is an application server accessed by SOAP Web services that enables the
instantiation of different services. These services are the responsibility of an appli-
cation manager that defines and implements all the application-specific requirements
and interfaces, thus enabling their direct parameterization by the users.

The services are made of script templates that define three major operations: the
preparation phase, the wrapper execution, and the completion phase.

In the preparation phase the template scripts allow the application developer to
define the execution of auxiliary application templates that will enable the correct pa-
rameterization of the application. This might involve requests to the storage catalogue,
elaborations to define specific parameters, and the description of all the necessary ap-
plication input and auxiliary files.

After this preparatory phase, the wrapper execution module will evaluate the de-
gree of parallelism supported by the application. Currently, only two main factors
will be taken into consideration. These are the required data files and their spatial (in
geographical terms) distribution. The first case is for services that elaborate outputs
directly and independently based on the inputs (n inputs to n outputs approach). An
automatic splitter algorithm was implemented based on the application computational
and data weight, and the user permissions. On the other hand, for applications that
require n input files for the elaboration of one or more files, a spatial or geo-splitter
method was defined that will try to minimize the computational time required based
on the resources available. Although of limited usefulness for other domains, this
method was born for and its usefulness has been demonstrated in the Earth Observa-
tion and Geosciences domains, where the data are spatially distributed in nature and
the spatial integration methods are common (e.g., elaboration of global maps of envi-
ronmental variables such as vegetation, chlorophyll, or water vapor from independent
measures stored in different files). By dividing the spatial domain (e.g., continents or
latitude/longitude boxes), a straightforward division of the corresponding process is
achieved.
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The applications are then submitted to the computing elements and their state is
automatically monitored by the system until their completion (successful or not).
In the case of a job failure, the user can retrieve directly from the Web portal the
standard error and standard out of the application and report the error to the system
administrator or the application manager.

The completion phase terminates the service instantiation. As in the preparation
phase, the application manager is allowed to define auxiliary applications that might
analyze, register, or store the results obtained. All the resulting data resources, not
specifically stored as such by the application manager, will be automatically cleaned
and deleted by the system.

On top of this, the GRID-ENGINE allows the definition of simple service chaining
(more in the line of information flow) where the services can be stitched together
with their results being automatically defined as input parameters for the subsequent
services. This capability allows the definition of generic services that can be reused
in diverse domains (e.g., image and charts creation, image analysis, and geographical
data re-projection).

The parameters necessary to execute all the templates of the three phases and the
job chaining definition are sent directly from the Grid on-Demand Web portal using
SOAP through a secure channel. With the necessary variables requested by the user
and the parameters defined by the application manager for the actual service, the
Web portal will send to the GRID-ENGINE all the necessary information for the
instantiation of all templates defining the service.

All necessary grid operations performed in all phases, such as applications and
data files transfer, grid job status, exception, and error management, are virtualized
in order to enable the development and integration of the different grid concepts
and implementations (e.g., Globus, LCG, and gLite). Because of the operational
nature of the infrastructure, in terms of quality of service and maintenance require-
ments, the supported grid middleware is restrained to Globus Toolkit 4.0 and LCG
2.6 (with gLite in testing phase). Even though the Web Services Resource Frame-
work (WSRF) actually demonstrates an enormous potential, its current use in this
infrastructure is being limited to proof-of-concepts experiments and for test trials
in the development environment. The current framework implementations tested
so far (in Java, C++, and .NET) have shown new application development paths,
but together with old shortcomings and instabilities that are unsuitable for an en-
vironment that needs to guarantee a near-real-time production level. As new de-
velopments and more stable and mature specifications arise, its integration will be
performed.

11.5.3 The Application Portals

While the grid middleware provides low-level services and tools, the EO applications
need to access the available grid resources and services through user-friendly appli-
cation portals connected to back-end servers. The back-end servers then access the
grid using the low-level grid middleware toolkits.
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The ESA Grid on-Demand portal demonstrates the integration of several technolo-
gies and distributed services to provide an end-to-end application process, capable of
being driven by the end user. The portal integrates:

� User authentication services.� Web mapping services for map image retrieval and data geolocation.� Access to metadata catalogues such as the ESA Multi-Mission User Interface
System to identify the data sets of interest and access the ESA Archive Man-
agement System (AMS) to retrieve the data.� Access to grid FTP transfer protocols to stage the data to the grid.� Access to the grid computing elements and storage elements to process the data
and retrieve the results in real time.

The architectural design of the Grid on-Demand portal application includes a dis-
tinct application-grid interfacing layer (see Figure 11.4). The core of the interface
layer is implemented by the EO GRID-ENGINE, which receives Web service re-
quests from grid client applications and organizes their execution using the available
services provided by several different grids.

The underlying grid infrastructure coordinates all of the steps necessary to re-
trieve process and display the relevant images, selected from a vast range of available
satellite-based EO data products. Using a new generation of distributed Web appli-
cations and OpenGIS specifications, the integration of Web mapping and EO data
services provides a powerful capability to request and display Earth Observation
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Figure 11.4 The architecture model for EO Grid on-Demand Services.
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information in any given time range and geographic coverage area. The main func-
tionality offered by the Grid on-Demand environment can be summarized as follows:

� It supports science users with a common accessible platform for focused
e-collaborations, e.g., as needed for calibration and validation, development
of new algorithms, or generation of high-level and global products.� It acts as a unique and single access point to various metadata and data holdings
for data discovery, access, and sharing.� It provides the reference environment for the generation of systematic applica-
tion products coupled with direct archives and NRT data access.

11.5.3.1 An Example of an Application Portal: Computation and Validation
of Ozone Profile Calculation Using the GOME NNO Algorithm

To demonstrate the Web portal, in the following we refer to a specific application,
which calculates the ozone profiles using the GOME NNO algorithm and performs
validation using ground-based observation data. The user selects the algorithm, geo-
graphic area, and time interval, and the Web portal retrieves the corresponding Level
1 data orbit numbers by querying MUIS, the ESA EO product catalogue. Using the
orbit numbers, it is then possible to query a Level 2 metadata catalogue to retrieve the
current status of the requested orbits. The Level 2 orbits may be already processed,
not yet processed, or currently being processed.

In the first case, the Service Layer Broker searches the grid replica catalogue to
obtain the Level 2 data logical file names, and then retrieves the data from the phys-
ical grid locations. The processed orbits are then visualized by the Web portal (see
Figure 11.5).

Figure 11.5 Web portal Ozone Profile Result Visualization.
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In the second case, the EO product catalogue also provides the necessary informa-
tion to retrieve the Level 1 orbit data from EO archives. After the Level 1 data have
been transferred to grid storage, jobs are submitted to the grid in order to process the
orbits. Once the processing has terminated, the resulting Level 2 products are also
transferred to grid storage (from the WNs) and the logical file names are registered
in the replica catalogue. A Level 2 metadata catalogue is also updated.

In the third case (currently orbits are being processed), the request ID is appended
to the current job ID and awaits the job conclusion as in the second case.

For the validation application, the Web portal has a dedicated graphical user in-
terface (GUI) where the user accesses the Lidar catalogue of L’Institut Pierre-Simon
Laplace (IPSL) and cross checks that information with the ESA catalogue. It returns
the orbit information, file names for the Light Detection and Ranging instrument (Li-
dar), and calculates the necessary geographical parameters for input to the validation
job. The input parameters are translated into grid job parameters, generating several
jobs for each of the corresponding Lidar files. The status of the different jobs can be
viewed using the portal, and when all jobs are terminated the Web portal is used to
retrieve and view the results.

11.6 EO Applications Integrated on G-POD

The first significant example of the ESRIN G-POD system is described in [27]. A
GOME Web portal was set up, which constitutes a prototype integration of grid and
Web services and allows the users to select a given geographical area and time period,
retrieve the corresponding GOME Level 1 products, and process them into Level 2
products. The processing load is automatically distributed across several available
grid resources, in a completely transparent way to the user.

Following the success of this test bed, other EO applications (and related Web
portals) were developed. Some of these applications are now fully operational and
available through the ESA EO grid portal. In the following, we describe some services
that have been obtained by integrating EO processing toolboxes on the grid and by
setting up ubiquitous user-friendly Web portals.

11.6.1 Application Based on MERIS and AATSR Data and BEAM Tools

11.6.1.1 MERIS Mosaic as Displayed at EO Summit in Brussels, February 2005

Using spectral bands 2, 3, 5, and 7 [28] from the entire May to December 2004 data set
of Envisat/MERIS Reduced Resolution Level 2 products (1561 satellite orbit passes),
the Grid on-Demand Services and Infrastructure produced a 1.3 km resolution TIF
image (see Figure 11.6) that maximizes the sun light in both hemispheres using the
MERIS PR/COM processor available on Grid on-Demand.

This service, motivated mostly by public relations teams, aims at the on-demand
generation of mosaics using MERIS Level 2 products. These products, which are
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Figure 11.6 MERIS mosaic at 1.3 km resolution obtained in G-POD from the entire
May to December 2004 data set.

automatically updated and registered each day from the ground segment, can be
selected over user-defined areas and temporal coverage for producing public-relations
material. The final image is a mosaic made up of true color images using four out of
15 MERIS spectral bands (bands 2, 3, 5, and 7) with data combined from the selected
separate orbital segments, with the intention of minimizing cloud cover as much as
possible by using the corresponding data flags. The output file can be downloaded
in TIFF format, a JPEG scale-pyramid, or used directly as a Web map service to be
combined with other geographical information.

The mosaic was donated by ESA to the United Nations in Geneva, as a testimony
to the current state of our planet, to be handed down to future generations. The image
will be exhibited permanently in the new access building by the Pregny gate in the
Palais des Nations compound [29].

11.6.1.2 MERIS Global Vegetation Index

Vegetation indexes are a measure of the amount and vigor of vegetation at the surface.
The Envisat/MERIS vegetation index called MERIS Global Vegetation Index (MGVI)
uses information from the blue part of the recorded spectrum from Earth, providing a
major improvement to vegetation monitoring. The information in the blue wavelengths
improves the correction of the atmospheric noise and the precision of the vegetation
index. This service generates maps of geophysical products at monthly and in 10-day
intervals. Each individual value represents the actual measurement or product for the
day considered the most representative of that period. The geometry of illumination
and observation for the particular day selected is saved as a part of the final product.

11.6.1.3 MERIS Level 3 Algal 1

This service comprises a binning of Level 2 for the creation of an Algal Level 3 map.
In addition to the original algorithm, this implementation gives the user the ability
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to select one of three possible binning algorithms (maximum likelihood, arithmetic
mean, and minimum/maximum) and predefine a subset region as minimum/maximum
latitude/longitude. All pixels outside this region are rejected. Define the bin size
without restrictions and finally update long-term means step by step as the input data
become available. Another possible method is the selection of the most representative
value as the sample that is the closest to the temporal average value estimated over
the compositing period. The output file can be downloaded in TIFF format and in a
JPEG scale-pyramid.

11.6.1.4 Volcano Monitoring by AATSR

The Volcano Monitoring by InfraRed (VoMIR) service allows the user to extract in a
short time and over the large AATSR product archive the thermal radiances at different
wavelengths measured by AATSR during night-time. Envisat passes over a user-
defined selection of volcanoes. For the selected volcanoes, the output is presented in
the form of a spreadsheet, gathering all time-stamped measures, statistics, and quick-
look images and summarizing the volcano thermal activity along time, enabling the
analysis of the activity trends and patterns in the long-term. In addition, the user may
tailor the VoMIR algorithm and customize its pre-defined rules and parameter settings
driving the elaboration of the analysis.

11.6.2 Application Based on SAR/ASAR Data and BEST Tools

11.6.2.1 A Generic Environment for SAR/ASAR Processing

Synthetic Aperture Radar sensors are becoming more and more important thanks to
their ability to acquire measures that are almost completely independent of atmo-
spheric conditions and illuminations. For these reasons SAR data can play an im-
portant role in several applications including risk assessment and management (e.g.,
landslides and floods) and environmental monitoring (e.g., monitoring of coastal
erosion, wetland surveying, and forest surveying). Every day approximately 10 Giga-
bytes of ASAR Wide Swath medium resolution (WSM) products and 1.5 Gigabytes
of ASAR Image Mode medium resolution (IMM) products are acquired by the ASAR
sensor on-board the Envisat satellite and stored at the ESRIN archiving center. Un-
fortunately, the use of SAR data is still limited in comparison to their potentialities
and availability.

For the above considerations, it was decided to create a generic SAR process-
ing environment on a grid [30]. Different applications are now available for internal
use through user-friendly Web portals that allow transparent access to grids. Differ-
ent SAR toolboxes have been integrated on EO grids allowing fully automatic SAR
image despeckling, backscattering computation, image co-registration, flat ellipsoid
projection for medium resolution images, terrain correction using Shuttle Radar To-
pography Mission (SRTM) Digital Elevation Model (DEM) v3 [31], and mosaicking.
These capabilities are obtained by using different toolboxes such as BEST and in-
house developed software.
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Figure 11.7 The ASAR G-POD environment. The user browses for and selects
products of interest (upper left panel). The system automatically identifies the subtasks
required by the application and distributes them to the different computing elements
in the grid (upper right panel). Results are presented to the user (lower panel).

Based on these tools, higher level functionalities aimed at the analysis of multi-
temporal images have been developed. Users can browse for the required products
specifying the geographical area of interest as well as the acquisition time, and, if
required, limiting the search for a given mode or pass. Afterwards they can spec-
ify the service of interest (e.g., co-registration of multitemporal images and mo-
saics). The system automatically retrieves data stored on different storage elements
(e.g., distributed archive), identifies the jobs needed for accomplishing the task re-
quired by the user, and distributes them on different computing nodes of the grid (see
Figure 11.7).

This environment can be used to produce high resolution orthorectified mosaics on
a continental/global scale. As an example, the G-POD SAR processing application
produced a 3 arcsec (∼ 90 m) pixel size orthorectified Envisat ASAR mosaic over
Europe (see Figure 11.8). This mosaic was obtained by using ASAR WSM data
acquired between January and May 2006, the DEM at 3 arcsec derived from the global
SRTM, and the GTOPO30 DEM (for latitudes above 60◦ N). The whole process was
achieved in a few hours. To cover the whole of Europe, 143 ASAR WSM stripline
products were automatically selected and retrieved from G-POD storage together
with required SRTM and GTOPO30 DEM tiles. Products were orthorectified and
normalized for near-range/far-range effects over sea before being aggregated in a
mosaic. The so-obtained result was used to produce the SAR European mosaic poster
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Figure 11.8 Three arcsec (∼ 90 m) pixel size orthorectified Envisat ASAR mosaic
obtained using G-POD. Political boundaries have been manually overlaid. The full
resolution result can be seen at [34].

distributed at the Envisat Symposium 2007 the [33] and published as the ESA Image
of the week on the March 16th ESA Web portal [34].

11.6.2.2 EnviProj – Antarctica ASAR GM Mapping System

The ESA Antarctica Mapping System processes any ASAR Global Monitoring Mode
product over Antarctica to obtain radar mosaics of the continent at 400 m resolution.

A mosaic is a composite image of several Global Monitoring Mode (GMM) stripes.
GMM products are very useful to rapidly cover wide areas. Since the sensor is carried
on ESA’s polar-orbiting satellite Envisat, 14 images a day are acquired over Antarctica.
Thanks to the 8000 km long and 400 km wide swaths, Antarctica is mapped in a few
days at 400 m resolution (see Figure 11.9).

11.6.2.3 ASAR Products Handling and Analysis for a Quasi Systematic Flood
Monitoring Service

Earth Observation is becoming a recognized source of information for disaster man-
agement [35], in response to natural and man-made hazards, in Europe and in the rest
of the world. EO-based crisis mapping services are generally delivered via projects
like the Global Monitoring for Environment and Security (GMES) Services Element
(GSE), such as GSE Flood and Fire and RESPOND, the GMES Services Supporting
Humanitarian Relief, and the Disaster Reduction Reconstruction, alongside the In-
ternational Charter Space and Major Disasters, which enables timely access to crisis
data from a variety of EO missions.

The all-weather capability of high resolution SAR observations provides useful
input to crisis and damage mapping. This is particularly relevant for flood monitoring,
and SAR is considered a useful information source for river plain flooding events, a
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Figure 11.9 ASAR mosaic obtained using G-POD considering GM products
acquired from March 8 to 14, 2006 (400 m resolution).

frequent and important type of hazard in both Europe and the rest of the world. In
this context, the access and exploitation of Envisat/ASAR data can benefit from grid-
based processing to enable accurate, rapid, and large coverage observations of flooded
features. Such a capability would facilitate the provision of crisis mapping products
combining ASAR-based observations with other EO crisis data. This investigation is
based on the analysis of the requirements of RESPOND users, who come from both
the humanitarian aid and the disaster management communities.

The capabilities of G-POD to calibrate and co-register images related to a flood
affected area in a fast and accurate way were investigated. A series of Envisat data sets
of the Chinese Poyang lake were selected with advice from the RESPOND partner
Service Régional de Traitement d’Image et de Télédétection (SERTIT), which runs
flood monitoring tests in the framework of the ESA Dragon Programme [36].

In all tests, images were selected and the co-registration task was run. The system
calibrated and co-registered image pairs in a fully automatic and unsupervised way.
BIL floating point calibrated images, compressed JPEG images for visualization, and
KMZ (zipped Keyhole Markup Language files) files to be imported in Google Earth
were produced as a result.

Based on the results obtained and discussions with specialists, it is expected that G-
POD can provide a significant contribution to develop an enhanced flood monitoring
capability. Users can take advantage of the underlying grid technology that results in
both transparent access to the huge distributed data archive and a significant reduction
of the time required for data processing.
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11.6.3 Atmospheric Applications Including BEAT Tools

11.6.3.1 GOME Processing

GOME is one of several instruments on-board ESA’s ERS-2 remote sensing satellite,
which has been orbiting the Earth since 1995. Every day, some thousand GOME
measurements of atmospheric ozone are transmitted to the ERS ground stations. The
raw readings are sent to the dedicated Processing and Archiving Facility in Germany
(D-PAF), which produces the standard data products and distributes them to scientific
investigators.

In recent years, a research activity has started to derive special higher-quality data
products, so-called GOME Level 2 products, which include the Earth’s ozone profile
and total ozone column, which give the precise gas concentrations at different altitudes
above the Earth’s surface at any location. By analyzing the global GOME data set
over the whole period together with ground-based measurements, it is possible to
obtain an accurate picture of the speed with which the ozone concentrations in our
atmosphere are changing. This allows scientists to improve the forecasting models for
future ozone concentrations in the near- and long-term. Two different ozone-profiling
algorithms [37, 38, 39], one developed by KNMI and the other in ESRIN together
with Università Tor Vergata, have been selected for this purpose.

11.6.3.2 3D-Var Data Assimilation with CHAMP Radio Occultation (RO) Data

Assimilation techniques such as 3D-Var, which are state of the art within Numer-
ical Weather Prediction (NWP) systems, are seldom used within climate analysis
frameworks, partly because of the enormous numerical processing cost. The Grid on-
Demand high-performance computing environment offers the opportunity to compute
many time layers in parallel, significantly reducing the computing time.

In order to conduct the climate study we are using Global Navigation Satellite
System (GNSS) based radio occultation observations. A remote sensing technique
provides a new kind of precise atmospheric observation that will supplement the
database used for climate research, numerical weather prediction, and atmospheric
process studies. Since the launch of the Challenging Mini Satellite Project (CHAMP)
in summer 2000 and the start of the RO experiment in February 2001, a comprehensive
data set for experiments and impact studies is available. The potential of this novel type
of observation has already been demonstrated. First impact trials at the UK Met Office
(UKMO) and the European Centre for Medium Range Forecast (ECMWF) show that
RO data comprise additional information content not present in other observations,
proving to be nonredundant. This can be seen as a remarkable result considering the
limited amount of RO observations that entered the NWP systems to conduct the
impact studies.

The global coverage, all-weather capability, long-term stability, and accuracy make
the observations an ideal supplement to the extensive data set assimilated into numer-
ical weather systems. Furthermore, the inherent properties of RO observations and the
long-term perspective offered by the Meteorological Operational Satellite (MetOp)
program make these types of data ideal for also studying long-term atmospheric and
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climate variability, providing an ideal candidate to build global climatologies (a vast
amount of data are already available today due to CHAMP and the recently launched
COSMIC constellation). This contribution to atmospheric applications using Grid
on-Demand investigates the application of the 3D-Var methodology within a global
climate monitoring framework. It studies the assimilation of radio occultation derived
refractivity profiles into first guess fields, derived from 21 years of ECMWF’s ERA40
re-analysis data set on a monthly mean basis, divided in the four synoptic time layers
to take the diurnal cycle into account.

The system is tuned for high vertical and moderate horizontal resolution, best
suited to the spatial characteristics of these satellite-based measurements. Analyses are
performed using a General (Global) Circulation Model (GCM) compliant Gaussian
grid, comprising 60 model levels up to a height of ∼ 60 km and a horizontal resolution
corresponding to a Gaussian grid N48 (e.g., 192 × 96). The control variables used are
temperature, specific humidity, and surface pressure; the background is compared with
the observations in refractivity space. During the optimization procedure the control
variables are updated. Results indicate a significant analysis increment that is partly
systematic, emphasizing the ability of RO data to add independent information to
ECMWF analysis fields, with the potential to correct biases. RO data sets offer a new,
accurate kind of atmospheric observation comprising long-term stability stemming
from the measurement principle (the RO technique needs no calibration; the basis of
the observation is a measurement of time, thus a direct compilation of observation
series from different RO instruments is possible), with global coverage, high vertical
resolution, and due to the used wavelengths the observations are not disturbed by rain
or clouds.

Global atmospheric fields (see Figure 11.10) are derived from the 3D-Var imple-
mentation within the Grid on-Demand framework, comprising the summer seasons
(June, July August (JJA)) from 2002 to 2005, demonstrating the potential of assimila-
tion techniques in combination with high-performance computing grids [40]. CHAMP
observations used within these assimilation experiments have been processed by Geo-
ForschungsZentrum Potsdam (GFZ) to Level 2 and by the Wegener Center for Climate
and Global Change, University of Graz (WegCenter) to refractivity (Level 2a).

11.6.3.3 YAGOP: GOMOS Non-operational Processing

The beat2grid [41] service embraces the exploitation of data of several atmospheric
instruments, such as GOMOS, MIPAS, SCIAMACHY, and GOME. Here we present
the service corresponding to GOMOS data products.

The provided GOMOS metadata definition consists of information about the geolo-
cation (latitude, longitude, and orbit height) of the satellite, the geographical location
of the measurement (latitude, longitude, and tangent height), and the occultation date
and time. Once the data, generated by a preliminary processing step, are stored in the
database (described in Section 11.6.2), the results are immediately available for users
by logging onto the portal.

The beat2grid GOMOS service offers a graphical selection of the occultation mea-
surement’s site (see Figure 11.7). Predefined lists help the user to select the search
criteria, and the direct selection of latitude and longitude position is also possible. The
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Figure 11.10 Global monthly mean near surface temperature profile for June 2005,
time layer 0 h.

latter helps expert users to select a distinct small area (e.g., 300 km � 2.5◦) in order
to derive the diurnal, monthly, seasonal, and even yearly variations of atmospheric
products. This also requires the exact selection of date and time of the occultation
measurements. Once date and time and the geographical positions are chosen, the user
can decide which atmospheric products should be retrieved. In the actual setup of the
service, we offer ozone, NO2, NO3, O2, and H2O profiles, as well as air and aerosol
density. The aerosol product is not always available in good quality in the original
GOMOS data set. There is a new effort to acquire a better quality aerosol density
from stellar occultation measurements. When this is available, the Grid on-Demand
service will be enhanced using this information.

In addition to the atmospheric constituent profiles, as discussed for the current sit-
uation on Grid on-Demand, the GOMOS product allows the exploitation of Steering
Front Assembly and Star Acquisition and Tracking Unit (SAF/SATU) data. These
profiles, giving the instruments mirror position and accuracy, are inverted to produce
density, pressure, and temperature profiles. In cooperation with the University of Graz
(Wegener Center for Climate and Global Change) the Yet Another GOMOS Proces-
sor (YAGOP) is running on Grid on-Demand [42]. This processor not only enables
the derivation of temperature profiles; the calculation of non-operational GOMOS
Level 2 ozone products was also implemented, which is a processing option based on
an optimal estimation technique, inverting ozone and NO2 profiles simultaneously.
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The retrieved ozone profiles are compared with operational GOMOS ozone data (see
Figure 11.11). Temperature profiles for a selected data set in Sep. 2002 are compared
to MIPAS and CHAMP (not shown here) data.

11.6.3.4 GRIMI-2: MIPAS Prototype Dataset Processing

The GRIMI-2 initiative embraces the grid technology, data production, and exploita-
tion for a prototype processor of an ongoing ESA mission. GRIMI-2 stands for Grid
MIPAS Level 2 prototype processing and refers to the production of test data sets
for research and verification purposes for the operational MIPAS Level 2 product.
MIPAS is the Michelson Interferometer for Passive Atmospheric Sounding and one
of three atmospheric chemistry instruments on-board Envisat. It measures Earth’s
atmospheric trace gas mixing ratios of O3, H2O, CH4, N2O, NO2, and HNO3, as well
as temperature and pressure profiles. The production of MIPAS test data sets within
GRIMI-2 requires a high availability of computing and storage resources. This ser-
vice demonstrates the usefulness of a grid infrastructure for the support of operational
processing for Earth Observation purposes.

11.6.3.5 SCIA-SODIUM: SCIAMACHY Sodium Retrieval

Mesospheric sodium is believed to be generated by the ablation of meteors in the
upper atmosphere. Despite its importance, mesospheric sodium distribution is poorly
known, due to the limited number of ground-based instruments (e.g., Lidars) able
to detect the Na presence at around 90 km of altitude, and to the lack of satellite
instruments probing the upper mesosphere.

In this context, upper atmospheric SCIAMACHY limb measurements in the visible
part of the spectrum provide the unique opportunity to estimate some key parameters
of the upper mesospheric sodium chemistry; the input of atomic sodium to the Earth
atmosphere via meteorite ablation; and the concentration profiles of O3, H2O, and
CO2 driving sodium chemistry in this region.

Detailed analysis of the SCIAMACHY limb spectra in the 585–595 nm wavelength
range and for tangent altitudes above 70 km revealed detectable radiance emission sig-
nals in correspondence of the sodium D1 and D2 lines. This signal is due to resonant
scattering of atomic sodium and is triggered by the solar irradiance, which is measured
daily by SCIAMACHY by directly looking at the sun. The measured solar irradiance
spectrum is used as a normalization factor to the earthshine limb spectra in order to
account for possible changes in the radiative flux forcing (as solar activity changes
in time) and to minimize radiometric/instrumental calibration effects. Thus, the sun-
normalized sodium radiances are the input spectra for two independent algorithms
(DOAS-like and a two-line differential scheme) that have been developed to estimate
the slant distribution of atomic sodium. The SCIA-SODIUM processor running on
Grid on-Demand analyzes the SCIAMACHY limb and nadir Level 1 product to esti-
mate global scale vertical profiles and total amounts of atmospheric H2O, O2, and Na.
The Limb spectra are used to estimate the vertical profiles of water vapor and oxy-
gen from Earth’s surface to 30 km altitude, and Na vertical profiles in the 70–105 km
altitude range. From Nadir viewing measurements the vertical column density of H2O
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Figure 11.12 Zonal mean of Na profiles of 14–31 August 2003.

and O2 are estimated with very good accuracy. The quality of the H2O and O2 vertical
column densities estimated using this technique is well known [43, 44, 45] while the
Na vertical profiles from satellite daytime measurements are estimated for the first
time here, and extensive product validation is ongoing. Nevertheless, preliminary
validation results using sodium Lidar data from the University of Colorado (NCAR-
CEDAR database) and from the Instituto Nacional de Pesquisas Espaciais (Brazil)
showed very good agreement between these data and SCIA-SODIUM products.

In Figure 11.12 we show a 15-day zonal average (14–31 August 2003) of the
sodium profiles estimated by the SCIA-SODIUM processor. The Na layer is very
well characterized, with its maximum located at around 92 km and a layer width of
about 8 km.

The 2002–2006 SCIAMACHY products were analyzed using the grid infrastruc-
tures allowing for a global and long-term analysis of the sodium layer. Given the large
amount of data to be processed per orbit (300 Megabytes) and the complex calcula-
tions implemented in the SCIA-SODIUM processor, the use of a grid infrastructure
increases the processing speed by a large extent. The development of a dedicated
service for the SCIA-SODIUM processor allows Grid on-Demand users to retrieve
mesospheric sodium profiles in a very efficient and user-friendly way.

11.7 Grid Integration in an Earth Science Knowledge
Infrastructure

Knowledge Infrastructure (KI) is an ICT-based organized place open to defined com-
munities and members, according to agreed policies. Actors (not only people) col-
laborating using a KI can bring, offer, and share data, information, and resources.
In order to exploit data and information and derive knowledge for use in its context,
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a KI provides and integrates, dynamically, different resources (physical resources,
network, software, etc.)

The objective of a KI is to generate and support community shared interests and
collaboration (e.g., in multidisciplinary research). The key functionalities of a KI are:

� Produce, control, share, preserve, retrieve, access, and consumer knowledge.� Organize and enrich the ‘chaotic’ environment in the user community. The
enriching process consists, for example, of adding context with relevance to
user communities.� Support multidisciplinary applications (needed for wide common standards,
framework, approach, etc.).� Interoperability to allow cross-KI interaction with other distributed KIs.� Respond to actors with defined quality services (e.g., time response).

KIs are owned by communities (e.g., the responsible bodies), in order to ensure the
functionalities last for a long time. This implies development and use of organization
elements, policies, and standards.

ESA/ESRIN is working to build an open Earth Science KI. The main contribution is
in integrating a common infrastructure. In this context, ESA is active in demonstrating
extensive use of applications in stable grid environments. In the summer of 2006,
ESA opened an ‘Announcement of Opportunity’ to provide online access to large
ESA Earth Observation archives, computing and storage elements, and user tools
for handling data. Finally, the e-collaboration projects described in Section 11.6 also
significantly contribute to building an ESA open Earth Science KI. In the following
subsections, we describe some ESA contributions in KI.

11.7.1 Earth Science Collaborative Environment Platform
and Applications – THE VOICE

THE VOICE, short for Thematic Vertical Organizations and Implementation of Col-
laborative Environments, is a two-phase, ESA General Studies Programme (GSP)
financed study [46] started in early 2004, looking at how e-collaboration technolo-
gies can support the Earth Science community. During its first phase, a survey of
e-collaboration technologies was performed that was matched with the results of an
analysis of Earth Science e-collaboration service requirements to define a service-
oriented architecture and derive a so-called generic collaborative environment node
(GCEN) to serve as a basis for the implementation of selected prototypes, including
atmospheric instruments calibration and validation, agricultural production support
and decision planning, forest management, ocean monitoring, and urban area moni-
toring during the second phase of the study that started in December 2004. The first
phase has demonstrated the principal need to relate to seamless (and getting the deliv-
ery in a relatively short time) access to and/or use of data, information, and knowledge
without having to worry about where they are, their format, their size, security issues,
multiple logins, etc. After a careful analysis of prototype requirements, essential and
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additional services have been derived, and technologies and tools have been selected
for implementation as given in the tables below. Besides the mentioned technologies,
wireless technologies are also used [47].

The study has already implemented the essential services as part of the GCEN and
will complete the prototypes before the end of 2005. At the end of the project it will
demonstrate near-real-life scenarios with distributed actors, resources, data, and other
relevant items. Besides the mentioned technologies and tools, it is also looking into
the use of standards like the ones defined by the Open Geospatial Consortium (OGC)
and the World Wide Web Consortium (W3C) to facilitate data access.

11.7.2 Earth Science Digital Libraries on Grid

Digital Libraries (DL) are seen as an essential element for communication and collab-
oration among scientists and represent the meeting point of a large number of disci-
plines and fields including data management, information retrieval, library sciences,
document management, information systems, the Web, image processing, artificial
intelligence, human-computer interaction, etc.

ESA/ESRIN is leading the Implementation of Environmental Conventions (Im-
pECt) scenario as part of the EC project Diligent, short for A Digital Library In-
frastructure on Grid Enabled Technology [48], which focuses on integrating grid
and digital library technologies towards building a powerful infrastructure that al-
lows globally spread researchers to collaborate by publishing and accessing data and
knowledge in a secure, coordinated, dynamic, and cost-effective manner.

The main ImpECt requirements concern retrieval of Earth Sciences related infor-
mation based on spatial, topic, and temporal selection criteria and the accessibility
of services and applications able to process this information. Existing Earth Sciences
related digital library systems cannot handle such queries in a sufficient manner and
do not host any similar services such as those required by the ImpECt scenario.

A first ImpECt implementation uses well-known data sources and services, includ-
ing Envisat and other satellite products as well as services capable of generating and
elaborating them. Grid on-Demand has a strategic role as service and data provider.
The core feature is the automatic interaction between separated entities as the test
digital library and external services able to accept queries from ImpECt users process
the information on the ESA grid and publish the results on the DL. The test DL is
based on the Digital Library Management System (DLMS) OpenDLib [49], while
the grid infrastructure relies on the gLite middleware [50]. The specific information
provided in the test DL concerns ocean chemistry, in particular ocean color, being
an Earth Sciences consolidated topic with many and different types of information
(e.g., environmental reports, images, videos, specific applications, data sets, scientific
publications, and thesaurus).

This activity is intended to allow users to annotate available contents and services,
to arrange contents in user-defined collections, to submit advanced search queries for
retrieving geo-referenced information, to build user-defined compound services to run
specific processing, and to maintain heavy documents as environmental conventions
reports by an automatic refresh of the information they hold.
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Future work will allow virtual organizations to create on-demand ad-hoc defined
DLs, to get newly generated information processed on the grid in a totally transparent
way, and to navigate the information with the support of domain-specific and top-level
ontologies.

11.7.3 Earth Science Data and Knowledge Preservation

Earth Observation data are large in volume and range from local to global in context.
Within initiatives like the GMES [51] and ESA Oxygen [52], large amounts of digital
data, which are potentially of great value to research scientists in the Earth Observa-
tion community and beyond, need to be acquired, processed, distributed, used, and
archived in various facilities around the world. For example, Envisat [4], the advanced
European polar-orbiting Earth Observation satellite, carries a payload of ten instru-
ments that provide huge amounts of measurements of the atmosphere, ocean, land,
and ice. These data are processed, corrected, and/or elaborated using auxiliary data,
models, and other relevant information in support of Earth Science researche (e.g.,
monitoring the evolution of environmental and climatic changes). These need to be
preserved for future generations to better understand the evolution of our Earth. That
is, preservation does not relate to the data only, but implies also the maintenance of
information regarding when and how such data were processed, the reason(s) why
this or that way was used. It may include knowledge, documented results, scientific
publications, and any other information, needed to support scientists in their research.
Currently, however, there is no clear mandate to preserve Earth Observation mission
data, relevant information, and knowledge at the European level and the responsibility
falls under the remit of the individual mission owners and/or national archive hold-
ers. Coordinating efforts on standards and approaches to preserve the most valuable
European EO products will be required in order to guarantee the accessibility and
reusability of these frequently distributed data.

It should be noted that the availability and accessibility to most of the above-
mentioned information is considered relevant for efficient and adequate exploitation
of Earth Observation data and derived products. As such, their preservation is also
considered important for optimal short-term archive and data reuse by different ac-
tors, including multidisciplinary exchange of experiences on the same data set. In
other words, problems encountered in long-term preservation certainly include those
encountered in short-term exploitation, and as such the chapter’s focus is on some
aspects of data preservation. Solid infrastructures are needed to enable timely access,
now and in the future. Much more digital content is available and worth preserving.
Researchers increasingly depend on digital resources and assume that they will be
preserved [53].

The workshop on ‘Research Challenges in Digital Archiving and Long-term Preser-
vation’ [54], which was held in 2002, identified many challenges in long-term data
preservation. The overall challenge is guaranteeing access to and usability of data,
independent from underlying hardware and software systems; systems evolve along
time, technologies are being renewed and replaced, data formats may change, and so
may as well related information and scientific knowledge.
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Over the past few years different communities have tackled this problem, exper-
imenting with different technologies. These include Semantic Web focusing on se-
mantic Web access, data grid technology focusing on management of distributed data,
digital library technology focusing on publication, and persistent archive technology
focusing on management of technology evolution [55, 56].

In Earth Science, accessing historical data, information, and related knowledge may
be nowadays quite complex and sometimes impossible, due to the lack of descriptive
information (metadata) that could provide the context in which they fit as well as the
lack of the information and knowledge. Different initiatives are focusing on these
issues. One of them is the Electronic Resource Preservation and Access Network,
short ERPANET/CODATA [57], but also the Persistent Archive Research Group and
the Data Format Description Language research group, both part of the Global Grid
Forum, are looking at similar questions [58]. Within the EO community, the Com-
mittee of Earth Observation Satellites (CEOS) is looking at the use of the Extended
Markup Language XML for Science Data Access [59]. Based on results achieved
in ongoing projects and expected results in planned projects, a possible technical
solution to approach long-term data preservation may consider technologies such as
digital libraries and grids.

In summary, long-term data preservation has to be based on a distributed envi-
ronment capable of handling multiple copies of the same information. Grid and DL
technology could help in performing long-term data preservation since, as said above,
the preservation task of migrating from old to new technology is really similar to man-
aging access to data distributed across multiple sites, while the organization of data
and metadata in information collections requires discovery and access techniques as
provided within DLs.

11.7.4 CASPAR

CASPAR (Cultural, Artistic and Scientific knowledge for Preservation, Access and
Retrieval) [14] is an Integrated Project co-financed by the European Union within
the Sixth Framework Programme. It intends to design services supporting long-term
digital resource preservation, despite changes in the underlying computing (hardware
and software) and storage systems.

In this context, CASPAR will:

� Enhance the techniques for capturing Representation Information and other
preservation-related information for content objects.� Integrate digital rights management, authentication, and accreditation as stan-
dard features of CASPAR.� Research more sophisticated access to, and use of, preserved digital resources,
including intuitive query and browsing mechanisms.

Different case studies will be developed to validate the CASPAR approach to digital
resource preservation across different user communities and assess the conditions for
a successful replication.
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11.7.5 Living Labs (Collaboration@Rural)

Collaboration@Rural aims to boost the introduction of Collaborative Working En-
vironments (CWE) as key enablers for catalyzing rural development. To achieve
this priority objective, Collaboration@Rural will advance the specification, develop-
ment, testing, and validation of a powerful and flexible worker-centric collaborative
platform that will significantly enhance the capabilities of rural inhabitants both at
work and at life, thus leading to a better quality of life and a revaluation of rural
settings.

From the technical standpoint, Collaboration@Rural will organize the work in three
layers: Collaborative Core Services – CCS (layer 1), Software Collaborative Tools –
SCT (layer 2), and Rural Living Labs – RLL (layer 3). Layer 1 will encapsulate all core
services and resources (networks, sensors, devices, software modules, localization
sources, etc.) in reusable software components.

A key piece of Collaboration@Rural’s framework is the upper-layer service archi-
tecture, or C@RA, which combines in a synergetic manner the layer 1 components
according to orchestration of high-level capabilities resulting in a set of high-level
software tools, at layer 2. C@RA will be highly customizable in the sense of provid-
ing mechanisms to incorporate any proprietary or open solutions, and any standard.
This approach will permit Collaboration@Rural to substantially contribute to the
definition of a user-centric Open Collaborative Architecture (OCA).

Collaboration@Rural layer 3 will articulate Rural Living Labs as innovative re-
search instruments involving rural users. The RLL user-oriented methodology will
guarantee to meet the highly specific rural users’ expectations and will provide mech-
anisms to gather technical requirements for the C@RA.

Several innovative scenarios with an expected high impact on rural development
have been selected to enable later validation of the C@RA.

11.8 Summary and Conclusions

In this chapter we described some of the ESA activities related to the use of grid
technology for Earth Observation. The ESA Grid Processing on-Demand environ-
ment, a generic, flexible, secure, re-usable, distributed component architecture using
grid and Web services to manage distributed data and computing resources, has been
described. Several EO applications have been plugged into G-POD, benefiting from
easy and transparent access to EO data and computing resources. This opens the pos-
sibility to address new applications that would be unfeasible without the data access
and computing resource distribution offered by grid technology. In the future the
collocation of a Grid on-Demand node with the EO facilities performing data ac-
quisition or data archiving can minimize and optimize the need and availability of
high-speed networks.

Following the interest and expectations raised as a result of several presentations
made at workshops and conferences, and of some significant scientific results obtained
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using the grid for analysis of satellite-based data, we expect more EO science teams
(and also other communities) will begin to deploy their applications on the grid. For
instance, applications in the fields of seismology and climatology need to handle large,
regularly updated databases. Data may come from various types of observatories, e.g.,
ground-based, airplane, and balloon measurements, or from simulation and modeling.

Recently, ESA offered the opportunity to Principal Investigators of exploring the
EO data archives with their own algorithms/processors, using the ESA available grid
computing and dynamic storage resources (please consult ESA Earth Observation
Principal Investigator Web portal [60]). This represented a new and unique opportu-
nity for scientists to perform bulk processing and/or validation of their own algorithms
over the large ESA Earth Observation archive at very limited associated cost and ef-
fort. We have presented some examples of EO applications of Grid on-Demand, such
as applications for SAR, MERIS, AATSR, GOME, GOMOS, MIPAS, and SCIA-
MACHY data. More of these applications will come and enrich the selection of
valuable services for the EO community.

ESA also sees the grid as a powerful means to improve the integration of data and
measurements coming from very different sources to form a Collaborative
Environment.

The need for coordinated e-collaboration within the Earth Science community has
been clearly confirmed in the ESA GSP project THE VOICE. Detailed needs have
been confronted with outcomes of a survey of current e-collaboration technologies in-
cluding grid and Web services, workflow management technology, and Semantic Web,
to provide a basis for the implementation of a series of prototypes. A service-oriented
architecture has been adapted as a basis for the prototype generic collaboration plat-
form offering a certain number of essential and additional services. Web services have
proven to be the most flexible and powerful instrument to build such an architecture.
Completed with other technologies and the use of selected standards, such a platform
will ease the interaction between the different actors involved.

Digital Libraries are seen as an essential element for communication and collab-
oration among scientists and represent the meeting point of a large number of disci-
plines and fields including data management, information retrieval, library sciences,
document management, information systems, the Web, image processing, artificial
intelligence, human-computer interaction etc.

The use of grid, Web services, and Digital Library technologies can help in easing
the accessibility of data and related information needed to interpret the data, as is
being demonstrated in different initiatives at ESA. However, there are still many
technological challenges to be explored further and ESA intends to follow these
closely because of their interest in guaranteeing users’ transparent access to the ever-
growing amounts of Earth Science data, products, and related information from ESA
and third-party missions.

For the Earth Science community, it is important to continue and invest in activities
focusing on grid and e-collaboration. Initiatives like the mentioned ESA G-POD
and projects like DILIGENT and THE VOICE are demonstrating their relevance.
Moreover, these projects demonstrate that an emerging technologies-based underlying
infrastructure is a real asset needed by this community; it improves significantly the
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accessibility and usability of Earth Science data, information, and knowledge, and
the way Earth Science users collaborate.

Finally, the means and extent to which grid technology can be exploited in the
future are highly dependent on the adoption of common standards to enable different
grids to collaborate and interoperate.
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This chapter presents an overview of a Grid Computing Environment designed for
remote sensing. Combining recent grid computing technologies, concepts related to
problem-solving environments, and high-performance computing, we show how a
dynamic Earth Observation system can be designed and implemented, with the goal
of management of huge quantities of data coming from space missions and for their
on-demand processing and delivering to final users.

12.1 Introduction

The term remote sensing was first used in the United States in the 1950s by Evelyn
Pruitt of the U.S. Office of Naval Research, and is now commonly used to describe
the science of identifying, observing, and measuring an object without coming into
direct contact with it. This process involves the detection and measurement of differ-
ent wavelength radiations, reflected or emitted from distant objects or materials, by
which they may be identified and categorized by class, type, substance, and spatial
distribution. Remote Sensing Systems are thus made of:

� sensors mounted on an aircraft or a spacecraft that gather information from the
Earth’s surface;� acquisition and archiving facilities that store the acquired raw data;� computing resources that process and store them as images into distributed
databases;� on-line systems provided by space agencies for their distribution to final users.

Information can be achieved by means of the so-called passive sensors, which detect
the radiation emitted by the sun and the one spontaneously emitted by the ground. It
should be noted that passive sensors do not work during the night and their efficiency
is strongly influenced by atmospheric conditions. Active sensors instead detect the
backscattered radiation emitted by a radar installed on-board the spacecraft and,
unlike passive sensors, can be used for monitoring both day and night, whatever the
weather conditions. The Synthetic Aperture Radar (SAR) is such an active sensor, and
it is widely used in remote sensing missions to achieve high-resolution Earth images.
What we are interested in are the system components belonging to the ground segment
and devoted to the archiving, processing, and delivering of remote sensing images to
the final user. The scenario is thus characterized by big distributed archives in which
information is stored as raw data, that is, in the original format acquired on-board
the spacecraft, or as images derived from processing of the raw data. As a matter of
fact, further post-processing is usually required to generate standard products to be
delivered to final users.

To access the huge quantity of remote sensing data stored in the archives, some
user interfaces have been developed. An example of a Web interface is the Intelligent
Satellite Data Information System (ISIS) at the German Remote Sensing Data Center
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(DFD). This interface provides catalogue search and visualization of digital quick-
looks and electronic order placement. It is interesting to remark that links to external
Earth Observation Systems (EOS) archives are also provided. Using the ISIS interface,
the user is allowed to search for the information through a clickable map of the world
to set the geographic region of interest and other parameters like the campaign, the
selected data center, the time range, and the processing level. The ISIS interface is
similar to that provided by the European Space Agency Earthnet On Line.

These on-line systems are in our opinion good examples of Web interfaces to static
Earth Observation Systems: The user is just allowed to access a static catalogue (i.e.,
only images previously processed and stored in the data base can be retrieved) and no
on-demand processing is permitted. Moreover, a limited number of post-processing
facilities is provided (no true real-time services) and the level of transparency in the
data access is very low, i.e., the user must know in advance where the data are stored,
how to access them, etc. Through a nice Web interface, the user is well guided on
a clickable map of the world, where she can select the region of interest, the data
source, the acquisition time range, the data centre, but she needs to know too many
details and no high-level queries are allowed, due to a lack of intelligence capable
to translate a high-level user’s request to low-level actions on the system. The level
of integration of multi-sources data is also very low, so that these systems are not
capable of fusing multiple data sources together to infer new knowledge. For these
reasons, although the EOS data are so useful, the number of real users is very limited
compared to the big investments of the International Space Agencies.

In this chapter, we present an overview of a Grid Computing Environment designed
for remote sensing. Combining recent grid computing technologies, concepts related
to problem solving environments, and high-performance computing, we show how
a dynamic Earth Observation system can be designed and implemented, with the
goal of management of huge quantities of data coming from space missions and for
their on-demand processing and delivering to final users. The rest of the chapter is
organized as follows. Section 12.2 introduces Grid Computing Environments (GCEs),
and Section 12.3 describes common grid components of GCEs. We describe the design
of our GCE for remote sensing highlighting implementation details in Section 12.4
and report about the implementation best practices in Section 12.5. We discuss the
GCE approach and compare it against classic approaches in Section 12.6. Finally, we
draw our conclusions in Section 12.7.

12.2 Grid Computing Environments

Due to the rapid evolution of grid computing technologies with respect to both con-
cepts and implementations, people increasingly think about grids clearly separating
the user and the system sides. Indeed, a useful distinction in a grid system is made
by considering separately how the users access computing services and how these
services interface themselves with back-end resources. Usually, the user side is called
the Grid Computing Environment whereas the underlying distributed system is called
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the Core Grid. A GCE therefore embraces the tools provided by a grid system that
allow users accessing grid resources and applications; it includes graphical interfaces
(for authentication/authorization, job composition and submission, file management,
job monitoring, resource management and monitoring, etc.), run-time support, result
visualization, knowledge sharing modules, and so on [1].

Often, GCEs are implemented as Web applications (so-called grid portals) that
provide the users with a friendly interface to grid applications and thus, to a set of
resources and applications. Usually, grid portals reside on the top level of a multi-tier
application development stack; the major reasons for using the Web as a transfer
protocol are ubiquity, portability, reliability, and trust. It is a comfortable, low-tech
delivery system that is available at the lab or at home, or from a laptop in a hotel
room: The only requirement that users must satisfy to access a Web-based GCE is
the availability of a Web browser.

GCEs have also been called grid-based Problem Solving Environments (PSEs) in
order to stress the natural tendency of these systems to provide services and function-
alities to solve users’ problems. Nevertheless, GCEs and PSEs are often confused and
misunderstood: A PSE represents a complete, integrated environment for composing,
compiling, and executing applications belonging to a specific area (or areas). It in-
cludes advanced features in order to assist users in creating and solving a problem on
a specific platform. With this in mind, a useful distinction between GCEs and PSEs is
related to their focus: While a GCE is meant to control a grid environment that can be
potentially composed of thousands of resources, a PSE is specialized to one (or more)
applicative domain and, thanks to its specialization, it can provide high-level services
(such as assistance) to users in composing their applications. A PSE may access
virtual libraries, knowledge containers, and sophisticated control systems related to
execution and result visualization. PSEs are able to provide rapid prototyping systems
and a high scientific production rate without worrying about hardware or software
details. In this chapter we argue that the design of a grid environment for remote
sensing must take into account all of the aspects related to the specific applicative
domain, not just the nature of data involved in the processing (with regard to format
heterogeneity, file size, etc.), the kind of application really used by scientists, etc., but
especially and more than anything else the users. Consequently, we will describe the
GCE design process and its specialization to this applicative field.

Focusing now on general GCEs features, we can describe them taking into ac-
count the functional point of view and considering the technologies used for the
implementation. With regard to the former, we define a GCE as a grid subsystem able
to satisfy at least the following two requirements [2]:

� programming the users’ side of the grid by means of best-suited programming
technologies;� controlling users’ interactions in order to implement functionalities such as
authentication, jobs composition, and submission.

These two requirements of a generic GCE can be analyzed in depth taking into ac-
count the functionalities that must be provided: users’ authentication, data management,
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job management, and resource management. Indeed, a computing environment in
which the resources are geographically distributed and owned by different organiza-
tions, as in a grid system, requires proper authentication, authorization, and accounting
to address the key aspects related to access and resource usage control. Moreover, we
refer to all of these issues using the general term security, recalling that confidential-
ity and integrity of data must also be provided. Job submission and monitoring, and
file transfers are two other services essential to any computing environment in which
users can perform some kind of processing. Finally, in grid environments, the number
of involved resources can rapidly change, and thus an efficient mechanism to manage
them is required in order to react rapidly to changes in the environment due to such
a dynamic behavior. It is worth noting here that a resource can be a computing node,
software, an instrument, and so on, consequently the heterogeneity of these resources
must by properly considered. All of these aspects are faced by the core grid services
available as grid middleware, but again, the mechanisms provided by the middleware
itself are not immediately accessible to end users. A GCE must implement, using the
underlying service functionalities, a set of higher-level interfaces.

Let us consider now the second point of view related to the characterization of
GCEs: technologies and programming languages. While the GCE functionalities can
be rapidly summarized, the way to implement a GCE is more variegated and requires
some care. Indeed, GCEs usually exploit the core grid services provided by the under-
lying software modules (Grid middleware). For instance, the Globus Toolkit [3] is the
most widely used grid middleware, but it does not provide direct support for building
GCEs: It makes available to developers a set of modules that face all of the aspects
involved in the development of grid systems. The modules provided can be accessed
directly harnessing their clients and servers, but, besides offering limited functional-
ities, this approach is rather inconvenient for those scientists who are not computer
experts and requires learning the gory details of the Globus software. Instead, scien-
tists would rather employ their time computing and producing useful scientific results.
Nevertheless, GCEs can be built using the Globus APIs with the mission to hide all
of the low-level details in order to provide a friendly interface. With respect to the
programming languages and technologies suited for GCE development, we note here
that many different GCE implementations do exist based on C/C++, Java, and related
technologies (JavaBeans, Java Server Pages, Portlets, CORBA, XML, Web services,
etc.). Often, several architectural layers have been defined in order to de-couple raw
resources and low-level services from user interfaces (see Figure 12.1). Examples
of toolkits for development of layered GCEs include: the Grid Portal Development
Toolkit [4] (GPDK, a suite of JavaBeans components suitable for Java based GCEs),
the Java [5], CORBA [6], Python [7], and Perl [8] Commodity Grid interfaces to the
Globus Toolkit (COG kits) [9]. In general, distributed object technology is often used
due to the distributed nature of both the software and hardware objects.

It is clear that GCEs can be classified with regard to the technologies and languages
used. In this case, considerations about the performances and their relation with the
programming language can be drawn in order to support the design phase [10].

We conclude this section by introducing OGSA and WSRF. Open Grid Services
Architecture (OGSA) and Web Services Resource Framework (WSRF) specifications
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Figure 12.1 Multi-tier grid system architecture.

were recently published respectively by The Global Grid Forum and several vendors
in order to define a common standard and an open architecture for grid-based appli-
cations including a technical specification of what a Grid Service is.

12.3 Common Components of GCE

GCEs must allow users to access grid resources and applications and thus must
include several graphical interfaces and functionalities exploiting the underlying core
grid services. In order to satisfy this requirement we can identify common GCEs
components related to security (in order to allow authentication and authorization),
job management (for task composition, job submission and monitoring, file staging,
etc.), data management (to allow users searching and retrieving data from distributed
data repositories, storing simulation results, etc.), and information management. In
the following subsections we detail these modules referring to the Globus Toolkit.

12.3.1 Security

Security is concerned with the following problems: establishing the identity (authenti-
cation) of users or services, determining who (principal) has the rights to perform what
actions (authorization), and protecting communications, as well as with supporting
functions, e.g., managing user credentials and maintaining group membership in-
formation. The Globus Toolkit GSI (Grid Security Infrastructure) leverages X.509
end entity certificates and provides support for proxy certificates, which are used to
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identify persistent entities such as users and servers and to allow the temporary delega-
tion of privileges to other entities. GSI has been devised to deal with authenticated and
confidential secure communication among clients and grid services in a distributed
setting that avoids the use of a centrally managed security system and provides sin-
gle sign-on access to grid resources and delegation of credentials. GSI is based on
public key cryptography and provides an implementation of the GSS APIs (Generic
Security Services) layered on top of TLS (Transport Layer Security), credential man-
agement through the MyProxy service, which is an online credential repository, and
the SimpleCA package, which is a basic Certification Authority. Group membership
is addressed by the Community Authorization Service (CAS), and a GSI-enabled
version of the SSH protocol is also available.

12.3.2 Job Management

Job management is provided in Globus by the Grid Resource Allocation and Manage-
ment (GRAM). Submitting a job, while conceptually simple, may involve complex
operations, including job initiation, monitoring, management, scheduling, and/or co-
ordination of remote computations. In GCEs, a typical job may also require additional
work to stage the executable and/or input files to the remote machine prior to exe-
cution, and to coordinate staging output files following the execution. On machines
where a local scheduler is available, GRAM provides a uniform interface allowing
job submission independently of the actual local resource scheduler. A job submitted
may be interactive, a classic batch job, and even parallel. Job monitoring is easy, since
GRAM can notify asynchronously job state changes. Security leverages GSI, and file
stage-in and stage-out takes advantage of GridFTP, detailed in the next subsection.

12.3.3 Data Management

The Globus Toolkit provides GridFTP tools to handle file transfers. GridFTP is a
protocol extending the classic FTP with a number of extensions especially designed for
grid environments. The primary aim of the protocol and related tools is the provision
of a grid service for secure, robust, fast, and efficient transfer of bulk data. GridFTP
indeed leverages GSI and provides support for the automatic restart of failed transfers,
for high-performance file transfer exploiting multiple parallel streams, automatic
negotiation of TCP buffer size, third-party and partial file transfer.

Besides GridFTP, other tools are also available including the Reliable File Transfer
Service (RFT), which leverages GridFTP, the Replica Location Service (RLS), the
Data Replication Service (DRS), and the Data Access and Integration (OGSA-DAI).

Currently in the same area, there are other grid data management toolkits, which
address the same issues providing extreme performance and enhanced functional-
ities. One of them is the Grid Relational Catalog (GRelC) toolkit [15], which is
composed of the following data grid services: GRelC Service (data access to interact
with databases), GRelC Storage (to manage workspace areas), and GRelC Gather (to
provide a data federation service). The three services are entirely developed in C as
GSI-enabled Web services to address efficiency, security, and robustness.
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12.3.4 Information Services

Grid computing emerged as a new paradigm distinguished from traditional distributed
computing because of its focus on large-scale resource sharing and innovative high-
performance applications. The grid infrastructure ties together a number of Virtual
Organizations (VOs) that reflect dynamic collections of individuals, institutions, and
computational resources. A Grid Information Service in Globus-based grids aims
at providing an information-rich environment to support service/resource discovery
and decision-making processes. The main goal of Globus-based grids is indeed the
provision of flexible, secure, and coordinated resource sharing among virtual organi-
zations to tackle large-scale scientific problems, which in turn requires addressing, be-
sides other challenging issues like authentication/authorization, access to remote data,
service/resource discovery, and management for scheduling and/or co-scheduling of
resources. Information thus plays a key role, allowing, if exploited, high-performance
execution in grid environments: The use of manual or default/static configurations
hinders application performance, whereas the availability of information regarding
the execution environment fosters the design and implementation of so-called grid-
aware applications. Obviously, applications can react to changes in their execution
environment only if these changes are somehow advertised. Therefore, self-adjusting,
adaptive applications are natural consumers of information produced in grid environ-
ments where distributed computational resources and services are sources and/or
potential sinks of information, and the data produced can be static, semi-dynamic, or
fully dynamic.

Nevertheless, providing consumer applications with relevant information on-demand
is difficult, since information can be (i) diverse in scope, (ii) dynamic, and (iii) dis-
tributed across many VOs. Moreover, obtaining information regarding the structure
and state of grid resources, services, networks, etc., can be challenging in large-scale
grid environments. In this context, the usefulness of a Grid Information Service pro-
viding timely access to accurate and up-to-date information related to distributed
resources and services is evident. This is why the Globus Toolkit provided the grid
community with a Grid Information Service since its inception, as one of the funda-
mental middleware services, the Monitoring and Discovery System (MDS). However,
due to MDS-inherent performance problems, in our work we adopted the iGrid In-
formation Service, which we have been developing in the context of the European
GridLab project [23][24].

12.4 The Design and Implementation of GCEs
for Remote Sensing

Earth Observation (EO) products provided by different EO facilities differ in terms
of format, geographic reference system, projection, and so on. Usually, domain spe-
cialists are increasingly willing to integrate, compare, and fuse data coming from
different EO sensors. EO systems are thus characterized by the management of het-
erogeneous data. Moreover, several processing algorithms are generally composed
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by many steps, and some intermediate partial results are used as input to other algo-
rithms defining a workflow. In order to design a GCE tuned to this specific context
it is extremely important to take into account these issues. This section describes the
GCE requirements and architecture focusing on each aspect related to the considered
applicative domain. More in depth, a GCE for EO must allow at least:

� sharing of computational resources and sensors among different organizations;� sharing of EO and geospatial data;� sharing of software resources (with particular emphasis on EO and geospatial
data processing applications);� transparent access to computing resources through a graphical interface;� efficient usage of the resources (this implies handling job scheduling, resource
management, and fault tolerance);� efficient usage of the network links (indeed, the amount of data to be transferred
from end users to nodes and vice versa is quite large. The data movement, when
considering that it can be a bottleneck, impacts on the global performance of
the system);� composing and compiling new processing applications based on existing ones;
the system should allow users building complex applications by means of a
user interface that will hide low-level details related to grid infrastructure and
resources;� supporting different, heterogeneous data formats;� knowledge management (gathering and sharing user’s practices).

In order to meet the previous requirements, the designed architecture includes the
following modules, as depicted in Figure 12.2:

� Web interface: This component allows accessing services and resources. It
permits one to search data over a distributed catalogue, to use the available
services, and to administer the resources. The Web interface consists of three
main sub-components: the data search engine interface, the workflow interface,
and the system management interface.� Knowledge container: It is a component that gathers and provides information
related to the user’s behavior and contains an ontology related to the software
tools available in the environment.� Distributed data management system: Based on a common metadata schema
for describing EO and geospatial products, it uses some modules belonging to
the Grid Relational Catalog (GRelC) Project, which provides efficient, trans-
parent, and secure data access, integration, and management services in a grid
environment.� Workflow management system: An integrated workflow management system
for EO data processing that includes a resource manager optimized for EO
applications.
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� Core grid services: The high-level and low-level grid services that provide all
of the functionalities needed to access grid resources (authentication, autho-
rization and accounting services, job submission, file transfer, monitoring, and
so on). This layer has been developed using specific libraries belonging to the
Grid Resource Broker (GRB) [16][17] that exploits the Globus toolkit v4.x as
grid middleware. In the following subsections we describe in depth the design
and implementation of a GCE for remote sensing.

12.4.1 System Overview

The presentation layer of the GCE consists of a set of interfaces (implemented us-
ing classic Web technologies such as dynamic Web pages developed using Java
server pages, Java applets, servlets, CGI, and so on) that exploit the logic pro-
vided by the underlying business logic modules. This layer contains the following
interfaces:

� Data search engine interface: Leverages fast CGI programs (for performance
reasons) to retrieve data and present them (via the HTTP protocol) within
properly formatted HTML pages. This sub-component is layered on top of the
distributed data management system and allows users submitting geographic
or metadata-based queries (the users can define a bounding box over an Earth
map or define as search criteria a time interval or an image type).� Workflow interface: Allows building complex applications by means of a
graphical user interface (a Java applet) that hides low-level details related to
grid infrastructure and resources. This component relieves the user from the
burden of taking into account low-level details and implements mechanisms to
assist and guide the user during the specification of her workflow.
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� System management interface: It is the component that permits configuration
of grid resources. Through this component, the administrator user has the possi-
bility to properly configure the resources while contributor users can configure
services and applications; allowed operations include addition, modification,
and deletion of resources and services. This component interacts directly with
the knowledge container through the exchange of XML messages.

12.4.2 Knowledge Container

In grid computing the description of resources is crucial, and several researches
have been focused on this aspect. In our approach we have considered separately
the information specifically related to the EO domain from the other ones that are
common to each grid environment. Indeed, the knowledge container described in this
section represents the component that allows the contextualization of our system to
a specific domain. Other information related to resource monitoring and discovery is
provided by Core Grid Services.

A well-known approach for managing information can be found in the Grid Infor-
mation Service (GSI) developed within the Globus project. The Globus Monitoring
and Discovery Service (MDS-2) provides a large distributed collection of generic
information providers that extract information from local resources. The gathered
information is structured in term of a standard data model based on LDAP. More-
over, MDS-2 provides a set of higher level services that collect, manage, and index
information provided by one or more information providers. The MDS-2 includes a
configurable information provider framework (Grid Resources Information Service
or GRIS) and a configurable aggregate directory component (Grid Index Information
Service or GIIS). An information provider for a computing resource might provide
information about the number of nodes, amount of memory, operating system, load
average, and so on. An information provider for a running application might provide
information about its configuration and status. The MDS schema can be easily ex-
tended and additional information providers can be developed in order to manage and
publish an extended set of information.

The DataGrid project took a relational approach to GIS, called Relational Grid
Monitoring Architecture (R-GMA). This solution uses a relational approach to struc-
ture the information about grid resources and is composed by three main compo-
nents: Consumer, Producer, and a directory service, called Registry (as specified in
the Global Grid Forum Grid Monitoring Architecture). In the R-GMA, Producers reg-
ister themselves with the Registry and describe the type and structure of information
they want to make available to the grid. Consumers can query the Registry to find
out what type of information is available and to locate Producers that provide such
information. When this information is known, the Consumer contacts the Producer
directly to obtain the data. In this implementation, the information provided by Pro-
ducers is available to Consumers as relations are used to handle the registration of
Producers and Consumers. R-GMA considers Virtual Organization (VO) information
to be organized logically as one relational database in which the implementation is
based on a number of loosely coupled components. The database is partitioned and
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the description of the partitioning is held in the Registry. The Consumer can access
information made available by several Producers through a single query expressed as
an SQL select statement.

iGrid is a novel Grid Information Service we have been developing within the
European GridLab project. Among iGrid requirements there are performance, scala-
bility, security, decentralized control, support for dynamic data, and the possibility to
handle users’ supplied information. The iGrid Information Service has been specified
and carefully designed to meet these requirements. Core iGrid features include:

� Web service interface built using the open source gSOAP Toolkit;� Distributed architecture based on two kind of nodes, the iServe and the iStore
Web services;� Based on relational DBMS we are currently using PostgreSQL as the relational
back-end for both iServe and iStore nodes;� Support for Globus GSI through the GSI plug-in for gSOAP that we have
developed;� Support for TLS (Transport Layer Security) binding to DBMS to secure database
communications;� Support for Administrator-defined Access Control List to allow for local deci-
sions;� Support for heterogeneous relational DBMS through the GRelC library;� Support for multiple platforms iGrid builds on Linux, Mac OS X, FreeBSD,
and HP-UX;� Extensible by adding new information providers (this requires modifying the
iGrid relational schema);� Extreme performances as needed to support grid-aware applications;� Fault tolerance.

In a distributed environment, information related to deployed software can play an
important role in allowing a scheduling algorithm to perform efficiently. Moreover,
the software objects deployed on a computing element can require specific libraries,
environment variables, and so on. With regard to software resources, there are several
relevant approaches meant to characterize applications. A formal specification of
the software objects in a grid setting has been derived from BIDM standard (Basic
Interoperability Data Model, IEEE standard 1420.1) by expanding the classes of
objects defined in the standard itself [11]. Another approach is the Open Software
Description Format (OSD) [12]. OSD is an application of XML that provides a
vocabulary used for describing software packages and their dependencies.

We have designed an ad-hoc knowledge container specialized to describe applica-
tions and tools for remote sensing data processing and management. In our approach,
we have considered separately three kinds of resources: hardware, software, and data.
For each component, we have derived and implemented an information model that
describes the component.
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In particular, in order to characterize the application domain, we have analyzed the
EO systems from two points of view: the remotely sensed products and the software
tools able to process them. For both, we have derived and implemented an information
model that fully describes them. The information schemas are developed in XML and
are composed by:

� The MetaSoftware schema, in which we have collected a set of relevant infor-
mation able to describe the software tools. The collected information related
to an application includes: (a) input and output data formats; (b) application
capabilities (we distinguish applications with pre-processing capabilities, post-
processing or data format conversion capabilities); and (c) information needed
to launch the application, i.e., hostname, pathname, shared libraries on which
the application depends, environment variables, application arguments, and
so on.� The MetaData schema: In order to realize a MetaData schema that involves
the most important information about remote sensing data, we have considered
the ISO TC/211-19115 standard [13]. From this standard we have derived a set
of metadata. The most important metadata we have considered address prod-
uct identification and distribution, data quality, platform and mission, spectral
properties, maintenance, generic information, spatial representation, reference
system, and other information related to the file data format. This metadata set
is structured utilizing a relational schema.

This component is also able to store the processing patterns that the users define
during their work sessions. For example, if a user defines a new processing algorithm
starting from the services available on the environment (possibly by means of the
Workflow interface), it will be showed to the other users as a new service. This way
the environment can learn form the users’ experience and can provide users with a
rich set of tools.

12.4.3 Distributed Data Management System

Remote sensing data, acquired by ground-segments or processing facilities, comes
from different sensors and different space missions. Often the data format produced
for each mission and each sensor differs, and if we consider that the ground-segment
can store the acquired data using internal formats, it is immediately evident how
the management and format conversion is an important issue that must be taken into
account. An environment like a PSE must support several data formats and must allow
converting to/from different formats. In order to simply handle acquired raw data or
post-processed data, it is fundamental to associate a set of metadata to each remote
sensing product. Moreover, through these metadata it is possible to perform advanced
operations like thematic searches. The Committee on Earth Observation Satellites
(CEOS) is an international organization aimed at coordinating international civil
spaceborne missions with the purpose to observe and study the Earth planet. CEOS
comprises 41 space agencies and other national and international organizations, and is
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recognized as the major international forum for the coordination of Earth observation
satellite programs and for interaction of these programs with users of satellite data
worldwide. One of the activities of CEOS is to coordinate the Earth observation data
exchange, through the publication of a set of principles and the definition of a standard
data format. The CEOS format is, indeed, the standard format adopted by several
agencies to distribute remote sensing data. Another relevant standard to consider is
ISO TC/211, by the International Organization for Standardization (ISO). The aim
of ISO TC/211 is the standardization in the field of digital geographical information
or to establish a structured set of standards for information concerning objects or
phenomena that are directly or indirectly associated with a location relative to the
Earth. These standards specify methods, tools, and services for data management,
acquiring, processing, analyzing, accessing, presenting, and transferring such data
in digital/electronic form among different users, systems, and locations. The work
will link appropriate standards for information technology and data where possible,
and will provide a framework for the development of sector-specific applications
using geographical data. The information model we propose aims at describing and
modeling the remote sensing products. It is based on the CEOS data format and
on ISO TC/211-19115 specification. ISO 19115:2003 defines the schema required
for describing geographical information and services. It provides information about
the identification, extent, quality, spatial and temporal schema, spatial reference, and
distribution of digital geographical data.

The distributed data management system [14] (see Figure 12.3) consists of several
components such as the GRelC Service (GS), the Enhanced GRelC Gather Service
(EGGS), and the GRelC Data Storage (GDS). A Web application is available to easily
access data through a Web interface.

The GS module provides an efficient and standard data access interface to the
EOS metadata repositories. It performs a first level of data virtualization in a grid
environment, providing both DBMS and location transparency. It offers (i) a wide
set of APIs related to the interaction with relational and not relational data sources;
(ii) efficient delivery mechanisms leveraging both gridFTP and HTTPG (HTTP over
GSI) protocols, compression, and streaming mechanisms to speed up performance;
(iii) fine-grained access control policies; (iv) transactional support; (v) access to a wide
range of relational DBMSs (Postgresql, Mysql, UnixODBC data sources, etc.), and
(vi) advanced APIs exploiting interaction with storage servers to upload resultsets
or database dumps into a common workspace area, etc. Moreover, a user-friendly
graphical interface allows users interacting with EOS metadata repositories without
requiring detailed knowledge about underlying technologies or technical issues.

Security is provided through GSI and leverages (i) mutual authentication between
the GS-contacting-user (user that tries to bind to the GS) and the GS, (ii) authorization
based on the Access Control List, (iii) data encryption (to assure confidentiality), and
(iv) delegation to allow the GS user acting (exploiting proxy credentials) on behalf of
the GS-contacting-user with respect to interaction with other services (i.e., the storage
service).

The EGGS module provides an efficient data integration interface to the GS mod-
ules and thus to the EOS metadata repositories. It performs a second level of data
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Figure 12.3 Distributed data management architecture.

virtualization in a grid environment providing data source location and distribution
transparency. It exploits a peer-to-peer data federated approach in order to join trans-
parently information coming from different EOS metadata repositories. The federated
approach versus the centralized one provides local autonomy and scalability and rep-
resents a key element within the proposed data management architecture.

Within an effective computational grid scenario, several EGGS can be linked to-
gether in a connected graph, originating a federation of multiple EGGSs. Each EGGS
has full control of a set of GSs (local data sources) belonging to its own administra-
tive domain (the same virtual organization/institution). Moreover, the EGGS is able
to (i) submit queries to the local GSs, (ii) route queries to the EGGS neighbors, (iii)
reject queries already checked, (iv) collect partial results (transit node) and deliver
the entire resultset (agent node), (v) manage time to live and hops to live, and (vi)
support both synchronous and asynchronous queries.

It is worth nothing here that each EGGS manages its own domain independently
from the other ones and performs local access control policies to meet administrative
issues (these represent strong requirements related to an EOS scenario). Even in this
case security is performed by means of the GSI and delegation is also supported to
allow fine-grained access control to remote EOS data sources.

The query language used to query the GS and the EGGS is the Standard Query
Language (SQL) containing GIS extensions in order to satisfy complex user requests
and meet specific needs.
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The GDS module provides an efficient data access interface to the storage re-
sources located within the EOS system. It is able to manage efficiently, securely,
and transparently collections of data (files) on the grid (allowing interaction between
users and physical storage systems), fully exploiting the grid-workspace concept. It
allows sharing data among groups of users, leveraging different data access policies
and roles. The GDS also manages metadata related to files, workspaces, etc., provid-
ing different data transport protocols for file transfer. Regarding static workspaces,
the storage service provides functionalities (i) to define and configure permanent
workspaces; (ii) to define user profile, privileges, and roles within the Grid Storage
and workspaces; (iii) to transfer data using GridFTP, HTTPG, and other protocols;
(iv) to manage group of users; (v) to remotely access files using Posix-like functions,
and (vi) to perform a coherence check of the system and provide report notification
to the workspace administrator. Moreover, owing to the nature of a computational
grid (heterogeneous, distributed, prone to failures, etc.) along with static services,
a more dynamic framework is also needed. The GDS also provides a basic support
for dynamic workspaces leveraging two key concepts: the management of workspace
lifetime and quota. A preliminary disk-cache management of the data storage is based
on the Storage Resource Manager specification.

It is worth nothing here that the proposed peer-to-peer approach based on EGGS
is able to federate both metadata stored within the GS (EOS Metadata Catalogue, as
previously described) and metadata stored within the GDS (a distributed workspace
area).

12.4.4 Workflow Management System

Workflow management is emerging as one of the most important grid services of GCEs
and captures the linkage of constituent services together to build larger composite
services.

The reasons that induced us to consider the Earth observation field are the fol-
lowing. First, several processing algorithms are composed by many steps and some
intermediate partial results are used as input to other algorithms or to choose, under
some conditions, the next task. Another important reason is that, according to the
problem-solving environment approach, new complex processing algorithms com-
posed using simpler ones can be defined, saved, and then reused in the next work
session or shared among different users.

More in depth, from the architectural point of view, the main components of the
Workflow Management System are: i) the workflow interface (WI) included in the
presentation layer, ii) a service discovery module (SDM) in charge of discovering
services or applications on the basis of some criteria, and iii) a workflow verification
and reduction module (WFVRM) that implements the workflow verification and re-
duction functionality. In Figure 12.4 is depicted the interaction among the workflow
management system modules and descriptions of the functions performed by each
one. The SDM provides service and application lookup functionalities by accessing
the knowledge container. When a user selects the EO products to be processed, the
SDM queries the knowledge container using as filter criteria the list of the product
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formats, and it retrieves all of the applications or services able to process these data.
SDM also uses the user’s profile as an additional information source. The SDM
provides a mechanism to use previously defined workflows as a building block for
composing recursively new applications. Moreover, SDM also accesses the grid in-
formation service to verify the availability of the resources needed by the workflow.
The SDM module has been developed in Java.

For the WFVRM, an optimized algorithm has been developed in order to ver-
ify the graph in terms of data flow consistency. Indeed, this module is in charge of
checking the compatibility between data formats produced by a task and data formats
admitted by the next one. Whenever two linked applications have different data for-
mats, WFVRM will automatically look up an available application with data format
conversion capability that will be used to convert the data. The user’s workflow is
preliminarily checked to verify if a direct connected acyclic graph has been properly
designed. Using an adjacency matrix representation of the graph, the WFVRM mod-
ule applies a basic algorithm for cycle detection and to define the graph connectivity.
Exploiting the information related to the ontology of the EO applications, WFVRM
is also able to define the consistency of a workflow; for instance, a workflow designed
to have a post-processing application as an ancestor of a pre-processing application
does not make sense.
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This module is also in charge of extending or reducing the workflow definition in
order to make two nodes compliant with each other, whenever this does not happen.
Let us suppose that node u in the graph is directly connected to node v. Let us also
suppose that the application instantiated on node u produces as outcome data with
format f1 and the application instantiated on node v admits data with format f2;
WFVRM will find an application or service able to convert data format from f1 to
f2, and it will extend the workflow definition instantiating a new node between u
and v. Finally, redundant data paths will be detected and removed, optimizing the
workflow. As an example of a redundant definition, consider multiple instantiation of
the same application with the same input parameters; the WFVRM module detects
such situations and optimizes the workflow definition removing redundant paths.

12.4.5 Resource Broker

The GRB Scheduler [16] [17] acts as a meta-scheduler among the available grid
resources. It has been designed to be fully compliant with respect to the JSDL (Job
Submission Description Language) specification [18]. The JSDL language has been
extended in order to provide better support for batch job definition, parameter sweep
job definition, and workflow graphs. Moreover, the extended JSDL allows defining
multiple VOs, managing multiple user’s credentials, and defining a set of candidate
hosts for resource brokering. The GRB scheduler has also been designed to meet the
following requirements:

� Independence from a specific and predefined Virtual Organization. The GRB
scheduler can act on behalf of the user among all of the specified computational
resources; this means that if a user gains access to resources belonging to
different VOs, the GRB will be able to use all of the user’s credentials matching
the remote resources security policies.� Support for multiple and heterogeneous grid services. Owing to the GRB li-
braries, the GRB scheduler can contact different remote resource managers
such as Globus Toolkit GRAM, and batch systems such as PBS and LSF.� Modularity. The GRB scheduler has been designed to support different schedul-
ing algorithms; moreover, new algorithms can be easily plugged in.� Security. The GRB scheduler supports the Globus Toolkit GSI security infras-
tructure and exploits the user’s delegated credentials to act on grid resources
on behalf of the user.

The scheduling process uses simple heuristics such as MinMin, MaxMin [19][20],
Workqueue [21], and Sufferage. These iteratively assign tasks to hosts by considering
tasks not yet scheduled and computing predicted Completion Times (CTi j ) for each
task i and host j couple. The task with the best metric is assigned to the host that
lets it achieve its Completion Time. For each algorithm the best metric is defined as
follows: the minimum of CTi j for MinMin; the maximum of CTi j for MaxMin; let
diff be the difference between the second minimum CTi j and the minimum CTi j .
Then the best is defined as the maximum diff over all i and j subscripts.
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The GRB scheduler front-end presents a Web service interface developed using the
gSOAP Toolkit with GSI plug-in [22]. In its back-end the GRB scheduler makes use
of the GRB libraries to access grid resources and services provided by the underlying
grid middleware. GRB also automatically refreshes a job credential, allowing long-
running jobs, and notifies users by email each time a change of state (e.g., from
pending to running, etc.) related to submitted jobs occurs. The GRB scheduler Web
service currently advertises the following methods:

� grb schedule job: This method gets an extended JSDL job description related
to the job to be scheduled and returns a GRB job identifier. The GRB-job-id is a
job handle to be used for cancelling or checking job status. On user invocation,
the scheduler authenticates the user and authorizes her on the basis of its access
policy. The scheduler then parses the provided JSDL, acquires the credential(s)
from the specified MyProxy server, and, if needed, acts as a broker on behalf
of the user before submitting the job. All of the scheduler actions are logged
to stable storage for subsequent accounting and auditing, and transactions are
used when storing job data using an embedded hash table provided by Berkeley
DB. The GRB scheduler can submit to different resource managers and is able
to contact them directly through specialized driver libraries that interface with
Globus GRAM, LSF, PBS, etc. Execution of graphical applications is also
allowed: The GRB Scheduler automatically redirects the remote X-Window
display, so that users can steer graphical applications. Of course, this feature
may require configuring as needed firewalls.� grb check job: The method can be used to check a job status. Only the job
owner is authorized to check the status of a given job; the owner can also retrieve
job output.� grb cancel job: The method cancels the execution of a given job.

12.5 The Implementation of GCE, Best Practices

The architecture described in the previous subsections includes several modules. In
this section three main modules will be described: front-end interface, data manage-
ment, and resource management.

12.5.1 Front-End Interface

The user interface is based on Web technologies and has been implemented using
CGIs developed in C. A user can access the system after successful authentication
and authorization; the authentication mechanism is based on log-in and password,
protected by means of the HTTPS protocol. When the user enters the grid portal, she
needs a valid proxy stored on a given MyProxy Server; the authentication mechanism
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used for job submission and in general to access grid resources and services is based
on mutual authentication with X509V3 certificates. Secure, ephemeral cookies are
exploited to establish secure sessions between the users and the GRB portal.

The Workflow editor has been developed as a Java Applet component that includes
tools for composing a generic acyclic graph; each vertex represents one task to be
executed on the grid and the edges describe the interaction and dependencies between
tasks. The Workflow editor also includes the ontology related to applications for
Earth Observation. The ontology actively guides the user during the definition of the
workflow; whenever the user connects the output produced by a task with a task that
is not compliant with the data format specified as input, the Workflow editor warns
the user and automatically tries to supply a new mediator task able to convert the data
format.

12.5.2 Information and Data Management

In order to extract the appropriate set of information used to characterize remote
sensing applications, a set of software packages has been analyzed. The purpose
of this analysis is to obtain a set of common properties and parameters that allow
the design of a complete MetaSoftware schema that takes into account all needed
information for running applications in a distributed environment. These properties
can include required libraries, the list of supported operating systems, the execution
parameters, the supported input data formats, the produced output data format, and
so on.

The applications available for remote sensing data processing can be classified into
three categories:

� Pre-processing applications: Belonging to this class are all of those applications
used to process raw data coming directly from sensors installed on remote
sensing satellites and acquired by ground-segments. The products obtained in
this initial phase represent semi-finished products, and the end user have to
apply further processing in order to extract relevant information.� Post-processing applications: In this class are all of those applications used
to extract relevant information from semi-finished products produced by the
pre-processing application. These applications usually perform advanced pro-
cessing like filtering, classification, data analysis, and so on.� Utility applications: Another kind of software tool we have considered are
those applications that perform simple data manipulations, e.g., data format
conversion, data header analysis and extraction, image cropping, and so on.

The analysis of these applications has allowed us to extract all relevant information
needed and to design the MetaSoftware schema. We have collected a set of relevant
information able to completely describe a software object. The collected information
mainly belongs to two classes: information characterizing the applications from the
functional point of view and information about the performance. The former is useful
for resource discovery; the latter can be used by the scheduler to define a submission
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schedule that minimizes, for example, the completion time. This information has been
structured into a relational schema, and it includes:

� application definition: information about the general properties of the applica-
tion like name, required processor speed, required amount of memory, required
disk space, and interface type (which gives an indication about the mechanism
to be used for remotely starting and monitoring jobs);� application class: information about the application typology, which, as shown
in the previous section, can be for instance pre-processing, post-processing,
and utility;� data formats: information about the supported input data formats and informa-
tion about data formats that the application is able to produce;� execution command: information to be used to remotely execute the application,
thus here we include information like the executable pathname, list of accepted
arguments and their default values, and list of environment variables and their
default values;� required libraries: list of required libraries, the version number, a short descrip-
tion, and so on;� operating system: list of the operating systems and related versions, on which
the application can be executed;� performance: the ensemble of information that describes the running time as a
function of the type and size of input data obtained from a series of experimental
executions.

In order to realize a MetaData schema that involves the most important information
about remote sensing data, we have considered the ISO TC/211-19115 standard. From
this standard, we have derived a set of raw metadata. This set is mainly composed of 13
groups of information. The most important considered metadata concerns are product
identification and distribution, data quality, platform and mission, spectral properties,
maintenance, generic information, spatial representation, reference system, and other
information related to the TIFF data format.

This set of raw metadata is mapped into a uniform metadata set derived from the ISO
standard itself in order to have a homogeneous set related to the following missions:
ENVI, ERS1, ERS2, RadaraSat1, SLR1, SLR2, and SRTM. We have obtained a set
made of about 200 metadata that describes all of the mentioned Earth Observation
products with sufficient thoroughness. This metadata set is structured in a relational
schema.

Moreover, the CEOS data format specification is considered in order to achieve a
good description of input and output data format for remote sensing applications. We
have considered, for each product, the files associated to the product.

The MetaSoftware and MetaData schemas have been structured into relational
databases accessible on the grid through the GS interfaces. We also used Postgresql
as a back-end database management system. The low-level access functionalities,
needed for managing these catalogues, have been implemented both in Java using
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JDBC and in C using UnixODBC; moreover, high-level data access interfaces are
provided as Web services methods for users who want to access the EOS metadata
repositories within a computational grid. We have also developed the MetaSoftware
and MetaData modules using an XML schema definition because of two main reasons:
(a) the data belonging to the catalogues can be easily presented as dynamic html
pages; (b) the XML language is well suited to implement data exchange among
heterogeneous components belonging to a grid. In the MetaSoftware catalogue, the
user’s management functionality has been realized through Java Servlets that use
the JAXP package for parsing XML documents and XSL for processing documents.
Moreover, with regard to these two catalogues, a set of additional functionalities has
been realized using some Java modules and Java Servlets. These functionalities allow
manual and automatic ingestion into the system of software objects and data. We have
adopted our iGrid information service developed in the GridLab project to handle all
other general information that is not related to remote sensing aspects.

12.5.3 Use Case

In order to give an idea about how our GCE can be usefully used, in this section
we describe a use case in which our components have been deployed. This environ-
ment, as already described in previous sections, provides the following functionalities:
sharing of computational resources, sharing of software resources, management of
resources, secure access to services available on the grid according to local access
policies, transparent access to computing resources trough a graphical interface, effi-
cient usage of the resources, efficient usage of the network links, composition of new
processing applications based on existing ones, and so on. The knowledge container
module allows storing all of the information about the resources and can be used
by several architectural components to perform service discovery, according to the
user’s request. A fundamental component of a PSE is the Graphical User Interface
(GUI), which allows the composition of complex applications built from single ap-
plication components. The GUI initially presents to the user the services available
on the system, querying the knowledge container. Once the user selects a set of ap-
plications and combines them defining a workflow and specifying the input data, the
system queries the knowledge container in order to obtain the metadata attributes
related to each involved application. By carefully checking the retrieved metadata
attributes, the system can verify by inspection the compatibility between the data
produced during each processing step and use them to map the high-level request,
specified through the workflow, into a set of low-level actions that perform the needed
processing.

Let us suppose now that the following resources have been registered into the PSE:

� the grid is composed of four computing resources (H1, H2, H3, and H4) and
two storage resources (S1 and S2);� an SAR processor that performs image focalization (A1). Let us suppose that
it supports the data formats F1 and F2 as input formats, it produces data in the
F3 format, and it is available on hosts H1 and H2;
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� a co-registration tool that performs the co-registration of two SAR focused
images (A2). Let us suppose that it supports the data formats F3 and F4 as
input format, it produces data in the F5 format, and it is available on hosts H1
and H3;� an interferogram generator, which performs the generation of an interferogram
starting from two co-registered SAR images (A3). Let us suppose that it sup-
ports the data format F5 as input format, it produces data in the F6 format, and
it is available on hosts H2 and H4;� finally, let us suppose that on the storage resource S1 a raw SAR frame (D1)
in the format F1 and a focused SAR frame (D2) in the format F3 are available.
On the storage resource S2, the orbital data D3 for the datasets D1 and D2 are
available.

Let us now suppose that a potential PSE user wants to produce an interferogram (D4)
starting from the two available dataset D1 and D2. She asks the system to discover all of
the available applications, composing them through the GUI (see Figure 12.5a). After
the workflow submission, the system queries the knowledge container and retrieves
all of the metadata attributes related to the data and applications. It can verify if
the input datasets are compatible with the applications; if they are not compatible,
the system warns the user or activates, whenever possible, an automatic data format
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conversion. The system discovers also that the application A1 requires the orbital
dataset D3. Moreover, through the metadata attributes, the system discovers where
the applications are available and on the basis of this information it can make an
informed decision related to scheduling, leading to better choices as a function of
performance parameters, the execution machine performance, and data transfer rate
(see Figure 12.5b).

As shown in this example, the knowledge container plays a crucial role for the PSE.
Indeed, this component provides all of the needed information both to users (in order
to discover resource and available services) and to the system in order to perform job
scheduling. Another fundamental aspect that the previous example did not show is the
functionality provided to the users by the distributed MetaData catalogue, accessible
through the EGGS interface, to make efficiently and transparently advanced queries on
the available data sets, without knowing anything about data location and distribution.
Indeed, through the metadata attributes related to the available products, the user can
query the system to find all of the available products that satisfy her criteria, and thus
she can perform the needed processing on retrieved data.

12.6 Comparison Between a GCE for Remote Sensing
versus the Classical Approach

Several works are strictly related to the use of distributed and parallel computing
for remote sensing data storage, processing, and access. In some of the works the
authors show how distributed computing can be used for on-demand processing
[25][26][27][29][30][31][32]; in other works it is shown how distributed comput-
ers linked together through wide-area networks can be used for data storage and
access [25][26][27][28][29][30]. In other works, the authors show how to do high-
performance processing on data through clusters of PCs [26][30][31][32][33][34].
This work presents many of the involved technologies; however, all of the presented
solutions can be characterized as having a static architecture and the addition of new
functionalities requires reengineering and recoding. In scientific environments, peo-
ple rapidly develop new algorithms and software tools. In particular, in the remote
sensing field the greater quantity of information is extracted through post-processing
operations that involve new techniques and algorithms. It is immediately evident how
a dynamic and easily reconfigurable architecture can be a better choice. For instance,
in the Digital Puglia project [25] we emphasize the retrieval of remotely sensed data
to the client’s workstation, but additionally we customize the processing of the data.
It may be that the data are too large for downloading to be practical, or the client
may not have the relevant processing software. The processing at the server may be
as simple as a change of format, or it may be that a user does compute-intensive
image processing such as principal component analysis, supervised classification, or
pattern matching. By ‘processing on demand’ we mean a data archive connected to
a powerful compute server at high bandwidth, controlled by a client that may be
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connected at low bandwidth. Nevertheless, the architecture of current approaches is
rather static since the addition or removal of applications or computational resources
requires recoding several software components.

12.7 Conclusions

This chapter presented an overview of grid computing environments and discussed
their usefulness in the context of remote sensing. We showed how, combining recent
grid computing technologies, concepts related to problem-solving environments, and
high-performance computing, it is possible to design and implement a GCE based on
the Globus Toolkit that allows users seamless access to EO data and grid resources,
providing data retrieval services and on-demand processing of remote sensing data,
leveraging dynamically acquired resources and services.
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This chapter describes the concept of a solutionware for hyperspectral image anal-
ysis. Solutionware is a set of catalogued tools and toolsets that will provide for the
rapid construction of a range of hyperspectral image processing algorithms and appli-
cations. The proposed hyperspectral solutionware will span toolboxes, visualization
toolsets, and application-specific software systems at different computational resolu-
tion levels. A MATLAB hyperspectral image analysis toolbox (HIAT) provides the
lowest resolution level but the friendliest interface where scientists and engineers
in hyperspectral image processing can try different combinations of hyperspectral
image processing algorithms in a simple fashion and add their own algorithms via
the MATLAB programming language. As applications require the processing of large
data sets in a timely fashion, the solutionware will provide grid, parallel, and hardware
computational platforms to provide the user with computational alternatives that can
be used to optimize performance and take full advantage of the data. In this chapter,
the MATLAB hyperspectral toolbox is presented and parallel processing implementa-
tions of some of its components in the Itaniun architecture are described. A prototype
version of the hyperspectral image processing toolbox over the grid, Grid-HSI, which
extends the hyperspectral image processing environment developed in HIAT to take
advantage of computational resources that can be distributed over the network, is
depicted.

13.1 Introduction

Hyperspectral image analysis usually consists of performing a series of highly com-
putational intensive operations on large data sets. The analysis extracts information
of interest from the data contained in a region for the application scientist. This in-
formation of interest may include the extraction of features, the classification of a
region in an image, or simply the detection of some specific object. However, two of
the main constraints in obtaining analysis results in a timely manner are the efficient
computation of the operation itself and the efficient management of large volumes
of data. The massive volumes of data involved in hyperspectral imagery is the main
limitation in testing different varieties of algorithms on the data as well as in the
extraction of features in a timely fashion.

When describing the methods to solve a computational problem in hyperspectral
imaging, the levels of abstractions in the architecture are of primary importance on
the performance observed in the computation. Figure 13.1 illustrates the different
levels of abstractions where a computing problem may be solved. It is interesting
to note that the higher the level of abstraction, the design description syntax the to
the ‘language’ spoken by the application closer is the programmer. By programming
at a high level of abstraction in an environment such as MATLABT M [1] or IDLT M

[2], the programmer can quickly construct a set of algorithms to solve a problem.
Also, these environments are capable of providing a framework for proper software
engineering practices to be followed. However, this implies that the application’s per-
formance might decrease as the abstraction level increases. In theory, working at a
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Figure 13.1 Levels in solving a computing problem.

lower level of abstraction can result in better system performance since the developer
has more control over the computational structures. However, as the level of abstrac-
tion decreases, the complexity in the design process increases, making it harder for
the developer to have a complete grasp of the whole design process. The objective of
our work is to develop a hyperspectral solutionware or a set of catalogued tools and
toolsets that will provide for the rapid construction of a range of hyperspectral image
processing algorithms and applications. Solutionware tools will span toolboxes, visu-
alization toolsets, and application-specific software systems that have been developed
at the Center for Subsurface Sensing and Imaging Systems1 (CenSSIS). The chap-
ter is organized as follows. First, an overview of the MATLAB hyperspectral image
analysis toolbox is given. Second, parallel and grid implementations of some of the
algorithms in the toolbox are described. Future directions of the work are summarized
at the end.

13.2 Hyperspectral Image Analysis Toolbox

The Hyperspectral Image Analysis Toolbox (HIAT) is a collection of algorithms that
extend the capability of the MATLAB numerical computing environment for the
processing of hyperspectral and multispectral imagery. The purpose of HIAT is to
provide information extraction algorithms to users of hyperspectral and multispectral
imagery in different application domains. HIAT has been developed as part of the
NSF Center for Subsurface Sensing and Imaging (CenSSIS) Solutionware that seeks
to develop a repository of reliable and reusable software tools that can be shared by
researchers across research domains. HIAT provides easy access to supervised and
unsupervised classification algorithms, unmixing algorithms, and visualization tools

1http://www.censsis.neu.edu.
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Class MapUnsupervised Classification

Abundance EstimatesUnmixing Methods

Figure 13.2 HIAT graphical user interface.

developed at UPRM Laboratory for Applied Remote Sensing and Image Processing
(LARSIP) over the last 8 years.

HIAT is implemented within an optimized MATLAB environment. It provides use-
ful image analysis techniques for educational and research purposes, allowing the in-
teraction and development of new algorithms, data management, results comparisons,
and post-processing. It is an easy-to-use and powerful tool for researchers involved in
hyperspectral/multispectral image processing. In addition, MATLAB provides porta-
bility of the code to the different platforms in which MATLAB runs: Windows family,
Mac OS, and UNIX systems.

13.2.1 HIAT Functionality

The GUI of the toolbox is shown in Figure 13.2. MATLAB version 6.5 was used for
the implementation of the HIAT. Tests are currently being conducted using MATLAB
version 7.2 (MATLAB2006a) to ensure the toolbox is upward compatible. Figure 15.3
shows the processing schema implemented in HIAT. The processing phases of HIAT
are divided into four groups: Feature Selection/Extraction, Classification, Unmixing,
and Post-Processing. As Figure 13.3 shows, HSI data could be processed with feature
selection/extraction algorithms (or not) before the classification or unmixing and to
enhance the classification map post-processing algorithms that are used. Users can
combine different processing algorithms to generate different data products.

13.2.1.1 Pre-Processing

In the toolbox, it is assumed that the image has undergone any sensor specific pre-
processing, de-glinting, or geometric and atmospheric correction before processing.
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Figure 13.3 Data processing schema for hyperspectral image analysis toolbox.

Pre-processing in the toolbox is limited to image enhancement including noise
reduction.

One of the most widely used noise reduction algorithms for hyperspectral imagery
is Reduced Rank Filtering (RRF). In this type of filtering, a principal component de-
composition is performed using the singular value decomposition (SVD); the small
singular values are set to zero, which produces a reduced noise (low rank) approxi-
mation of the original image. In addition to this algorithm, a noise reduction method
based on oversampling filtering, developed by the authors [3], is available in the
toolbox.

The oversampling filtering technique takes advantage that hyperspectral imagers
typically collect 100-300 contiguous spectral bands at a high spectral resolution
( 10nm in most sensors), which results in more samples than are needed to repre-
sent the spectra of many objects. Having more samples than are needed is known as
oversampling. Oversampling is defined as sampling a signal higher than its Nyquist
rate. Specifically, the oversampling rate can be written as

O S R = fs

2 fm
(13.1)

where fm is the maximum frequency in the signal and fs is the sampling frequency.
The maximum frequency of the sampled signal power spectral density (PSD) is
directly proportional to the maximum frequency of the original signal and inversely
proportional to the sampling rate. This means that for a fixed maximum frequency in a
signal, the higher the sampling rate, the lower the maximum frequency of the sampled
signal PSD. This is illustrated in Figure 13.4. Figure 13.4(a) shows the sampled signal
PSD when the signal is sampled at the Nyquist rate while Figure 13.4(b) shows the
sampled signal spectra when the signal is sampled at twice the Nyquist rate.

The usefulness of oversampling for noise reduction is that if the signal has been
oversampled and there is noise (anything other than the signal of interest) in the
frequency range not occupied by the signal, it can be lowpass filtered without changing
the signal. The reduction in noise means an increase in the signal-to-noise ratio. It has
been shown that typical reflectance spectra are oversampled by a factor of 4 when they
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Figure 13.4 Spectrum of a signal sampled at (a) its Nyquist frequency, and (b) twice
its Nyquist frequency.

are sampled at 10 nm, which is the spectral sampling rate used in the AVIRIS sensor
[3]. This implies that the signal PSD only occupies 1/4 of the available bandwidth,
and the other 3/4 can be filtered to reduce noise. The reflectance spectrum of grass is
shown in Figure 13.5, along with its power spectral density. As can be seen, most of
the power of this signal is concentrated in the lower frequencies.

The only parameter specified in the Oversampling Filtering (OF) algorithm is the
cutoff frequency of the lowpass filter. In the case of supervised classification, the
program uses the user supplied classes to determine the cutoff frequency. It first
calculates the spectra of each of the classes, and then determines the bandwidth of
that class. Since these are finite signals, they cannot be bandlimited and the bandwidth
used in the algorithm is defined as the frequency below which 95% of the power of that
spectra lies. The cutoff frequency of the lowpass filter is the highest of the different
class bandwidths. With unsupervised classification, the cutoff frequency is specified
by the user. A default of π/4 is used.
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Figure 13.5 (a) The spectrum of grass and (b) its power spectral density.
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Figure 13.6 Sample spectra before and after lowpass filtering.

Figure 13.6 shows typical spectra of one pixel before and after filtering. Figure 13.7
shows the effect of the OF on one band of a HYPERION image of the Enrique Reef
in Lajas, Puerto Rico. The HYPERION sensor was designed as a proof of concept
prototype with low signal-to-noise ratio, which is problematic for remote sensing of
coastal environments. Any increase in the signal-to-noise ratio is particularly useful
in this application.

(a) (b)

Figure 13.7 HYPERION data of Enrique Reef (band 8 at 427 nm) before (a) and
after (b) oversampling filtering.
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In [4], the Oversampling Filtering (OF) method was compared to RRF in terms of
complexity and classification improving over non-processed images. The RRF algo-
rithm uses the SVD, so its computational complexity is fairly high. The OF algorithm
is based on a linear lowpass filter that is implemented using the FFT, so its complexity
is much lower. Specifically, let m be the number of pixels in the image and n the num-
ber of bands. The computational complexity of the SVD transform is O(mn2) [5],
and the computational complexity of the OF algorithm [4], based on linear filtering, is
O(mn log(n)). It is clear that resolution enhancement is significantly faster for typical
values of m and n. The filtering algorithms were included in the enhancement stage
of the HIAT classification system and their effect in classification performance was
studied and compared to classification results using non-filtered data. Using a variety
of hyperspectral imagery, it was shown that both methods increase the percentage of
correct classification on testing data over the non-filtered data and that the increase
caused by the use of OF was larger than the increase due to the use of RRF.

13.2.1.2 Feature Extraction and Band Subset Selection

Most classification algorithms are based on statistical methods. As the number of
bands grows, the number of labeled data samples needed for training can have a
linear, or even an exponential, growth depending on the classifier. Hence, in many
applications, classification is not done at the full spectral dimensionality. Feature
extraction and selection are used to reduce the dimensionality of the feature vector
for classification while trying to maintain class separability.

Two widely known feature extraction algorithms, Principal Component (PC) anal-
ysis [6] and Fisher’s Discriminant analysis [7], are implemented in the feature ex-
traction/selection stage, along with four unsupervised algorithms developed at LAR-
SIP. The first of these is the Singular Value Decomposition Band Subset Selection
(SVDSS) [8], which selects a subset of bands that have the smallest canonical corre-
lation with the first few principal components.

The other three feature selection/extraction algorithms are based on Information
Divergence and Projection Pursuit. One of these selects a subset of bands, and the
others are linear transformations of the data. The basic idea behind both algorithms
is to search for projections onto a lower dimensional space that preserves class sep-
arability without any a priori information in terms of labeled samples. The measure
of class separability is how different the probability density function (PDF) of the
feature is from a Gaussian distribution. This is based on the observation that two or
more classes that are separate will have a multi-modal density function, with one
mode for each class. A good projection onto a lower dimensional space will preserve
multi-modality, while a bad projection will not.

Based on this, a measure of how different the feature is from having a Gaussian
distribution is used as a performance measure. Let f (y) be the density function of the
feature and g(y) be the Gaussian density function. The difference between f (y) and
g(y) is measured using the information divergence given by

I ( f, g) = d( f ‖g) + d(g‖ f ) (13.2)
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where

d( f ‖g) =
∫ ∞

−∞
f (y) ln

(
f (y)

g(y)

)
dy (13.3)

is the relative entropy of f (y) with respect to g(y).
The first of these methods, Information Divergence Band Subset Selection (IDSS)

[9], calculates the divergence of the PDF of each band from a Gaussian distribution,
and then selects those bands that have the greatest divergence. The second method,
motivated by the one proposed in [10], is called Information Divergence Projection
Pursuit (IDPP). In [10], the data are first whitened, and then each pixel is tested as a
possible candidate for projections of the whole data set. This exhaustive search is time
consuming and does not guarantee an optimal projection. A modification of the IDPP
algorithm, called the Optimized Information Divergence Projection Pursuit (OIDPP)
[9], is also available in the toolbox. This algorithm uses a numerical optimization
routine as an alternative to the exhaustive search in IDPP. The reduced feature set is
related to the original spectral signature by a projection matrix A as follows:

y = AT x (13.4)

where y is the reduced order feature set, x is the measures spectral signature, and A
is the projection matrix. The matrix A is found as follows. The first column of A is
found using

aopt = arg
(

max
i

I
(

f
(
aT

i , Z
)
, q

))
(13.5)

where q is the Gaussian distribution. The columns of A are found one at a time, where
the present column is the optimal projection vector that is orthogonal to the previous
columns. A detailed comparison and examples for these approaches are described
in [9].

13.2.1.3 Classification

Once the pre-processing and feature selection is completed, the next step is to classify
the data. There are five algorithms implemented in the toolbox for this. These are a
Euclidean distance, a Mahalanobis distance, Fisher’s Linear Discriminant, Maximum
Likelihood, and Angle detection classifiers. All are well-known algorithms in the
literature and have been widely applied to multispectral and hyperspectral imagery;
see, for instance, [12].

13.2.1.4 Unsupervised Spatial-Spectral Post-Processing

Typical hyperspectral/multispectral classification algorithms perform a pixel by pixel
classification. The post-processing algorithms implemented in the toolbox use spatial
information to improve the overall classification. The algorithm in the toolbox is an
unsupervised version of the well-known supervised ECHO classifier [6],[12] called
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UnECHO [13]. UnECHO is divided into two stages. The first stage is a conventional
C-means classification algorithm. The post-processing part uses the spectra of the
pixels along with the class map to improve classification results.

During the classification stage, spectra that are similar may be assigned to different
classes. The basic idea behind the UnECHO algorithm is to look at a neighborhood of
pixels, and if they are similar to force them to be assigned to the same class. The image

is sectioned into non-overlapping square neighborhoods. Let X̂
(k)

be the set of pixels
that are members of the kth neighborhood. The degree of similarity or homogeneity
of the group is defined as

Q j

(
X̂

(k)
)

= 1

L

L∑
m=1

q j (Xm) (13.6)

where Xm is the mth pixel in the neighborhood, L is the number of pixels in the
neighborhood, and q j (Xm) is the distance between the pixel and the cluster mean.
The algorithm first tests whether the pixels are similar (homogeneity) using

O j

(
X̂

(k)
)

< Ti (13.7)

where Ti is a constant threshold value. If Q j

(
X̂

(k)
)

is smaller than the threshold,

then the spectra of all the pixels in the neighborhood are similar, and the pixels will
be assigned to the same class. The next step assigns all the pixels in the neighborhood
to the i th cluster if

Q j

(
X̂

(k)
)

< O j

(
X̂

(k)
)

, ∀ j �= i (13.8)

If the cluster does not pass the homogeneity test, the original pixel-by-pixel clas-
sification is kept. Three different neighborhood sizes: 2 × 2, 3 × 3, or 4 × 4, are
available in the toolbox. A detailed description and evaluation of UNECHO can be
found in [13].

13.2.1.5 Covariance Estimators

As mentioned previously, estimating statistical parameters in high-dimensional space
is difficult because of the large amount of training data needed. One method that can
be used to improve covariance estimates for use in classifying hyperspectral data
is based on regularization. This method includes a priori knowledge to improve the
estimate.

With quadratic classification algorithms, the covariance matrix must be estimated.
The effect of having too few training samples with which to compute the covariance
estimate results in a rank-deficient or ill-conditioned matrix. The approach used in
[14] is to include a priori information as a regularization technique to reduce the rank-
deficiency. This approach is a variation of regularized discriminant analysis (RDA)
[15], where a regularization technique based on biasing the maximum likelihood
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covariance matrix is used. The regularized covariance matrix estimate is given by∑̂
REG

= (1 − γ )
∑̂
M L

+ γ · c · I (13.9)

where
∑̂

M L is the maximum likelihood estimate of the covariance matrix,
∑̂

REG is
the regularized covariance matrix, c is a constant, and γ is the variable that controls
the relative levels of the covariance matrix and a priori knowledge. If γ = 0, we get∑̂

REG = ∑̂
M L , and if γ = 1, we get

∑̂
REG = c · I. Here, the a priori covariance

matrix is a scaled identity matrix. The optimal value of it is selected in to minimize
the probability error (PE ) and the total number of outliers as follows. An element X
is an outlier with respect to the i th class if

(X − m̂i )
∑̂−1

(X − m̂i )
T > Tθ (13.10)

where m̂i is the class mean and Tθ is a constant. The total number of outliers for
all classes divided by the total number of samples will be called the probability of
missing (PM ). Defining Pmix (γ ) =

√
P2

E + P2
M , the optimum γ is then

γopt = argγ min[Pmix (γ )] (13.11)

The reader is referred to [14] for further reading.

13.2.1.6 Unmixing

The algorithms described above classify a pixel as belonging to one single class.
However, in most applications, the reflected radiation from a pixel as observed in
remote sensing imagery has rarely interacted with a volume composed of a single
homogeneous material. The high spectral resolution in HSI enables the detection
and classification of subpixel objects from their contribution to the measured spectral
signal. The problem of interest is to decompose the measured reflectance (or radiance)
into these different spectral responses. This process, called spectral unmixing [16],
is the procedure by which the measured spectrum of a pixel is decomposed into a
collection of constituent spectra, or endmembers, and a set of corresponding fractions
or abundances.

The solution is generally separated into two parts; First the endmembers are deter-
mined using one of several methods [16], and then the fractional contribution of each
end member to each pixel is determined. The mathematical model of how the spectra
interact to form a pixel is called the mixing model. The algorithms implemented in
the toolbox are based on a linear mixing model, where the surface is portrayed as a
checkerboard mixture. The spectrum of the received light is a linear mixture of the
spectra of the different elements in the pixel, proportional to the area of each element
and its reflectivity. The linear mixing model is given by

b =
n∑

i=1

xi āi + w = Ax + w (13.12)
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where b ∈ �m
+ is the measured pixel response, āi is the spectral signature of the i th end-

member, xi is the corresponding fractional abundance, w is the measurement noise, m
is the number of spectral channel, and n is the number of endmembers. The matrix A ∈
�mxn

+ is the matrix of endmembers and is the vector of spectral abundances we are try-
ing to estimate. Therefore, x ∈ �n

+ is no endmember estimation routine implemented
in the toolbox. Endmembers can be selected by the user directly from the image or sup-
plied in a separate file. Once the endmembers are determined, we need to estimate their
abundances. Several abundance estimation algorithms are available in the toolbox.

If w in 13.12 is assumed to be independent and identically distributed white Gaus-
sian noise, then the maximum likelihood estimate of x based on b is the pseudoinverse
given by x̂ = (A′A)−1A′b [17]. This is called the unconstrained solution (ULS) in
the toolbox. The advantage is that it is fast; the disadvantages are that the solution
can contain negative abundances, and the sum of the fractional parts does not have to
equal one. For real spectra measurements, b, A, and x are constrained to be positive
and

∑n
i=1 xi = 1. If only the sum to one constraint on the abundances is enforced [17],

it has a direct solution, too. If only the positivity constraint is enforced in the abun-
dances, this is called in the literature the non-negative least squares (NNLS) problem
and a solution can be obtained iteratively [17], [18]. Including positivity and sum to
one constraints result in the following constrained linear least squares problem:

x̂ = arg min
x

‖Ax − b‖2
2 (13.13)

subject to:

x ≥ 0 (13.14)

and
n∑

i=1

xi = 1 (13.15)

where x̂ is the estimate of x and ‖‖2 is the Euclidean norm. We will refer to the above
expressions as the fully constrained abundance estimation problem. Only iterative
methods can be used to solve this problem. In the toolbox, versions solving the sum
to one and the sum to less than or equal to one are available which solve the abundance
estimation problem as a least distance minimization problem are implemented in the
toolbox and described in [19], [20].

13.2.2 Other Components

In addition to the processing routines, HIAT provides input/output routines to han-
dle MATLAB *.mat, and common remote sensing image formats and heading files
such as:

� Remote Sensing file (*.bil, *.bis, *.bsq)� Remote Sensing file with Header file
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� Remote Sensing data in HDF format� JPG file� TIFF file

Also, different image visualization methods are available in HIAT:

� Band-by-band on Gray Scale� Three-band Color Composite

– Manual Selection
– Automated band selection algorithms� True Color (need channel waevelength information).

13.2.3 Toolbox Availability

HIAT can be downloaded from CenSSIS homepage at www.censsis.neu.edu. The
toolbox has been downloaded by over 500 users in the past 2 years, covering users
from different domains such as remote sensing, agricultural, biomedical, military, and
food processing who are interested in applications of hyperspectral and multispectral
imagery.

13.3 Implementing Components of HIAT in Parallel Computing
Using the Itanium Architecture

HIAT usefulness is limited by MATLAB itself, which in many applications its mem-
ory management and data representation schemes do not allow us to manage large
hyperspectral images in a reasonable amount of time. In our research work, we are
looking at different alternatives where some of the HIAT functionality is implemented
in high-performance computing platforms. This section describes the experiences and
results on implementing the principal component, minimum distance, and maximum
likelihood classifier algorithms from HIAT using the Itanium Processor Family.

On the Itanium architecture, all instructions are transformed into bundles of in-
structions and these bundles are processed in a parallel fashion by the different func-
tional units. Experimental results show that exploiting implicit parallelism and linking
HP Mathematical LIBrary optimized for Itanium yield significant improvement in
performance.

For algorithm implementation, we have used two different libraries: ATLAS+
CLAPACK for IA32 and HP MLIB for Itanium. Automatically Tuned Linear Alge-
bra Software (ATLAS)2 focuses on applying empirical techniques in order to provide

2http://math-atlas.sourceforge.net/.
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TABLE 13.1 Function Replace Using BLAS Routines

Original Function Description BLAS Function

jacobi() Calculates all Eigen vectors and sytrd()
Eigen values of a symetric matrix stevx()

matmat() Performs a matrix-matrix multiplication gemm()
vecmatmul() Performs a vector-matrix multiplication gemv()

portable performance. Currently, it provides C and Fortran77 interfaces to a portably
efficient BLAS3 implementation, as well as a few routines from LAPACK.4 ATLAS
was compiled on IA32 systems using gcc compiler version 3.3-3 on an Intel Xeon
2.2GHz machine. The ATLAS version used was 3.7.3. Most of ATLAS routines only
provide a subset of LAPACK routines, so for the proper use of these routines CLA-
PACK5 should be installed. CLAPACK is the same Fortran LAPACK library built
using a FORTRAN to C conversion utility called f2c. The entire Fortran 77 LAPACK
library is run thought f2c to obtain C code, and then modified to improve readabil-
ity. The HP Mathematical LIBrary (HP MLIB)6 is an HP-based high-performance
numerical package optimized for the IA64 and PA-RISC architectures. This package
consists of three packages: LAPACK, VECLIB7 and SCILIB.8 VECLIB contains the
complete set of BLAS routines.

The codes were run on an Intel Xeon 2.2GHz machine running Red Hat 8.0 with
1GB of RAM on the IA32 side, and for IA64 we use an HP rx4640 machine with one
IA64 Madison processor 1.5Ghz and 6MB of cache running Red Hat Advanced Server
2.1 with 1GB of RAM. On IA64 we used the Intel 8.0 non-commercial compiler and on
IA32 we used the gcc 3.3-3 compiler. For code profiling, we used the gprof tool [21].

When performing code profiling, not surprisingly the routines with several per-
formance penalties were the matrix to matrix multiplication, eigenvector, and eigen-
value calculations and vector to matrix multiplication. In Table 13.1, we summarize
the functions and their counterparts on the BLAS library. People familiar with the
BLAS library know that there are a lot of routines available that could replace our
original functions. These BLAS routines were selected basically because matrices
used to represent HSI are in general real matrices and most of the calculations involve
symmetric matrices.

Table 13.2 shows the execution times obtained for different versions of the algo-
rithms. The first two columns show their execution times using standard mathematical
functions. The two columns on the left show the algorithm after the optimized BLAS
routines were used. For the Principal Components Algorithm (PCA), we can see

3http://www.netlib.org/blas/.
4http://www.netlib.org/lapack/.
5http://www.netlib.org/clapack/.
6http://www.hp.com/go/mlib.
7http://www.nasoftware.co.uk/libraries/veclib.html.
8http://www.netlib.org/scilib/.
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TABLE 13.2 Algorithms Benchmarks Before and After BLAS
Library Replacements

Algorithm IA32 IA64 IA32 (Optimized) IA64(Optimized)

PCA 1m 39s 1m 9s 4.13s 3.18s
EDC 5m 3s 2m 17s 1m 5.74s 11.66s
ML 29m 8s 1h 7m 16m 22s 4m 22s

a breakthrough of nearly 23 times faster on both architectures with the optimized
libraries versus the standard implementation. For the Euclidean Distance Classifier
(EDC), we can see an improvement of twice the speed by just compiling the applica-
tion on IA64. We also get a boost on performance of more than 4.5 times on IA32 by
using BLAS routines and of 11.7 times on IA64. In the Maximum Likelihood (ML)
classifier, we encountered a penalty of 2.3 times in the IA64 execution. When the
BLAS code is integrated, we then see a speed improvement of 43.8% on IA32 and
93.4% on IA64.

For PCA, there is very little opportunity for parallelization. Since it is based on
the covariance matrix of the image data, it requires that all data be on a same node.
After the covariance matrix is obtained, its eigenvalues and eigenvectors also should
be computed locally on a single node. Since PCA calculation involves a lot of lin-
ear algebra calls and there is no obvious parallelization for the algorithm, we use
PLAPACK to handle all linear algebra calls and data distribution.

The Euclidean distance and the maximum likelihood classifiers are good algorithms
where parallelism can be exploited, since each pixel independently calculates its
membership to a class. The problem arrives at calculating the new means and the
covariance for each class using the pixel membership. Since a class will have member
pixels distributed across nodes, there should be a way to calculate mean and covariance
in an efficient parallel way. A master delegate nodes approach was developed for this
purpose. The amount of data transferred is minimized as much as possible. It was
decided to transfer the local classification vector to the master node at each iteration
and to propagate the final vector back to the nodes. In this way, the transfer is for
an integer vector of the size of the pixels’ resolution. Once each node has its own
copy of the global vector, covariances and means are calculated locally. No additional
transfers are done until the next iteration. With this approach each node has all the data
necessary to calculate pixel memberships without the need to transfer huge amounts
of data for each node

Next we will discuss in more detail the performance of the algorithms as well as
their parallel implementations

13.3.1 Principal Components Algorithm

From the previous results, there is no apparent performance benefit on the Itanium
architecture. We need to further analyze the algorithms to fully exploit the architecture.
As shown in Figure 13.8, there are four major components in the PCA algorithm.
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Figure 13.8 Principal component algorithm block components.

The first block is gathering the spectral image from a file, since this task is mostly
dependant on the disk I/O and is not covered. The next block is the covariance
calculation. The most computing-intensive task of this block is a matrix multiplication,
which accounts for more than 80% of the processing time in that block. It explains
the performance gains when the BLAS routines were used. The last block is also a
matrix multiplication. Therefore, only using the BLAS gemm() routine, the biggest
hotspot on block 2 was eliminated and the hotspot on block 4 was minimized. On
both BLAS implementations, similar performance benefits are achieved, so both
libraries optimized the architectural calls. Using the same algorithm, we can see
an improvement on Itanium that, we believe, is mostly due the highest clock speed
and some average usage of the Itanium cache.

13.3.2 Euclidean Distance Classifier

The Euclidean distance classifier exhibits the best performance gains because it ex-
ploits the Itanium cache benefit. On IA32, the Euclidean() function, which is the one
in charge of the main distance calculation, accounts for 73% of the execution time
with 47 seconds. On the IA64, the Euclidean() accounts for only 31% of the process-
ing with a self call of 6.64 seconds. The main calculation is an accumulative value: a
multiplication followed by an addition to the previous value. The Itanium architecture
is optimized for these types of operations. With its three levels of cache ranging from
3 to 9MB, Itanium can outperform all other architectures in this type of sequential
read. Moreover, all the data for the whole algorithm can be available on cache for the
whole execution. New distances are calculated using the same pixel vectors of the
original image, so there should be a small amount of cache misses requesting data. Is
is assumed that most of the image data are stored on the nearest cache and then all the
operations are executed, but the procedure is mostly the same for the whole algorithm.

Execution results for the EDC shown in Figure 13.9 are very promising. On both
architectures, we see a highly scalable curve. It suggests that the algorithm could be
used with images with more spectral bands and higher resolutions. Here we found
another interesting behavior. On IA32, the parallel execution times were better than
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Figure 13.9 Performance results for Euclidean distance classifier.

the sequential approach. This could be an expected result; however, what is surprising
is that the sequential execution times on IA64 are very low compared to IA32 and that
the parallel approach on IA32 does not compare to IA64. Therefore, for this image,
it is faster to run the algorithm sequentially on IA64 than the parallelized version on
IA32. On higher resolution images, the IA64 sequential implementation has better
execution times than the IA32 parallel version. In this case, it should be better to
distribute the means than the classification vector. The following equations provide a
guide to know when it will be better to broadcast the classification vector or the means:

ClassVec = Height × Width × Sizeof(int) (13.16)

Mean = C × N × Sizeof(double) (13.17)

These equations calculate the size in bytes for the classification vector and for the
means. If the classification vector is greater than the means, then the means should be
broadcast, otherwise the vector. Here C is the number of classes and N is the number
of the image spectral bands.

13.3.3 Maximum Likelihood Classifier

On the Maximum Likelihood classifier, although we have the same accumulative
effect as in the Euclidean distance, it adds a series of matrix manipulations. Moreover,
we need to compute the covariance for each class. On the original implementation,
the main function hotspot was the matrix multiplication on the covariance function.

With the integration of the gemm() BLAS routine, the performance benefits were
tremendous. Results on ML are very similar to those of the EDC. Figure 13.10 shows
huge execution time improvement on IA32, but at the same time, the IA32 parallel
version, which seems highly scalable, is in the same range as the IA64 sequential
approach.

Our experience with these and other algorithms ported to Itanium is that IA64
should provide a boost in performance in the order of 1.3 to 1.5% with just a compi-
lation. If an algorithm ported to IA64 is not on that boundary, then more aggressive



326 High-Performance Computing in Remote Sensing

Processors

16

IA32 Parallel

IA64 Parallel

IA32 Sequential

IA64 Sequential

15141312111098765432
0

500

1000

1500

S
ec

o
n

d
s

2000

2500

3000

3500

Maximum Likelihood

Indian Pine Site AVIRIS Image (220 bands)

Figure 13.10 Performance results for maximum likelihood.

optimization is needed. Compiler flags were used to help in this optimization at first,
but all efforts were unsuccessful. The most significant improvement came when the
mathematical functions were linked with the HP MLIB tools. The linking process was
straightforward and no major issues were found. The algorithms that took advantage
of the new functions saw huge improvements in their performance.

The Itanium architecture relies for most of its performance on the compiler inter-
pretation of the code. All instructions are transformed into bundles of instructions, and
these bundles are processed in a parallel fashion between the four different functional
units. The idea is that all functional units will be executing instructions simultane-
ously. But sometimes the compiler cannot generate successful bundles of instructions
causing ‘split issues,’ meaning that functional units are stalled waiting for instructions.
This issue can seriously impact the program performance, and it causes programs to
run slower on IA64 than on IA32. Also we need to clarify that these are very demand-
ing computing-intensive applications that require specific architectural knowledge to
fully exploit the processor capabilities.

13.4 A Grid Service-Based Tool for Hyperspectral Image Analysis

In the previous section, it was shown that parallel computing has been successfully
used to significantly reduce the runtime of some of the HIAT components. It is then
expected that grid-level resources can play a significant role in improving performance
while increasing the pervasity of the image processing algorithms.

This section presents the architecture, design, and implementation of Grid-HSI,
which seeks to immerse HIAT analysis capability into a grid platform that supports
remote analysis and visualization. The system is based on the Open Grid Service
Architecture (OGSA) and implemented on the top of Globus Toolkit 3.0 (GT3).
Grid-HSI provides users with a transparent interface to access computational resources
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and perform remotely hyperspectral imaging analysis through a set of grid services.
The Grid-HSI prototype presented here is composed by a Portal Grid Interface, a Data
Broker, and a number of specialized grid services to enable HSI analysis. The Grid-
HSI architecture and its implementation are described and the suitability of Grid-HSI
to perform HSI analysis is presented.

13.4.1 Grid-HSI Architecture

Figure 13.11 depicts the complete Grid-HSI architecture. The Grid Infrastructure
includes the local resources, the HSI grid services, and the associated clients’ stubs.
Each HSI grid service has an associated Data Broker to provide access through a
Servlet implemented in the Portal Grid Interface. Figure 13.12 shows the user interface
that provides transparent access to resources.

Portal Grid Interface: This interface allows users to enter the required input pa-
rameters for executing grid services associated to each of the HSI algorithms imple-
mented in Grid-HSI. Users follow an authentication process to access the resources.
This authentication process is based on Grid Security Infrastructure (GSI), which
delivers a secure method of accessing remote resources. It enables a secure, single
sign-on capability while preserving site control over access control policies and the
local security infrastructure. The Portal Grid Interface uses Java Servlets hosted within
a Tomcat Servlet container environment. All requests to the Portal Grid Interface go
through an Apache server, which forwards requests to the Tomcat using Apache JServ
Protocol (AJP).
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Figure 13.11 Grid-HSI architecture.
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Figure 13.12 Grid-HSI portal.

Data Broker: This component is a link between the Portal Grid Interface and the
HSI grid services. For each HSI grid service implemented in Grid-HSI, there is a
Data Broker that assures the access from the Portal Grid Interface. The Data Broker
manages data related to the grid services available on each resource so a match between
local resources and user requests is met. When the Data Broker receives a user request,
it seeks node availability and selects the node with the highest performance to respond
to the user’s request. The Data Broker then sends the request with information about
the selected node to a Grid Service Client.

HSI Grid Services: These services implement the HSI algorithms. For each ser-
vice, a client stub is implemented so continuous access to grid services is performed
through the associated client stub. Jobs are submitted by users through the Portal
Grid Interface. A Master Manager Job Factory Server (MMJFS), implemented in
GT3, executes the task in the remote resources indicated by the Data Broker, exam-
ines results of submitted jobs, views information of resources, and so on. After the
client stub receives the request from the Data Broker it proceeds to send the request to
the node specified by the Data Broker. The main Grid-HSI services are summarized
below:

� CMeansClassifier. Generates the classification vector (.txt) using the C Means
algorithm according selected parameters.� PcaReduction. Generates a new matrix of reduced dimensionality (.txt) using
the Principal Component Analysis (PCA) according selected parameters.
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� TxtJpg. Converts a ClassificationVector.txt file that contains the result mem-
bership for each pixel on the image to a jpeg format file.

13.4.2 Functional Process of Grid-HSI

The functional design of Grid-HSI is constituted by a set of components inter-
connected logically to accomplish the system objective. The functional process is
described as follows:

� Initially a user accesses the Pportal Grid and sends a service request with a
classifier parameter through an HTML Form.� The Data Broker Servlet reads these parameters, defines which resource to use,
and sends such parameters to the Classifier Grid Client.� The Classifier Client sends these parameters to the Classifier grid service in the
selected resource.� The Classifier Grid Service invokes its local Classifier Algorithm. This
algorithm yields a result. txt File and sends to the Classifier Grid Service an
algorithm report.� The Classifier Grid Service sends back to the Classifier Grid Client the algo-
rithm report and the resulting. txt File ID.� The Classifier Client receives the algorithm report and the result File ID; it
proceeds to send these parameters to the Data Broker.� The Data Broker sends to the Server Result Displayer the algorithm report and
sends to the Txt-Png Converter Grid Client the Result File ID.� Txt-Png Converter Grid Client sends Result File ID to Txt-Png Converter Grid
Service.� Txt-Png Converter Grid Service invokes its Txt-Png Converter with the Result
File ID as a parameter.� Txt-Png Converter reads from Storage Result Txt File written by the Classifier
algorithm and processes it to get it in a Png file.� The Png File ID is sent back to the Data Broker through Txt-Png Converter
Grid Service and Txt-Png Converter Grid Client.� The Data Broker with this Png File ID invokes a Transfer File Client that, using
a TCP Socket, performs the transference from the Resource Storage to Client
Storage.� Finally, the Servlet Data Displayer receives the Png File ID from the Data
Broker, reads the Png File from its Storage, and sends the Png file to a Web user.

13.4.3 Experimental Results

In the experiments the resources consisted of a low-cost commodity PC cluster con-
sisting of eight nodes connected using a 100 Mbps Ethernet switch. Each node is
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Figure 13.13 Graphical output at node 04.

an Intel P3-651.485Mhz with 256 MB of memory running RedHat Linux 3.2.2-5.
A 145 × 145 portion of the June 1992 NW Indian Pines AVIRIS image taken over
Indiana [10] is used in the experiments.

Many scenarios were run during the experiments. One case is presented for illus-
tration. More details and cases can be found in [22]. Node 02 receives a classification
request via the Internet from node 04. In this case, node 04 does not have the re-
sources needed to serve the user request. After the classifier service classifies the
image, a classification vector is returned. This classification vector contains the re-
sulting membership for each pixel in the image. This classification vector is then stored
on a directory of the container node as ClassificationVector.txt. The TxtPng service,
through JAI API, transforms ClassificationVector.txt to a Portable Network Graphics
(PNG) format file. After that the PNG File invokes a TCP Socket and performs the
transfer to the Client Browser Hard Disk. The servlet Data Displayer receives the
algorithm report and Png File from the Data Broker. Then, it reads the Png file from
its hard disk and shows the algorithm report and the png file to the Web browser. The
graphical output at node 04 is shown in Figure 13.13.

TABLE 13.3 Results of C-Means Method with
Euclidean Distance

# Classes Iterations Bands Used Execution Time (sec)

5 4 220 43.91
5 5 220 53.63
5 6 220 67.92
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TABLE 13.4 Results Principal Components Analysis

# Components Percent amount Energy Bands Used Execution Time (sec)

3 90 220 9.52
5 90 220 9.85
7 90 220 10.02

Experiments show that every local resource can accomplish successfully the re-
quests sent by users without regard to the source of the request, and users can
submit jobs to several nodes at the same time. Tables 13.3 and 13.4 show the
execution timing results of the C-Means clustering with Euclidean distance and the
Principal Component Analysis, respectively. As shown in [22], execution time is
slightly increased by the overhead of the grid service.

13.5 Conclusions

This chapter described the concept of a solutionware system for the solution of
hyperspectral/ multispectral remote sensing image processing problems. We de-
scribed our experiences and results on implementing a set of hyperspectral image
processing algorithms in different platforms. The most comprehensive set of tools is
available on the MATLAB HIAT toolbox. It provides users of hyperspectral and multi-
spectral data different processing algorithms that can be combined in different ways to
generate data products for image analysis. It also gives users the capability of expand-
ing its functionality by adding their routines via the MATLAB programming language.
However, HIAT is limited in its capability to manage large hyperspectral images. To
deal with this problem, we are looking into implementating some of the toolbox com-
ponents in parallel processing using the Itanium architecture. Experimental results
showed that exploiting implicit parallelism and linking HP Mathematical LIBrary
optimized for Itanium yield significant improvement in performance. To take further
advantage of distributed computational resources, grid computing was explored as
an alternative for implementing HIAT. We presented Grid-HSI, a Service-Oriented
Architecture-Based Grid application to enable hyperspectral image processing. Grid-
HSI provides users with a transparent interface to access computational resources
and perform remotely hyperspectral image analysis through a set of grid services.
The proposed architecture was described and a prototype implementation with few
services was presented.

As hyperspectral remote sensing becomes more available, the large data volume will
require that users have tools that can be tailored to meet their need of data products
in a timely fashion within their available computational resources. The proposed
solutionware not only will serve the remote sensing community but also users in
other areas where imaging spectroscopy is used.
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Imaging spectroscopy (also known as hyperspectral imaging) is a field of scientific in-
vestigation based upon the measurement and analysis of spectra measured as images.
The human eye qualitatively measures three colors (blue, green, and red) in the visible
portion of the electromagnetic spectrum when viewing the environment. The human
eye-brain combination is a powerful observing system, however, it generally pro-
vides a non-quantitative perspective of the local environment. Imaging spectrometer
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instruments typically measure hundreds of colors (spectral channels) across a much
wider spectral range. These hundreds of spectral channels are recorded quantitatively
as spectra for every spatial element in an image. The measured spectra provide the
basis for a new approach to understanding the environment from a remote perspective
based in the physics, chemistry, and biology revealed by imaging spectroscopy.

The measurement of hundreds of spectral channels for each spatial element of an
image consisting of millions of spatial elements creates an important requirement
for the use of high-performance computing. First, high-performance computing is
required to acquire, store, and manipulate the large data sets collected. Second, to
extract the physical, chemical, and biological information recorded in the remotely
measured spectra requires the development and use of high-performance computing
algorithms and analysis approaches.

This chapter uses the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
to review the critical characteristics of an imaging spectrometer instrument and the
corresponding characteristics of the measured spectra. The wide range of scientific
research as well as application objectives pursued with AVIRIS is briefly presented.
Roles for the application of high-performance computing methods to AVIRIS data sets
are discussed. Next in the chapter a review is given of the characteristics and mea-
surement objectives of the Moon Mineralogy Mapper (M3) imaging spectrometer
planned for launch in 2008. This is the first imaging spectrometer designed to acquire
high precision and high uniformity spectral measurements of an entire planetary-sized
rocky body in our solar system. The size of the expected data set and roles for high
performance computing are discussed. Finally, a review is given of one design for an
Earth imaging spectrometer focused on investigation of terrestrial and aquatic ecosys-
tem status and composition. This imaging spectrometer has the potential to deliver
calibrated spectra for the entire land and coastal regions of the Earth every 19 days.
The size of the data sets generated and the sophistication of the algorithms needed
for full analysis provide a clear demand for high-performance computing. Imaging
spectroscopy and the data sets collected provide an important basis for the use of high-
performance computing from data collection to data storage through to data analysis.

14.1 Introduction

Imaging spectroscopy is based in the field of spectroscopy. Sir Isaac Newton first
separated the color of white light into the rainbow in the late 1600s. In the 1800s,
Joseph von Fraunhofer and others discovered absorption lines in the solar spectrum
and light emitted by flames. Through investigation of these absorption lines, the
linkage between composition and signatures in a spectrum of light was established.
The field of spectroscopy has been pursued by astronomers for more than 100 years
to understand the properties of stars as well as planets in our solar system. On Earth,
spectroscopy has been used by physicists, chemists, and biologist to investigate the
properties of materials relevant to their respective disciplines. In the later half of the
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Figure 14.1 A limited set of rock forming minerals and vegetation reflectance spec-
tra measured from 400 to 2500 nm in the solar reflected light spectrum. NPV cor-
responds to non-photosynthetic vegetation. A wide diversity of composition related
absorption and scattering signatures in nature are illustrated by these materials.

20th century Earth scientists developed spaceborne instruments that view the earth in a
few spectral bands capturing a portion of the spectral information in reflected light. The
AVHRR, LandSat, and SPOT are important examples of this multispectral approach to
remote sensing of the Earth. However, the few spectral bands of multispectral satellites
fail to capture the complete diversity of the compositional information present in
the reflected energy spectrum of the Earth. Figure 14.1 shows a set of measured
reflectance spectra from a limited set of rock forming minerals and vegetation spectra.
A wide diversity of composition-related absorption and scattering signatures exist for
such materials. Figure 14.2 shows these selected reflectance spectra convolved to
the band passes of the LandSat Thematic Mapper. When mixtures and illumination
factors are included, the 6 multispectral measurements of the multispectral Thematic
Mapper are insufficient to unambiguously identify the 10 materials present. In the
1970s, realization of the limitations of the multispectral approach when faced with the
diversity and complexity of spectral signatures found on the surface of the Earth lead to
the concept of an imaging spectrometer. The use of an imaging spectrometer was also
understood to be valid for scientific missions to other planets and objects in our solar
system. Only in the late 1970s did the detector array, electronics, computer, and optical
technology reach significant maturity to allow design of an imaging spectrometer.
With the arrival of these technologies and scientific impetus, the Airborne Imaging
Spectrometer (AIS) was proposed and built at the Jet Propulsion Laboratory [1]. The
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Figure 14.2 The spectral signatures of a limited set of mineral and vegetation spec-
tra convolved to the six solar reflected range band passes of the multispectral LandSat
Thematic Mapper. When mixtures and illumination factors are included, the six mul-
tispectral measurements are insufficient to unambiguously identify the wide range of
possible materials present on the surface of the Earth.

AIS first flew in 1982 as well as in several subsequent years as a technology and science
demonstration experiment. Concurrently with the development of the AIS a role for
high-performance computing was identified and pursued [2]. The AIS instrument had
limited spectral coverage as well as limited spatial coverage. Even as a demonstration
experiment, the success of the AIS led to the formulation of the proposal for the
Airborne Visible/Infrared Imaging Spectrometer. This next generation instrument
was specified to measure the complete solar reflected spectrum from 400 to 2500 nm
and to capture a significant spatial image domain. The broader spectral and spatial
domain of this full range instrument continued to grow the role for high-performance
computing in the field of imaging spectroscopy.

14.2 AVIRIS and the Imaging Spectroscopy Measurement

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [3, 4] measures the
total upwelling spectral radiance in the spectral range from 380 to 2510 nm at ap-
proximately 10 nm sampling intervals and spectral response function. Figure 14.3
shows a plot of the AVIRIS spectral range in conjunction with an atmospheric trans-
mittance spectrum. Also shown for comparison are the spectral response functions
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Figure 14.3 AVIRIS spectral range and sampling with a transmittance spectrum of
the atmosphere and the six LandSat TM multi-spectral bands in the solar reflected
spectrum.

of the multispectral LandSat Thematic Mapper. With AVIRIS a complete spectrum
is measured with contiguous spectral channels. Across this spectral range the atmo-
sphere transmits energy reflected from the surface, except in the spectral regions of
strong water vapor absorption centered near 1400 and 1900 nm. These strong water
vapor absorption regions are used for cirrus cloud detection and compensation. Mea-
surement of this complete spectral range allows AVIRIS to be used for investigations
beyond those possible with a multispectral measurement. In addition, measurement
of the full spectrum allows use of new, more accurate, computationally intensive
algorithms that require high-performance computing.

In the spatial domain, AVIRIS measures spectra as images with a 20 m spatial
resolution and an 11 km swath with up to 1000 km image length from NASA’s ER-2
aircraft flying at 20 km altitude. On the Twin Otter aircraft flying at 4 km altitude, the
spatial resolution is 4 m with a 2 km swath and up to 200 km image length. Figure 14.4
shows an AVIRIS data set collected over the southern San Francisco Bay, California,
from the ER-2 platform in image cube representation. The spectrum measured for
each spatial element in the data set may be used to pursue specific scientific research
questions via the recorded interaction of light with matter.

14.2.1 The AVIRIS Imaging Spectrometer Characteristics

The full set of AVIRIS spectral, radiometric, spatial, temporal, and uniformity charac-
teristics are given in Table 14.1. These characteristics have been refined and improved
since the initial development of AVIRIS based upon the requirements from scientists
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Figure 14.4 AVIRIS image cube representation of a data set measured of the south-
ern San Francisco Bay, California. The top panel shows the spatial content for a 20 m
spatial resolution data set. The vertical panels depict the spectral measurement from
380 to 2510 nm that is recorded for every spatial element.

TABLE 14.1 Spectral, Radiometric, Spatial, Temporal, and
Uniformity Specifications of the AVIRIS Instrument

Spectral properties:

Range 380 to 2510 nm in the solar reflected spectrum
Sampling 10 nm across spectral range
Response FWHM < 1.1 of sampling
Accuracy Calibrated to 2% of sampling
Precision Stable within 1% of sampling

Radiometric properties:

Range 0 to maximum Lambertian radiance
Sampling 16 bits measured
Response > 99% linear
Accuracy > 96% absolute radiometric calibration
Precision (SNR) As specified at reference radiance

Spatial properties:

Range 34 degree field-of-view (FOV)
Sampling 0.87 milliradian cross and along track
Response FWHM of IFOV < 1.2 of sampling

Temporal properties:

Airborne As requested 1987 to present
Uniformity:

Spectral cross-track > 99% uniformity of position across the FOV
Spectral-IFOV > 98% IFOVs uniformity over the spectral range
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Figure 14.5 The 2006 AVIRIS signal-to-noise ratio and corresponding benchmark
reference radiance.

using AVIRIS data. Of particular importance has been the improvement of the signal-
to-noise ratio. An increased signal-to-noise ratio has been a critical factor enabling
more advanced algorithms and sophisticated analysis approaches. Figure 14.5 gives
the 2006 AVIRIS signal-to-noise ratio at the specified AVIRIS reference radiance.
The AVIRIS reference radiance was specified in the original AVIRIS proposal as
the radiance from a 0.5 reflectance surface illuminated by the sun at a 23.5 degree
solar zenith angle through the standard mid-latitude atmospheric model. The current
AVIRIS signal-to-noise ratio is 10 to 20 times greater than when the instrument first
flew in 1986.

Of special importance for valid physically based imaging spectroscopy science
is the uniformity of the imaging spectrometer measurement. Two aspects of unifor-
mity are critical. The first is cross-track spectral uniformity. The spectral cross-track
uniformity requirement is that each spectrum in the image have the same spectral
calibration to some percentage near 100%. For AVIRIS, the spectral cross-track uni-
formity exceeds 99% because each spectrum in the image is measured by the same
spectrometer. This is inherent in the AVIRIS whiskbroom imaging spectrometer de-
sign. For the (approximate) 10 nm spectral sampling of AVIRIS, this 99% uniformity
assures that the spectral calibration is the same for all spectra measured in an image
to the level of 0.1 nm. Excellent spectral cross-track uniformity is required for all
analysis algorithms that are applied directly to all spatial elements in an image. Some
of the most powerful algorithms such as spectral dimensional analysis and spectral
unmixing require near-perfect spectral cross-track uniformity.

The second critical form of uniformity for an imaging spectrometer is spectral
instantaneous-field-of-view (IFOV) uniformity. The IFOV is the sampling area on the
surface for a single spatial element. Spectral-IFOV uniformity requires that the IFOV
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Figure 14.6 Depiction of the spectral cross-track and spectral-IFOV uniformity for
a uniform imaging spectrometer. The grids represent the detectors, the gray scale
represents the wavelengths, and the dots represent the centers of the IFOVs. This
is a uniform imaging spectrometer where each cross-track spectrum has the same
calibration and all the wavelengths measured for a given spectrum are from the same
IFOV.

for a given spectrum be the same for all wavelengths to some high percentage near
100%. This assures that the same area on the ground is sampled for all wavelengths
measured in a spectrum. Again, because AVIRIS is a whiskbroom spectrometer, the
spectral IFOV uniformity is high at better than 98%. Figure 14.6 depicts the spectral
cross-track and spectral IFOV uniformities for a 100% uniform instrument. Several
imaging spectrometers have been constructed with low spectral cross-track and low
spectral-IFOV uniformities undermining their potential use.

14.2.2 The AVIRIS Measured Signal

Understanding the detailed nature of the AVIRIS or any imaging spectrometer mea-
surements is essential for appropriate analysis of the data. Figure 14.7 shows the
reflectance spectrum of a vegetation canopy. From this reflectance spectrum a wide
range of plant composition and status information may be extracted. This informa-
tion is contained in the molecular absorption and constituent scattering signatures
recorded in the vegetation canopy spectrum.

An Earth-looking imaging spectrometer such as AVIRIS does not measure re-
flectance. AVIRIS measures the total upwelling radiance incident at the instrument
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Figure 14.7 Vegetation reflectance spectrum showing the molecular absorption and
constituent scattering signatures present across the solar reflected spectral range.

aperture. When flying on the NASA ER-2 aircraft, the aperture is looking down
from 20 km. Figure 14.8 show the modeled [5, 6] radiance incident at the AVIRIS
aperture for the vegetation canopy reflectance spectrum. This spectrum includes the
combined effects of the solar irradiance, two-way transmittance, and scattering of the
atmosphere, as well as the reflectance of the vegetated canopy. This is the radiance in
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Figure 14.8 Modeled upwelling radiance incident at the AVIRIS aperture from a
wel-illuminated vegetation canopy. This spectrum includes the combined effects of
the solar irradiance, two-way transmittance, and scattering of the atmosphere, as well
as the vegetation canopy reflectance.
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Figure 14.9 AVIRIS measured signal for the upwelling radiance from a vegetation
covered surface. The instrument optical and electronic characteristics dominate for
recorded signal.

terms of power per area per wavelength per solid angle available to measure for the
pursuit of imaging spectroscopy.

As with any radiance measuring instrument, AVIRIS has optical components that
collect the incident light and focus it on a detector. At the detector the incident light
is converted to measurable signals that are amplified, digitized, and recorded. Figure
14.9 shows the AVIRIS recorded signal for the vegetation canopy upwelling radiance
spectrum. The AVIRIS signal has no inherent radiometric or spectral calibration and
is recorded as digitized number (DN) versus channel.

The process of spectral and radiometric calibration in the AVIRIS data processing
subsystem converts the measured signal to units of spectral radiance. Considerable
effort has been expended over the years of AVIRIS’ operation to develop spectral,
radiometric, and spatial calibration methods in the laboratory [7, 8]. A companion
effort has been applied to validate the calibration of AVIRIS in the flight environment
[9, 10]. Figure 14.10 shows the AVIRIS calibrated radiance spectrum of the vege-
tation canopy target. Accurate calibration is an essential requirement for the spectra
measured by AVIRIS or any imaging spectrometer to be analyzed quantitatively for
science research or application objectives.

If the objective of the investigation is the understanding of surface properties, the
calibrated radiance spectra must be corrected for the effects of the atmosphere. Atmo-
spheric correction generally includes compensation for the solar irradiance as well as
atmospheric absorbing and scattering effects. Figure 14.11 show the atmospherically
corrected spectrum for the vegetation canopy target. The portions of the spectrum lo-
cated in the strong atmospheric water vapor absorption bands near 1400 and 1900 nm
are lost due to the lack of a measurable signal.
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Figure 14.10 Spectrally and radiometrically calibrated spectrum for the vegetation
canopy target.

14.2.3 Range of Investigations Pursued with AVIRIS Measurements

The AVIRIS imaging spectrometer was originally proposed to investigate two spe-
cific spectral signatures. These were the absorption doublet of the mineral Kaolinite
centered near 2200 nm and the red-edge of vegetation in the 700 nm region of the
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Figure 14.11 Atmospherically corrected spectrum from AVIRIS measurement of
a vegetation canopy. The 1400 and 1900 nm spectral regions are ignored due to
the strong absorption of atmospheric water vapor. In this reflectance spectrum the
molecular absorption and constituent scattering properties of the canopy are clearly
expressed and available for spectroscopic analysis.
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TABLE 14.2 Diversity of Scientific Research and Applications Pursued with
AVIRIS

Atmosphere: Water Vapor, Clouds Properties, Aerosols, Absorbing Gases

Ecology: Chlorophyll, leaf water, lignin, cellulose, pigments,
structure, nonphotosynthetic constituents

Geology and soils: Mineralogy, geochemistry, soil type
Coastal and inland Chlorophyll, plankton, dissolved organics, sediments,

waters: bottom composition, bathymetry
Snow and ice Snow cover fraction, grainsize, impurities, melting

hydrology:
Biomass burning: Subpixel temperatures/extent, smoke, combustion products
Environmental Contaminants directly and indirectly, geological substrate

hazards:
Calibration: Aircraft and satellite sensors, sensor simulation, validation
Modeling: Radiative transfer model validation and constraint
Commercial: Mineral exploration, agriculture, and forest status
Algorithms: Autonomous atmospheric correction, spectra derivation
Other: Human infrastructure

spectrum. Fortunately, a full solar reflected energy imaging spectrometer was de-
veloped and the AVIRIS instrument has been used to pursue a much broader range
of scientific research and application objectives. Table 14.2 summarizes the span of
AVIRIS investigations across a range of scientific research and application disciplines.
This list illustrates the power of imaging spectroscopy that arises from measurement
of the complete solar reflected spectrum from 400 to 2500 nm. Imaging spectroscopy
becomes relevant whenever a material absorption or scattering spectral signature can
be directly or indirectly linked to the scientific research or application question of
interest.

14.2.4 The AVIRIS Data Archive and Selected Imaging Spectroscopy
Analysis Algorithms

The AVIRIS archive is maintained at the Jet Propulsion Laboratory. All data in the
archive are available for distribution in units of calibrated upwelling spectral radi-
ance. The current volume of data exceeds 10 Terabytes. Geographically the AVIRIS
archive includes measurements from northern Alaska to southern Argentina as well
as from Hawaii to portions of the eastern Caribbean. From the perspective of sur-
face composition, the archive includes a wide range of vegetation types ranging from
tropical to temperate to desert environments. In addition, a wide range of geological
surfaces have been measured spanning sedimentary, metamorphic, and igneous rock
domains as well as a diversity of soils. Snow and ice data sets have been collected
including form the frozen Beaufort Sea in Alaska as well as many snow- and ice-
covered mountain regions of the western United States. The AVIRIS archive includes
atmospheric conditions from tropical to desert as well as high to low aerosol loading.
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A number of active fires have been measured over the years capturing the associated
fire spectral signatures. In total, the AVIRIS archive contains the most diverse set of
well-calibrated Earth spectral signatures collected to date.

In the years over which the AVIRIS data set has been collected a wide range of new
analysis algorithms have been developed and applied. A number of these algorithms
have involved forward inversion of the AVIRIS spectra with a physically based model.
Algorithms for the inversion of AVIRIS spectra for water vapor [11, 12, 13] as well as
simultaneous inversions for water, vapor, liquid water, and frozen water [14] have been
developed. Related forward inversion algorithms have been developed for determining
the temperature and fractional area of actively burning biomass fires [15, 16]. Inversion
of a physically based model with imaging spectrometer measurement is one of the
more powerful methods for extracting parameters from well-calibrated spectra. These
parameters are then used to pursue the science research or application objectives of
interest.

Another important set of algorithms applied to AVIRIS imaging spectroscopy mea-
surements includes spectral mixture analysis. These approaches began with simple
unmixing [17, 18] and extended to multiple endmember spectral mixture analysis
(MESMA) [19]. An automated Monte Carlo spectral analysis method has also been
developed [20, 21], as have techniques for the estimation of spectral endmembers
from within imaging spectrometer data sets [22]. Spectral mixture analysis appropri-
ately addressed the fact that every AVIRIS measured spectrum contains a mixture of
spectral signatures. The derived component fractions for each spatial element in an
image enable pursuit of a wide range of investigations.

Spectral feature fitting is an imaging spectroscopy algorithm approach that has
been pursed extensively by scientists of the United States Geological Survey. The
result of this multidecade activity is the Tetracorder algorithm [23]. This approach
focuses on the direct spectral fitting of measured absorption features with those from
a comprehensive spectral library. Results of this and related spectral feature fitting
algorithms have been applied successfully to a wide range of geological research
investigations as well as other scientific disciplines.

A wide range of supervised and unsupervised classification algorithms have been
developed for use with AVIRIS and other imaging spectrometer measurements. The
Multispec software suite [24] of the Purdue Research Foundation represents an ex-
ample containing a wide range of classification algorithms used for the analysis of
AVIRIS measurements.

Only a few examples of algorithms employing physical model inversion, spectral
mixture analysis, spectral feature analysis, and classification have been briefly de-
scribed here. In addition, many hybrid algorithms exist that include aspects of two or
more of these approaches. Other AVIRIS imaging spectroscopy measurement analysis
methods exist as well. To explore the breadth and depth of algorithms that have been
successfully applied to AVIRIS measurements, a full search of the refereed and non-
refereed literature is required and is beyond the scope of this chapter. Finally, given
the diverse spectral signature content of high precision and high uniformity spectra,
there is clear potential for the development of new algorithms and approaches for the
extraction of valuable information from existing AVIRIS measurements.
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14.3 Objectives and Characteristics of a Spaceborne Imaging
Spectrometer for the Moon

The Moon Mineralogy Mapper (M3) was selected as a NASA Discovery Mission of
Opportunity in early 2005. The M3 instrument is a 21st century high uniformity and
high precision imaging spectrometer of the pushbroom type. M3 measures spectra as
images in the solar dominated portion of the electromagnetic spectrum. The basis for
the use of imaging spectroscopy for mapping the mineralogy of the moon is found
in the diversity of lunar minerals returned to Earth from the Apollo missions of the
late 20th century. High precision (signal-to-noise ratio) is required to measure the less
pronounced spectral signatures of dust and mineral mixtures as well as to measure high
quality spectra near the poles where the solar illumination is reduced. M3 is planned
to be launched as a guest instrument provide by NASA on the Chandrayaan-1 mission
of the Indian Space Research Organization (ISRO) in early 2008.

14.3.1 Objectives of the Moon Mineralogy Mapper

The overarching science and exploration objectives of the M3 instrument and mission
are

� Characterize and map the lunar surface composition in the context of its geo-
logic evolution.� Assess and map the Moon mineral resources at high spatial resolution to support
planning for future, targeted missions.

These overarching objectives translate into the following more specific objectives:

� Evaluate the primary components of the crust and their distribution across the
highlands.� Characterize the diversity and extent of different types of basaltic volcanism.� Explore for, identify, and assess deposits containing volatiles.� Map fresh craters to assess abundance of small impacts in the recent past.� Identify and evaluate concentrations of unusual/unexpected minerals.

All of these objectives may be pursued based upon the spectral signatures of the
materials on the surface of the moon. Figure 14.12 shows a suite of spectra measured
from samples returned to the Earth during the Apollo missions of the 1960s and the
1970s. To pursue these material identification objectives, an imaging spectrometer
measuring reflected light in the solar reflected spectrum is required.

14.3.2 Characteristics of the M3 Imaging Spectrometer

Based upon the scientific objectives and the spectroscopic approach, a detailed spec-
ification of the M3 imaging spectrometer was established [25, 26]. These spectral,
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Figure 14.12 Spectra of samples returned by the NASA Apollo missions show-
ing the composition-based spectral diversity of surface materials on the Moon. This
spectral diversity provides the basis for pursing the objectives of the M3 mission with
an imaging spectrometer. Upon arrival on Earth the ultradry lunar Samples have ad-
sorbed water, resulting in the absorption feature beyond 2700 nm. These spectra were
measured by the NASA RELAB facility at Brown University.

radiometric, spatial, temporal, and uniformity requirements are given in Table 14.3.
The reference radiance at which the precision requirement of M3 is set is the modeled
radiance from the returned Apollo 16 soil reflectance (BKR1LR117) illuminated with
a 0-degree solar zenith angle.

With the detailed spectral, radiometric, spatial, temporal, and uniformity specifica-
tions, a high uniformity and high precision Offner pushbroom imaging spectrometer
design was selected [27]. Figure 14.13 shows the mechanical design implementation
for M3. This design uses a three-mirror telescope with fold mirror to feed light through
a uniform slit to the Offner spectrometer. The spectrometer consists of one spherical
mirror used twice and a custom convex grating. The spectrally dispersed light from
the spectrometer passes through an order sorting filter to the detector array that is
sensitive from 430 to 3000 nm. This comparatively simple design was enabled by the
structured blaze convex grating in the core of the uniform full-range spectrometer.

M3 is a high uniformity and high precision pushbroom imaging spectrometer. The
cross-track swath is 40 km with 70 m spatial sampling in the along-track and cross-
track directions. For each 70 m advance of the image swath in the orbit direction
around the moon, a full set of 600 cross-track spectra will be read out from the
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TABLE 14.3 Spectral, Radiometric, Spatial, Temporal and
Uniformity Specifications of The M3 Imaging Spectrometer for the
Moon

Spectral properties:

Range 430 to 3000 nm in the solar reflected spectrum
Sampling 10 nm across spectral range
Response FWHM < 1.2 of sampling
Accuracy Calibrated to 10% of sampling
Precision Stable within 5% of sampling

Radiometric properties:
Range 0 to specified saturation radiance (2 × Apollo 16)
Sampling 12 bits measured
Response Linear to 1%
Accuracy > 90% absolute radiometric calibration
Precision (SNR) > 400 equatorial reference

> 100 polar reference
Spatial properties:

Range 24 degree field-of-view (FOV)
Sampling 0.7 milliradian cross and along track
Response FWHM of IFOV < 1.2 of sampling

Temporal properties:
Global > 95% coverage in 2 years (reduced resolution)
Target > 5% coverage in 2 years (full resolution)

Uniformity:
Spectral-crosstrack > 99% uniformity of position across the FOV
Spectral-IFOV > 90% IFOVs uniformity over the spectral range

Spectrometer Grating

Detector Array

Telescope

Figure 14.13 Mechanical drawing of the M3 imaging spectrometer that has been
built for mapping the composition of the Moon via spectroscopy. The M3 instrument
has the following mass, power, and volume characteristics: 8 kg, 15 Watts, 25 × 18 ×
12 cm. The M3 instrument was built in 24 months.



AVIRIS and Related 21st Century Imaging Spectrometers 351

40 km Swath

Orbit Path

Continuous

70 m Sampling

260 Band

Spectrum

Figure 14.14 Depiction of the spectral spatial and pushbroom imaging approach of
the M3 high uniformity and high precision imaging spectrometer.

detector array simultaneously. Each spectrum will consist of 260 spectral channels
from 430 to 3000 nm. A depiction of the type of data to be measured by M3 is shown
in Figure 14.14. To accommodate data rate limitations for transmission to Earth, M3

will also have a global data acquisition mode with reduced spectral and spatial res-
olution. In this mode, 260 spectral channels will be selectively summed to give 86
contiguous channels covering the range from 430 to 3000 nm. In the spatial domain
the data will by summed to give 140 meter samplings. The balance between coverage
of the Moon in global and full resolution modes will depend on the available data
downlink at the time of the mission. A critical characteristic of M3 is uniformity. The
cross-track spectral uniformity enables the direct comparison of spectra across the
swath and throughout the image and is required for a range of advanced computa-
tional analysis techniques. The excellent spectral-IFOV uniformity of M3 is required
for rigorous spectroscopic analysis across the spectral range of M3. If the area sam-
pled on the surface changes with wavelength, a basic assumption of spectroscopy is
violated.

14.3.3 Prospects for the M3 Imaging Spectrometer Data Set

M3 is the first imaging spectrometer designed to provide complete coverage of a
planetary sized body in our solar system at high spatial resolution. The data set
is currently expected to have a volume of at least 5.8 Terabytes at the end of the
mission. During the mission, portions of the M3 data set will be available for analysis
through the NASA planetary data system (PDS). After the end of the mission, final
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calibration and validation the complete data set will become available. Throughout
the M3 mission and following, the imaging spectrometer measurements will be used
to characterize and map the lunar surface composition and to assess and map mineral
resources at high spatial resolution to support future missions. The volume, quality,
and comprehensive nature of the M3 data set presents a unique opportunity for the
application of high-performance computing.

14.4 Objectives and Characteristics of a Future Spaceborne
Imaging Spectrometer for the Earth

The diversity and complexity of scientific research questions being pursued for the
global Earth system require the use of satellite observations. Due to limits of technol-
ogy, early satellite observations systems measured only a few spectral bands. With
only a few spectral bands the typical algorithms consisted of band ratios and band in-
dices. The normalize vegetation difference index (NDVI) [28] is a prominent example.
There are limitations to the interpretation and portability of these simple algorithms
using only a few spectral bands, because many more than two components of the
Earth’s surface and atmosphere system contribute to the measured signals. Realiza-
tion of these limitations and the advance of technology have led to the current set of
Earth observing instruments that in some cases measure tens of spectral bands. How-
ever, even with tens of spectral bands, limitations arise for quantitative and portable
algorithms due to the undersampling of the available spectral signal. Now in the 21st
century, new Earth observing instruments are being designed and proposed with full
spectral coverage in the solar reflected spectrum. In this section a description of ob-
jectives and characteristics of an Earth imaging spectrometer focused on terrestrial
and aquatic ecosystem is discussed.

14.4.1 Objectives of an Earth Imaging Spectrometer for Measuring
the State of Terrestrial and Aquatic Ecosystems

The overarching objective of this Earth imaging spectrometer is understanding the
health, composition, and productivity of both terrestrial and aquatic ecosystems at
a seasonal time scale over the entire globe. The aquatic focus is in the coastal and
inland water regions where the ecosystem diversity is greatest. Companion objectives
are to understand how these terrestrial and aquatic ecosystems are being altered
by human activities and how these changes affect the fundamental processes upon
which these ecosystems depend. From these objectives, a set of research area topics
arise including: (1) ecosystem function and diversity, (2) biogeochemical cycles, and
(3) ecosystem disturbance and response. To address the specific questions in these
research areas, a set of measurement products have been identified. These products
are given in Table 14.4.
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TABLE 14.4 Earth Imaging Spectrometer Products for
Terrestrial and Aquatic Ecosystems Understanding

Terrestrial ecosystem science products:

Calibrated full-optical range surface radiance and reflectance
Fractional cover of biotic and abiotic materials
Leaf and canopy water content
Leaf and canopy pigments and nitrogen concentrations
Plant functional types and species dominance
Ecosystem disturbance and response
Plant light-use efficiency and productivity

Aquatic ecosystem science products:

Calibrated full-optical range surface radiance and reflectance
Coastal ocean and inland water optical properties and ecosystem
Component concentrations
Phytoplankton functional groups & species dominance
Benthic and inland water communities
Plant physiological status
Ecosystem productivity
Ecosystem disturbance and response

Based upon the almost 20 years of research results using AVIRIS measurements
as well as measurements from other imaging spectrometers and in conjunction with
theoretical, laboratory, and field spectroscopic efforts, it has become clear that an
Earth spaceborne imaging spectrometer is required to pursue these objectives globally.
The use of imaging spectroscopy to pursue these objectives is further supported by
the 2007 National Research Council, Committee on Earth Science and Applications
from Space: A Community Assessment and Strategy for the Future [29]. Among
other important missions, an Earth imaging spectrometer is specified to pursue a set
of objectives for understanding and managing ecosystems.

14.4.2 Characteristics of an Ecosystem Focused Earth
Imaging Spectrometer

To generate the required science products, a basis for what is measurable from a satel-
lite perspective must be established. The literature now contains numerous publica-
tions establishing the physical basis and approach for generating the required science
products from spectroscopic measurements. From this work spanning 20 years, a set
of spectral, radiometric, spatial, temporal, and uniformity requirements have been
defined for such measurements. These represent one set of requirements that are fea-
sible with currently available technology and are given in Table 14.5. One of the most
critical measurement requirements is the precision or signal-to-noise ratio. For this
imaging spectrometer, the precision is specified at a set of four reference radiances
given in Figure 14.15. The corresponding signal-to-noise ratios required are shown
in Figure 14.16. The signal-to-noise ratios specified here are high in order to pursue
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TABLE 14.5 Nominal Characteristics of an Earth Imaging Spectrometer
for Terrestrial and Aquatic Ecosystems’ Health, Composition, and
Productivity At a Seasonal Time Scale

Spectral properties:

Range 380 to 2510 nm
Sampling 10 nm (uniform over range)
Response < 1.2× sampling (FWHM) (uniform over range)
Accuracy < 0.5 nm

Radiometric properties:
Range 0 to specified saturation radiance
Sampling 14 bits measured (possibly 13 down linked)
Response > 95% absolute radiometric calibration
Accuracy > 90% absolute radiometric calibration

> 98% on-orbit reflectance
Stability > 99.5%
Precision (SNR) As specified at benchmark radiances
Linearity > 99% characterized 0.1%
Polarization < 2% sensitivity, characterized to 0.5%
Stray light < 1:200 characterized to 0.1%

Spatial properties (at 7̃00 km altitude):

Cross-track samples 2440
Range 146 km FOV (12 degrees)
Sampling 60 m
Response < 1.2 sampling (FWHM)

Temporal properties:

Global land coast repeat 19 days at the equator
Rapid response revisit 3 days

Uniformity:

Spectral cross-track > 95% cross-track uniformity
Spectral-IFOV > 95% spectral IFOV uniformity

the required science products in the low signal areas of coastal water and dark green
vegetation.

14.4.3 Roles for High-Performance Computing

The current specifications for this imaging spectrometer create many opportunities
for high-performance computing. The first and perhaps most important is fast loss-
less data compression. The instantaneous data rate of the imaging spectrometer is
200 megabits per second. Even limiting to only collecting daylight data over the
terrestrial and coastal regions of the Earth will overwhelm satellite onboard storage
and data downlink capabilities. The science community is also unwilling to accept
compression algorithms that lose some of the measured data fidelity. Realization
of the data rate and volume challenges of imaging spectrometers have led to new
lossless compression approaches [30]. Some recent results are encouraging with fast
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Figure 14.15 Benchmark reference radiance for an Earth imaging spectrometer
focused on terrestrial and aquatic ecosystem objectives.

lossless compression ratios of greater than 4 to 1 achieved for data collected by an
airborne pushbroom imaging spectrometer that is a close analog to this spaceborne
Earth imaging spectrometer. Irrespective of the use of lossless compression on-orbit
and for downlink, the size of the uncompressed data set on the ground will be large.
Table 14.6 shows the orbit, daily, and yearly data volumes with the spectra held at
16 bit integers. The scale of this data set and the information contained within the
measured spectra demand the use of high-performance computing in the areas of
storage, algorithms, data I/O, computations, and visualization.
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Figure 14.16 The signal-to-noise ratio requirements for each of the bench-mark
reference radiances.
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TABLE 14.6 Earth Ecosystem Imaging Spectrometer Data Volumes

Period Volume Period Volume Period Volume Period Volume

Orbit 94 GB Day 1.37 TB Year 502 TB Mission 1.5 PB
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The trend for remote sensing satellite missions has always been towards smaller size,
lower cost, more flexibility, and higher computational power. On-board processing,
as a solution, permits a good utilization of expensive resources. Instead of storing and
forwarding all captured images, data processing can be performed on-orbit prior to

359
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downlink, resulting in the reduction of communication bandwidth as well as simpler
and faster subsequent computations to be performed at ground stations. Reconfig-
urable computers (RCs) combine the flexibility of traditional microprocessors with
the power of Field Programmable Gate Arrays (FPGAs). Therefore, RCs are a promis-
ing candidate for on-board preprocessing.

15.1 Introduction

The ability to preprocess and analyze remote sensing data onboard in real time can
significantly reduce the amount of bandwidth and storage required in the production
of space science products. Consequently, onboard processing can reduce the cost
and the complexity of the On-the-Ground/Earth processing systems. Furthermore,
it enables autonomous decisions to be taken onboard that can potentially reduce
the delay between image capture, analysis, and action. This leads to faster critical
decisions, which are crucial for future reconfigurable Web sensors missions as well
as planetary exploration missions [1].

The new generation of remote sensing detectors produces enormous data rates.
This requires a very high computing power to process the raw data, e.g., the onboard
computer has to provide a performance of 3 × 1010 operations/second in space to
process and classify hyperspectral raw data to get useful data [2]. Currently there is
no space computer with such a performance.

Recently, Field Programmable Gate Array (FPGA) based computing, also known
as ‘adaptive’ or ‘reconfigurable computing (RC),’ has become a viable target for
the implementation of algorithms suited to image processing and computationally
intensive applications. These computing systems combine the flexibility of general
purpose processors with the speed of application-specific processors. By mapping
hardware to FPGAs, the computer designer can optimize the hardware for a spe-
cific application resulting in acceleration rates of several orders of magnitude over
general-purpose computers. In addition, they are characterized by lower form/wrap
factors compared to parallel platforms and higher flexibility than ASIC solutions. RC
technology allows new hardware circuits to be uploaded via a radio link for physical
upgrade or repair. Therefore, RCs are a promising candidate for onboard data prepro-
cessing. High-speed, radiation-hardened FPGA chips with million gate densities have
recently emerged that can support the high throughput requirements for the remote
sensing applications [3].

Figure 15.1 shows an example of onboard processing for hyperspectral images us-
ing reconfigurable processing. Instead of storing and forwarding all captured images,
data processing can be performed on-orbit prior to downlink, resulting in the reduction
of communication bandwidth as well as simpler and faster subsequent computations
to be performed at ground stations.
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Figure 15.1 Onboard processing example.

15.2 Reconfigurable Computing

Applications have been traditionally implemented either in hardware using, for ex-
ample, custom VLSI and Application-Specific Integrated Circuits (ASICs), or in
software running on processors, such as Digital Signal Processors (DSPs), micro-
controllers, and general-purpose microprocessors. These two extremes trade perfor-
mance with flexibility, and vice versa. For example, ASICs are designed specifically
to solve a given problem. Therefore, they are fast and efficient when compared with
a microprocessor-based design. However, an ASIC circuit cannot be modified after
fabrication. Due to their programmability, microprocessors offer more flexibility, but
at the expense of speed.

Reconfigurable hardware [4] introduces a trade-off between traditional hardware
and software by achieving hardware-like performance with software-like flexibility.
Reconfigurable hardware offers the performance advantage of direct hardware exe-
cution and the flexibility of software-like programming [5]. Figure 15.2 represents
the trade-off between flexibility and performance for different implementation
approaches.

15.2.1 FPGAs and Reconfigurable Logic

Reconfiguration in today’s reconfigurable computers is provided through FPGAs [6].
An FPGA can be viewed as programmable logic blocks embedded in programmable
interconnects as shown in Figure 15.3. FPGAs are composed of three fundamental
components: logic blocks, I/O blocks, and programmable interconnects. The logic
block is the basic building block in the FPGA. In Xilinx, which is currently the largest
FPGA vendor, this logic block is called a Configurable Logic Block (CLB). Routing
resources enable efficient communication among CLBs. The CLB usually consists
of lookup tables (LUTs), carry logic, flip-flops, and programmable multiplexers, as
shown in Figure 15.4. The device can be programmed using a hardware description
language such as VHDL, or using schematic capture software. There are also many
C-to-gates compilers from research groups and from commercial vendors. A circuit is
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Figure 15.2 Trade-off between flexibility and performance [5].

implemented in an FPGA by programming each logic block to realize a portion of the
logic required by the circuit, and each of the I/O blocks to act as either an input pad or
an output pad, as required by the circuit. The programmable routing is configured to
make all the necessary connections among the logic blocks and between logic blocks
and I/O blocks. The programming technology determines the method of storing the
configuration information.

Interconnected Resources

Logic

Block

I/O Block

Figure 15.3 FPGA structure.
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15.2.2 Reconfigurable Computers

Reconfigurable computers [4, 7, 8, 9] are composed of one or more general-purpose
processors and one or more reconfigurable chips, such as Field Programmable Gate
Arrays (FPGAs) closely integrated with each other. The processor performs the opera-
tions that cannot be done efficiently in the reconfigurable logic, such as data-dependent
control (e.g., loops and branches) and possibly memory accesses, while the compu-
tational cores are mapped to the reconfigurable hardware. Reconfigurable computing
systems can be based on commodity PC boards (such as Pentium boards), where the
reconfigurable processor sub-system is typically a commercial, off-the-shelf (COTS)
FPGA accelerator board, such as WildStar II [10]. The reconfigurable board acts as
a co-processor to the PC or workstation processor. Usually, they are interfaced to a
computer via a PCI bus. RCs have recently evolved from accelerator boards to stand-
alone general-purpose RCs and parallel reconfigurable supercomputers. Examples
of such supercomputers are the Cray-XD1, SRC-6, and the SGI-Altix with FPGA
bricks. These systems can leverage the synergism between conventional processors
and FPGAs to provide low-level hardware functionality at the same level of pro-
grammability as general-purpose computers. A typical reconfigurable computer node
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Figure 15.5 Early reconfigurable architecture [7].

can be thought of as a module of microprocessors, FPGA devices, and memories. Such
modules can then be interconnected via some fixed (or perhaps even reconfigurable)
interconnection networks. Figure 15.5 shows an example of an early reconfigurable
architecture.

15.3 The Promise of Reconfigurable Computing
for Remote Sensing

Many of the motivations and goals of reconfigurable computing are consistent with
the needs of image processing and remote sensing applications.

Logic functionality of FPGAs with DSP resource and embedded processors can be
customized to perform exactly the desired operation. This makes the FPGA a very
good candidate for image and signal processing applications.

Most space systems have a need for reconfigurability for different reasons, such
as the need for physical upgrade or repair of the unmanned spacecraft devices. This
problem can be resolved by using RC. RC technology allows new hardware circuits
to be uploaded via a radio link. This also allows us to change the system func-
tionality according to changing mission requirements. Most reconfigurable devices
and systems contain SRAM-programmable memory to allow logic and interconnect
reconfigurations in the field.

During operation, the systems are physically remote from their operators, and all
control of the spacecraft and new FPGA configurations can be transmitted over a
wireless radio link. For example, the Mars Rover mission used a Xilinx FPGA that
had not been completely designed at the time of launch. The FPGA configuration was
uploaded to the spacecraft two months after the launch [11].

Reconfigurable computers have been widely used for accelerating low-level image
processing algorithms. These algorithms are typically applied close to the raw sensor
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data and are characterized by large data volume. The fine-grained parallelism found
in the FPGA devices is well-matched to the high sample rates and distributed compu-
tation often required of signal processing applications in areas such as image, audio,
and speech processing.

15.4 Radiation-Hardened FPGAs

Space-based systems must operate in an environment in which radiation effects have
an adverse impact on integrated circuit operation. Ionizing radiation can cause soft-
errors in the static cells used to hold the configuration data. This will affect the circuit
functionality and can cause system failure. This requires special FPGAs that provide
on-chip configuration error-detection and/or correction circuitry.

Radiation-hardened FPGAs are in great demand for military and space applications
to reduce cost and cycle time. Actel Corp. has been producing radiation-tolerant anti-
fuse FPGAs for several years for high-reliability space-flight systems. Actel FPGAs
have been onboard more than 100 launches. Xilinx FPGAs have been used in more
than 50 missions [11].

15.5 Case Studies of Remote Sensing Applications

15.5.1 Wavelet-Based Dimension Reduction of Hyperspectral Imagery

Hyperspectral imagery, by definition, provides valuable remote sensing observations
at hundreds of frequency bands. Conventional image classification (interpretation)
methods may not be used without dimension reduction preprocessing. Dimension
reduction is the transformation that brings data from a high order spectral dimen-
sion to a low order spectral dimension. Dimension reduction has become a signif-
icant step for onboard preprocessing of hyperspectral imagery, e.g., image inter-
pretation/classification. In remote sensing, one of the most widely used dimension
reduction techniques is the Principal Component Analysis (PCA). PCA, by definition,
computes orthogonal projections, which results in time-consuming computations, in-
efficient use of the memory hierarchy, and, finally, large interprocessor communica-
tion overhead. For these reasons, the novel Automatic Wavelet Dimension Reduction
technique has been proven to yield better or comparable classification accuracy, while
achieving substantial computational savings [12]. However, the large hyperspectral
data volumes remain to present a challenge for traditional processing techniques even
with the wavelet-based method. Therefore, there is always a pressing need for new,
efficient, and powerful processing capabilities for the implementation of dimension
reduction algorithms within the domain of hyperspectral imagery processing.
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Figure 15.6 Automatic wavelet spectral dimension reduction algorithm.

The general description of the automatic wavelet dimension reduction algorithm
is shown in Figure 15.6.

The correlation function between the original spectral signature (x), i.e., the original
image, and its reconstructed approximation (y), which results from applying the
discrete wavelet transform (DWT) and inverse discrete wavelet transform (IDWT),
is defined by the following expression, in which N represents the original spectral
dimension of the hyperspectral image:

ρ(x, y) =
∑N

i=1 xi yi − 1
N

∑N
i=1 xi

∑N
i=1 yi√(∑N

i=1 x2
i − 1

N

(∑N
i=1

)2
) (∑N

i=1 y2
i − 1

N

(∑N
i=1 yi

)2
) (15.1)

Correlation is applied as a quantitative indicator, which measures the similarity
between the original spectral signature and the reconstructed spectral approximation.
The automatic wavelet spectral reduction algorithm is developed using this correlation
measure and a user-specified threshold (Th).

Figure 15.7 shows the top hierarchical level of an architecture implementation [13].
The algorithm parallelism has been equally distributed along the pipelined architec-
ture, which, in contrast to the sequential implementations on traditional computers,
will expectedly yield significant speedup gains in performance.
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Figure 15.7 Top hierarchical architecture of the automatic wavelet dimension
reduction algorithm.

As can be seen in Figure 15.8, the DWT IDWT module, which performs both
the Discrete Wavelet Transform (DWT) and the Inverse Discrete Wavelet Transform
(IDWT) functions, produces the decomposition spectrum, i.e., L1− L5, as well as the
reconstruction spectrum, i.e., Y 1−Y 5, respectively. The filtering (L , L ′) and down/up
sampling operations are performed internally with full precision fixed-point signed
(two’s complement) data types. Truncation was used for quantization and saturated
arithmetic was used for overflow handling. The data were externally interfaced into
and out of this component using an 8-bit precision unsigned data type.

Figure 15.9 shows the correlator module; refer to equation 15.1. The division and the
square-root operations have been avoided when evaluating the function. The threshold
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(TH) has been interpreted with a 16-bit precision unsigned data type. The dimension
of the hyperspectral image (N) has been interpreted with an 8-bit precision unsigned
type, thus accommodating for the maximum possible number of hyperspectral bands,
typically 220–240 bands.

Figure 15.10 shows the speedup of the SRC-6 implementation compared to a
1.8GHz Intel Xeon processor and it is crucial to note in Figure 15.10 that, because of
the sequential manner by which the algorithm executes on traditional microprocessors,
the execution time is proportional to the number of decomposition levels. In contrast
to this, the corresponding time on SRC-6 is constant due to the fact that the algorithm
has been fully pipelined.

15.5.2 Cloud Detection

The presence of cloud contamination can hinder the use of satellite data, and this re-
quires a cloud detection process to mask out cloudy pixels from further processing. The
Landsat 7 ETM+ (Enhanced Thematic Mapper) ACCA (Automatic Cloud Cover As-
sessment) algorithm is a compromise between the simplicity of earlier Landsat algo-
rithms, e.g., ACCA for Landsat 4 and 5, and the complexity of later approaches such
as the MODIS (Moderate Resolution Imaging Spectroradiometer) cloud mask [14].

The theory of Landsat 7 ETM+ ACCA algorithm is based on the observation that
clouds are highly reflective and cold. The high reflectivity can be detected in the
visible, near-, and mid-IR bands. The thermal properties of clouds can be detected in
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Figure 15.10 Speedup of wavelet-based hyperspectral dimension reduction
algorithm.

the thermal IR band. The Landsat 7 ETM+ ACCA algorithm recognizes clouds by
analyzing the scene twice.

The goal of Pass-One is to develop a reliable cloud signature for use in Pass-
Two where the remaining clouds are identified. Omission errors, however, are ex-
pected. These errors create algorithm failure and must be minimized. Three cate-
gories result from Pass-One: clouds, non-clouds, and an ambiguous group that is
revisited in Pass-Two. Williams et al. [15, 16] have used band mapping techniques to
implement Landsat-based algorithms on MODIS data. The generalized and modified
classification rules for Pass-One are shown in Figure 15.11.

Pass-Two resolves the detection ambiguity that resulted from Pass-One. Thermal
properties of clouds identified during Pass-One are characterized and used to identify
remaining cloud pixels. Band 6 statistical moments (mean, standard deviation, distri-
bution skewness, kurtosis) are computed and new adaptive thresholds are determined
accordingly. The 95th percentile, i.e., the smallest number that is greater than 95%
of the numbers in the given set of pixels, becomes the new thermal threshold for
Pass-Two.

After the two ACCA passes, a filter is applied to the cloud mask to fill in cloud
holes. This filtering operation works by examining each non-cloud pixel in the mask.
If 5 out of the 8 neighbors are clouds, then the pixel is reclassified as cloud. Cloud
cover results when both Pass-One and Pass-Two are compared. Extreme differences
are indicative of cloud signature corruption. When this occurs, Pass-Two results are
ignored and all results are taken from Pass-One.

15.5.2.1 ACCA Hardware Architecture

The ACCA algorithm has been implemented targeting both conventional micro-
processor (P) platforms and reconfigurable computing (RC) platforms. The μP
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Classification Rule
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Desert

NotCloud

Ambiguous

ColdCloud

WarmCloud

Notes:
AThe Band 4 brightness test, in the snow test, was added after observations that the NDSI

  (Normalized Difference Snow Index) algorithm applied to MODIS data incorrectly

  labeled many cloud pixels as snow.

BThe desert detection threshold was lowered to 0.83, from the original ACCA value

  of 1.0, after it was observed that many cloud pixels were incorrectly classified as desert.

  The value of 0.83 was determined experimentally.  

NSDI = B2 – B5

B4

(B3 < 0.08) OR (B6 > 300) OR (Snow)
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Figure 15.11 Generalized classification rules for Pass-One.

implementation has been performed using the C++ and MATLAB programs. The
RC implementations have been performed using two designs, namely, full-precision
fixed-point arithmetic and floating-point arithmetic.

Figure 15.12 shows the main functional/architectural units of the ACCA algo-
rithm. As previously described, the ACCA algorithm handles the cloud population
in each scene uniquely by examining the image data twice after a normalization

Mask2

Mask1

Pass Two

Pass OneNormalize

band2

band3

band4

band5

band6 B6

B5

B4

B3

B2

Figure 15.12 Top-level architecture of the ACCA algorithm.



Remote Sensing and High-Performance Reconfigurable Computing Systems 371

B5

B4

B3

ρi = βi × bandi + αi ,
i = 2, 3, 4, 5, 6

Bi = ρi , i = 2, 3, 4, 5

ρ
6

C1

C2 +1log

B6 =

B2band2

band3

band4

band5

band6

ρ2

ρ3

ρ4

ρ5

α6

α5

α4

α3

α2

β6

β5

β4

β3

β2

MULT

MULT

MULT

MULT

MULT

ADD

ADD

ADD

ADD

ADD

B6

c2/ρ
6

ρ6

c2 c1

DIVDIV LOGADD

1

Figure 15.13 ACCA normalization module architecture: exact normalization
operations.

step is performed on the raw data to compensate for temporal data characteris-
tics. The first pass captures clouds using eight different filters. The goal of Pass-
One is to develop a reliable cloud signature for Pass-Two. Pass-Two resolves the
detection ambiguity that resulted from Pass-One where thermal properties of clouds
identified during Pass-One are characterized and used to identify remaining cloud
pixels.

15.5.2.2 Normalization module

ETM+ bands 2–5 are reflectance bands, while band 6 is a thermal band. The reflectance
bands are normalized to correct for illumination (solar zenith) angle, yielding an es-
timated reflectance value. The thermal band is calibrated to an equivalent blackbody
Brightness Temperature (BT). This normalization for the reflectance bands is a linear
operation while it is non-linear for the thermal band; see Figure 15.13. In the onboard
processing system, these operations are performed by the calibration stage [15]. Due
to the high cost in terms of hardware resources required, a piecewise-linear approx-
imation is used to implement the non-linear normalization function for the thermal
band; see Figure 15.14.

15.5.2.3 Pass-One Module

The first pass of the ACCA algorithm is a cascading set of eight threshold-based filters.
These filters are designed to classify each pixel into one of four classes: ColdCloud,
WarmCloud, NotCloud, and Ambiguous. Pixels labeled Ambiguous are reprocessed
in the second pass as previously discussed. Many of the tests in Pass-One are threshold
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Figure 15.14 ACCA normalization module architecture: approximated normaliza-
tion operations.

tests of ratio values, such as the snow test. It was more efficient, in terms of the
required resources, to multiply one value by the threshold and compare it with the
other value, instead of performing the division and then comparing it against the
threshold. Figure 15.15 shows the equivalent hardware architecture of Pass-One.

The constraints to the design were the processing speed, as measured by throughput,
and the hardware resources required for the design. The first constraint is approached
through full-pipelining and superscaling of the design. The second constraint was
approached through approximating the non-linear normalization step as mentioned
earlier. Moreover, because many of the tests in Pass-One are threshold tests of ratio
values such as the snow test (see Table 15.1), it was more efficient, in terms of the re-
quired resources, to multiply one value by the threshold and compare it with the other
value, instead of performing the division and then comparing it against the threshold;
see Figure 15.15.

15.5.2.4 Detection Accuracy

The criterion that defines the detection accuracy is based on the absolute error be-
tween the detected cloud mask and a reference mask produced by the software,
C++/MATLAB, version of the ACCA algorithm. In addition, the goal of achieving
high detection accuracy has been approached by minimizing the quantization errors
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Figure 15.15 ACCA Pass-One architecture.

through full-precision fixed-point as well as floating-point arithmetic hardware im-
plementations. Furthermore, saturated arithmetic has also been utilized in order to
avoid overflow errors.

15.5.2.5 Experimental Results

The ACCA algorithm adapted for Landsat 7 ETM+ data has been implemented in
both C++ and MATLAB, and Pass-One has been implemented and synthesized for
the Xilinx XC2V6000 FPGA on SRC-6.

Figure 15.16 shows the image bands for a view taken for the city of Boston by
Landsat 7 ETM+. Figure 15.16 also shows the reference mask produced by the
software, C++/MATLAB, version of the ACCA algorithm as well as both hardware
masks, i.e., fixed-point and floating-point. The results were obtained from a 2.8GHz
Intel Xeon processor and from SRC-6. As shown in Figure 15.17, the linearization of
the normalization step of the algorithm has introduced an error equal to 0.1028%. The
hardware floating-point implementation has shown identical behavior to the software
version of the algorithm. Figure 15.17 also shows that the hardware full-precision
(23-bit) fixed-point version has improved the error due to quantization effects from
0.2676% to 0.1028%, which made it identical to the software/reference version.
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Figure 15.16 Detection accuracy (based on the absolute error): image bands and
cloud masks (software/reference mask, hardware masks).
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Figure 15.17 Detection accuracy (based on the absolute error): approximate nor-
malization and quantization errors.
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Figure 15.18 ACCA hardware-to-software performance.

The design was developed in VHDL, synthesized, placed and routed, and occupied
approximately 7% of the available logic resources on the FPGA chip, Xilinx Virtex
II-6000. This enabled the instantiation of eight concurrent processing engines of the
design in the same chip, which increased the performance to eightfold of what was
expected.

The maximum operational clock speed of the design is 100MHz, which resulted in
4000 Megapixels/sec (5 inputs × 8 engines × 100MHz) as the data input/consumption
rate. Furthermore, the data output/production rate was 800 Megapixels/sec (1 output ×
8 engines × 100MHz). The hardware implementations provided a higher performance
(28 times faster) compared to the 2.8GHz Xeon implementation; see Figure 15.18.
The superiority of RCs over traditional platforms for cloud detection is demonstrated
through the performance plots shown in Figure 15.18.

15.6 Summary and Observations

Reconfigurable computing technology using SRAM-based FPGAs seems very
promising technology to be used to implement image processing applications for re-
mote sensing. Reconfigurable computing technology offers advantages such as high
performance, low cost, and low power. In terms of flexibility, RC offers the ability
to upgrade or repair spacecraft devices and/or change the system functionality at any
time. FPGA chips are subject to some expected problems in space due to the high
level of ionizing radiation to which these devices are exposed. This problem can be
resolved by using radiation-hardened FPGAs.
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The constrained energy minimization (CEM) has been widely used for hyperspectral
detection and classification. The feasibility of implementing the CEM as a real-time
processing algorithm in systolic arrays has also been demonstrated. The main chal-
lenge of realizing the CEM in hardware architecture is the computation of the inverse
of the data correlation matrix performed in the CEM, which requires a complete set
of data samples. In order to cope with this problem, the data correlation matrix must
be calculated in a causal manner that only needs data samples up to the sample at the
time it is processed. This chapter presents a Field Programmable Gate Arrays (FPGA)
design of such a causal CEM. The main feature of the proposed FPGA design is to
use the Coordinate Rotation Digital Computer (CORDIC) algorithm, which can con-
vert a Givens rotation of a vector to a set of shift-add operations. As a result, the
CORDIC algorithm can be easily implemented in hardware architectures, and there-
fore in FPGA. Since the computation of the inverse of the data correlation matrix
involves a series of Givens rotations, the utility of the CORDIC algorithm allows
the causal CEM to perform real-time processing in FPGA. In this chapter, an FPGA

379
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implementation of the causal CEM will be studied and its detailed architecture will
be also described.

16.1 Introduction

The importance of real-time processing has been recently realized and recognized in
many applications. In some applications, e.g., on-board spacecraft data processing
system, it is very useful to have high levels of processing throughput. Specially, as
the data rate generated by spacecraft instruments is increasing, onboard science data
processing has been largely absent from remote sensing missions. Many advantages
can result from real-time processing. One is the detection of moving targets. This
is critical and crucial in battlefields when moving targets such as tanks or missile
launching vehicles pose real threats to ground troops. Real-time data processing
provides timely intelligence information that can help to reduce causality. Another
is onboard data processing. For space-borne satellites, real-time data processing can
significantly reduce mass storage of data volume. A third advantage is chip design.
It can be implemented in parallel and reduce computation load. Furthermore, it can
also reduce payload in aircrafts and satellites. Over the past years, many subpixel
detection and mixed pixel algorithms have been developed and shown to be very
versatile. However, their applicability to real-time processing problems is generally
restricted by the very complex computational workloads.

In this chapter, we explore the feasibility of the Field Programmable Gate Arrays
(FPGA) design for real-time implementation of a hyperspectral detection and clas-
sification algorithm, called constrained energy minimization (CEM) [1], which has
shown promise in hyperspectral data exploitation. The issue of real-time processing
for CEM was also studied in [2], where its systolic array implementation was devel-
oped. In recent years, rapid advances in VLSI technology have had a large impact on
modern digital signal processing. Over the past thirty years, we have witnessed that
the number of transistors per chip has doubled about once a year. Therefore, VLSI
design of complex algorithms becomes more and more feasible. The major difficulty
with implementing these algorithms in real time is the computation of the inverse
of a matrix. Systolic arrays provide a possibility, but they require a series of Givens
rotations to decompose a matrix into triangular matrices that can be implemented in
real time. Unfortunately, such Givens rotations cannot be realized in hardware. In
order to resolve this issue, the Givens rotations must be performed by operations such
as adds, ORs, XORs, and shifts that can be realized in hardware architectures. In
order to do so, we make use of the Coordinate Rotation Digital Computer (CORDIC)
algorithm developed by Volder [3], which allows us to convert a Givens rotation to
a series of shifts-adds operations. Using systolic arrays architecture in conjunction
with the CORDIC algorithm, we can implement the computation of a matrix inverse
in a set of shifts-adds operations. As a result, it makes the FPGA design of CEM
possible. This chapter presents the detailed FPGA design layout for CEM.
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16.2 Constrained Energy Minimization (CEM)

Assume that a remotely sensed image is a collection of image pixels denoted by
{r1, r2, · · · , rN }, where ri = (ri1, ri2, · · · , ri L )T for 1 ≤ i ≤ N is an L-dimensional
pixel vector, N is the total number of pixels in the image, and L is the total number
of spectral channels. Suppose that d = (d1, · · · , dL )T is the desired target signature
of interest in the image. The goal is to design a finite impulse response (FIR) linear
filter specified by L filter coefficients {w1, w2, · · · , wL}, denoted by an L-dimensional
vector w = (w1, · · · , wL )T that can be used to detect the signature d without knowing
the image background. If we assume that yi is the output of the designed FIR filter
resulting from the input ri , then yi can be expressed by

yi =
L∑

l=1

wlril = rT
i w = wT ri (16.1)

In order to detect the desired target signature d using the filter output yi , the FIR
filter must be constrained by the following equation:

dT w =
L∑

l=1

dlwl = 1 (16.2)

so that the d can pass through the filter while the output energies resulting from other
signatures will be minimized. This problem is a well-known linearly constrained
adaptive beamforming problem, called minimum variance distortionless response
(MVDR), which can be cast as follows:

min
w

{wT RL×Lw} subject to the constraint: dT w = 1 (16.3)

where RL×L = (1/N )

[∑N
i=1 ri rT

i

]
is the autocorrelation sample matrix of the image

and

1

N

[ N∑
i=1

y2
i

]
= 1

N

[ N∑
i=1

(rT
i w)T (rT

i w)

]
= wT

(
1

N

[ N∑
i=1

ri rT
i

])
w = wT RL×Lw

(16.4)

The solution to Eq. 16.4 can be obtained by [1]:

w∗ = R−1
L×Ld

dT R−1
L×Ld

(16.5)
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16.3 Real-Time Implementation of CEM

One of the significant advantages of the CEM is that the correlation matrix RL×L

in the optimal weights specified by Eq. 16.5 can be decomposed into a product of
a unitary matrix Q and an upper triangular matrix R by either the Givens rotations
or the Householder transform. Such a decomposition is commonly referred to as
QR-decomposition. Another advantage is that the CEM can be implemented in real
time where the correlation matrix can be carried out either line-by-line or pixel-
by-pixel from left to right and top to bottom. For illustrative purpose, we assume
that the correlation matrix is performed line-by-line and at each line t a data matrix
Xt = [rt1, rt2, · · · , rt N ] is formed up to this particular line. In this case, the RL×L in
Eq. 16.3 is replaced by the data autocorrelation matrix of line t in the image, denoted
by

∑
t :

∑
t

= 1

N

[ N∑
i=1

rti rT
ti

]
= 1

N

[
Xt XT

t

]
(16.6)

With QR-decomposition, Xt can be expressed by

Xr = Qt Rt (16.7)

Here, Qt is a unitary matrix with Q−1
t = QT

t and Rt = and R = [ Rupper
t

0
]

is not
necessarily of full rank, where 0 is a zero vector and

Rupper
t =

⎡⎢⎢⎢⎢⎣
∗ ∗ · · · ∗
0 ∗ · · · ∗
...

. . .
. . .

...

0 · · · 0 ∗

⎤⎥⎥⎥⎥⎦ (16.8)

is an upper triangular matrix, and ∗ in Rupper
t is a nonzero element. From Eq. 16.6,

the inverse of
∑

t can be computed as∑
t

= N (XXT ) = N
{

(Rupper
t )−1[(Rupper

t )T ]−1
}

(16.9)

where the unitary matrix Qt is canceled out in Eq. 16.6 because Q−1
t = QT

t . Substi-
tuting in Eq. 16.9 for R−1

L×L yields

w∗ = {
(Rupper

t )−1[(Rupper
t )T ]−1

} · d(dT
{

(Rupper
t )−1[(Rupper

t )T ]−1
}

d)−1 (16.10)

Since Rupper
t is an upper triangular matrix, so is (Rupper

t )−1. Therefore, Eq. 16.10
does not require computation of R−1

L×L . As a result, it can be implemented in real-time
processing. In this chapter, a Givens rotation is used to perform QR-decomposition.
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Figure 16.1 Systolic array for QR-decomposition.

16.3.1 Method 1: CEM Implementation

In Method 1, we decompose Eq. 16.5 into several components and each component
is implemented by a separated hardware module:

w∗ = R−1
L×Ld

dT R−1
L×Ld

= (XXT )−1d
dT (XXT )−1d

= (Rupper
t )−1[(Rupper

t )T ]−1d
dT (Rupper

t )−1[(Rupper
t )T ]−1]d

(16.11)

To implement Eq. 16.11, five modules are required:

� Array of CORDIC circuits shown in Figure 16.1, where the pixel stream is fed
into the module and the upper triangular matrix Rupper

t is updated in realtime.� Apply backsubstitution to obtain the inverse of Rupper
t , called invR.� Apply distributed arithmetic in order to calculate c = [(Rupper

t )T ]−1d =
invRT ∗ d.� Compute w = invRT ∗ c.� The filter output energy can be obtained by applying an FIR filter to the current
input pixel streams.

The detailed implementation for each of the five modules is described as follows:

� Generation of an upper triangular matrix. A set of CORDIC circuits is applied
to perform a Givens rotation, as shown in Figure 16.1. For demonstrative pur-
pose, let us assume L = 3. At first, two pixel streams (row 1 and row 2) are
fed into the CORDIC circuit, and as a result, the first zero, which will occupy
the r21 position, is introduced by a Givens rotation. The first pair (r11, r12) is
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the leading pair, it decides the angle need to be rotated, and the other pairs are
followers that will be rotated by the same angle accordingly. Then, the second
zero, which will occupy the r31 position, is introduced by the second CORDIC
circuit that operates on rows 1 and 2. The third zero, which will occupy the
r32 position, is introduced by a CORDIC circuit that operates on rows 2 and 3.
Finally, the output becomes an upper triangular matrix.� Backsubstitution. Backsubstitution is applied to obtain the inverse of an upper
triangular matrix Rupper

t , (Rupper
t )−1. For an illustrative purpose, we assume

that the upper triangular matrix is Rupper
t =

⎡⎢⎣ r̂11 r̂12 r̂13

0 r̂22 r̂13

0 0 r̂13

⎤⎥⎦. Its inverse is

also an upper triangular matrix. If we let

(Rupper
t )−1 =

⎡⎢⎣ r̂11 r̂12 r̂13

0 r̂22 r̂13

0 0 r̂13

⎤⎥⎦ = [a1a2a3] (16.12)

then

Rupper
t [a1a2a3] = I =

⎡⎢⎣ 1 0 0

0 1 0

0 0 1

⎤⎥⎦ = [b1b2b3] (16.13)

and it can be calculated via

Rupper
t ak = bk (16.14)

where the upper triangular matrix Rupper
t and the vector bk are known and the

vector ak needs to be computed. Using Eq. 16.14, the backsubstitution can be
described by the following recursive equation:

akj = bkj − ∑n
j=i+1 ri j ak j

rii
(16.15)

with internal cells performing the summation given by

n∑
j=i+1

ri j ak j (16.16)

and boundary cells completing the calculation. The architecture of the backsub-
stitution array is shown in Figure 16.2, and the implementation of the boundary
cell and internal cell is shown in Figure 16.3.
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Figure 16.2 Systolic array for backsubstitution.
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Figure 16.3 Boundary cell (left) and internal cell (right).
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� Distributed arithmetic architecture. In this module, e.g., let c = (c1, · · · , cL )T

and invRT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v11 0 0 · · · 0

v12 v22 0 · · · 0

v13 v23 v33 · · · 0
...

...
...

. . .
...

v1L v2L v3L · · · vL L

⎤⎥⎥⎥⎥⎥⎥⎥⎦
; then c = invRT ∗ d can be

represented as the inner product of two vectors as follows:

ct =
L∑

l=1

vli dl (16.17)

Because the desired signature dk is known a priori, the term vki dk is simply a
multiplication with a constant. In this case, a distributed arithmetic (DA) widely
used in FPGA technology can be used to implement this module.

Assume that a B-bit system is used. The variable vli can be represented by

vli =
B−1∑
b=0

v(b)2b with v(b) ∈ [0, 1] (16.18)

where v(b) denotes the bth bit of vli . Therefore, the inner product in 16.17 can
be represented as

cl =
L∑

l=1

dl

B−1∑
b=0

(v(b)2b) (16.19)

Redistributing the order of summation results in

cl =
B−1∑
b=0

2b
L∑

l=1

(dlvb(l)) =
B−1∑
b=0

2b
L∑

l=1

f (dl , vb(l)) (16.20)

Implementation of the function f (dl , vb(l)) in 16.20 can be realized by a look-up
table (LUT). That is, an LUT is preprogrammed to accept an L-bit input vector
vb = (vb(0), vb(1), · · · , vb(L − 1))T and output f (dl , vb(l)). The individual
mapping f (dl , vb(l)) is weighted by an appropriate power-of-two factor and
accumulated. The accumulation can be efficiently implemented using a shift-
adder as shown in Figure 16.4. After L look-up cycles, the inner product ci is
computed.� Weight generation. The inverse of Rupper

t , invR, is an upper triangular matrix
and it can be represented as

invRupper
t =

⎡⎢⎢⎢⎢⎣
v11 v12 · · · v1L

v21 v22 · · · v2L

...
...

. . .
...

vL1 vL2 · · · vL L

⎤⎥⎥⎥⎥⎦ (16.21)
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Figure 16.4 Shift-adder DA architecture.

where vi j = 0 if i > j . The purpose of this module is to compute w =
invRupper

t ∗ c.
Suppose w = (w1, w2, · · · , wL )T and c = (c1, c2, · · · , cL )T . The kth ele-

ment of w can be obtained by

wl =
L∑

m=1

cmvlm (16.22)

with its computation circuit given in Figure 16.5.� FIR filter. Figure 16.6 delineates an FIR to produce estimated abundance
fractions.

vkL

vk3

wk+

•
•
•

•
•
•

cL

c3

vk2

c2

vk1

c1

Figure 16.5 Computation of ck .
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Figure 16.6 FIR filter for abundance estimation.

16.3.2 Method 2: CEM Implementation

In Method 2, the correlation matrix is calculated before QR-decomposition, as shown
in Figure 16.6. Since dR−1

L×Ld in Eq. 16.5 is a constant, R−1
L×Ld represents the relative

strength of the detection power. Let w = R−1
L×Ld, i.e., RL×Lw = d, where R−1

L×Ld can
be implemented by a CORDIC module and followed by a backsubstitution module.
As a result, four modules are required to implement a modified CEM detector:

� Auto-correlator.� Apply CORDIC circuits to triangularize [R|d].� Apply backsubstitution to obtain w.� The filter output energy δCEM(r) = wT r can be obtained by applying an FIR
filter to the current input pixel streams.� Detailed implementation the for each of are four modules described as follows:� Auto-correlator. This module generates the correlation matrix RL×L (i) with
RL×L (i) = RL×L (i − 1) + ri rT

i and the update process is pixel-by-pixel. In
other words, the correlation matrix is updated every time a new pixel arrives.
For illustrative purposes, let us assume L = 3; then the new correlation matrix
can be obtained by⎡⎢⎣ R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤⎥⎦ (i) =

⎡⎢⎣ R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤⎥⎦ (i − 1)

+

⎡⎢⎣ ri1

ri2

ri3

⎤⎥⎦ [ri1 ri2 ri3] (16.23)
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Figure 16.7 Block diagram of the auto-correlator.

The implementation of Eq. 16.23 is shown in Figure 16.7.� QR-decomposition of correlation matrix by CORDIC circuit. The purpose
of this module is to triangularize the matrix [R|d] , i.e., to convert the

matrix

⎡⎢⎣ R11 R12 R13|d1

R21 R22 R23|d2

R31 R32 R33|d3

⎤⎥⎦ to an upper triangular matrix given by

⎡⎣ R̂11 R̂12 R̂13|d̂1

0 R̂22 R̂23|d̂2

0 0 R̂33|d̂3

⎤⎦ by a Givens rotation. Similar to Method 1, we im-

plement the module by a set of CORDIC circuits. The difference is that we
fed the pixel stream directly to the circuit for Method 1, while in this case
we feed both the elements in the correlation matrix and the signatures of the
desired target; for example, the first data stream feeding into the CORDIC cir-
cuit is R11 first, followed by R12, and then R13, the last one is d1, as depicted
in Figure 16.8.

As soon as the first CORDIC in the chain has been fed by all the data it
needs for row 1, it is free to accept and process data for the new row. The
second CORDIC can begin its work on row 2 of the triangular matrix as soon
as the first CORDIC has finished its work on the second element pair. The third
CORDIC can begin its work as soon as the second CORDIC has finished its
work, and so on.
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Figure 16.8 QR-decomposition by CORDIC circuit.

� Backsubstitution. Backsubstitution is applied to obtain the CEM filter coeffi-

cients w with w = RL×Ld = R̂
−1
L×L d̂ , where R̂L×L is an upper triangular matrix.

For an illustrative purpose, we assume that R̂L×L =

⎡⎢⎣ r̂11 r̂12 r̂13

0 r̂22 r̂23

0 0 r̂33

⎤⎥⎦. If we

let the weight be w = (w1, w2, w3)T , it can be calculated via

R̂L×Lw = d (16.24)

where the upper triangular matrix R̂L×L and the vector d are known and the
vector w needs to be computed. Using Eq. 16.24, the backsubstitution can be
described by the following recursive equation:

wi = (d̂i − ∑l
j=i+1 r̂i j − wk

ri j
(16.25)

with internal cells performing the summation given by

n∑
j=i+1

rl j al j (16.26)

and boundary cells completing the calculation. The architecture of the back-
substitution array is shown in Figure 16.9, and the boundary cell and internal
cell are depicted in Figure 16.10.
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Figure 16.9 Systolic array for backsubstitution.
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Figure 16.10 Boundary cell (left) and internal cell (right) implementations.



392 High-Performance Computing in Remote Sensing

� FIR filter. In analogy with Method 1, the FIR to produce estimated abundance
fractions can be also delineated by Figure 16.6.

16.4 Simulation Results

In this section, we present simulation results using the architecture used for Method
1. Here we use a Givens rotation to simulate our design. The code is written in C
and uses the floating-point operation. As shown in Figure 16.11, the output of the
CORDIC circuit is updated in real time, i.e., the upper triangular matrix receives more
information as a new line is fed to the circuit.

Figure 16.11(a)–(h) are the results after the first 25, 50, 75, 100, 175, and 200 lines
of pixels streams are fed into the CORDIC circuits. In the mean-time, the output
of the weight-generated circuit also progressively updates its weight, as depicted in
Figure 16.12. Additionally, the estimates of the FIR filter coefficients become more
accurate and approximately approach the desired FIR coefficients as more pixels are
fed to the circuit. As demonstrated in Figure 16.12, the weights generated after 100
lines are very close to the ones generated by using the complete set of pixel streams.

Finally, Figure 16.13 shows real-time detection results from the desired FIR filter,
where Figure 16.13(a–h) are the detection results of the first 25 lines, the first 50 lines,
and so on, until all the 200 lines are completed.

(a) 25

(e) 125 (f ) 150 (g) 175 (h) 200

(b) 50 (c) 75 (d) 100

Figure 16.11 Real-time updated triangular matrix via CORDIC circuit.
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Figure 16.12 Real-time updated weights.
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(a)

(e) (f ) (g) (h)

(b) (c) (d)

Figure 16.13 Real-time detection results.

16.5 Conclusions

In this chapter, the real-time implementation of the CEM is studied. Unlike the or-
thogonal subspace projection (OSP), the CEM involves the computation of the inverse
of the sample correlation matrix instead of the computation of the pseudo-inverse of
a matrix as did the OSP. In this case, the CORDIC algorithm is readily applicable.
Depending upon how the input stream is computed, two methods are suggested in
this chapter. Method 1 computes the input stream from image pixel vectors directly,
while Method 2 computes the sample correlation matrix R. As a result, five modules
are proposed. The first module is to design an array of CORDIC circuits where the
pixel stream is fed into the module and the upper triangular matrix Rupper

t is updated
in realtime. This is followed by the second module, which applies backsubstitution
to compute the inverse of Rupper

t , invR. Then Module 3 uses a distributed arithmetic
to calculate c = [(Rupper

t )T ]−1d = invRT ∗ d, where the d is the desired target sig-
nature. Next, Module 4 is developed to obtain the desired filter vector w by finding
w = invR ∗ c. Finally, Module 5 produces the results by applying an FIR filter to the
current input pixel streams. Method 2 takes an alternative approach by first computing
the auto-correlation matrix R. Four modules are proposed for this method. Module
1 is the design of an auto-correlator that calculates the sample correlation matrix R.
It is then followed by Module 2, which uses the CORDIC circuits to triangularize
[R | d]. Next, Module 3 applies the backsubstitution to obtain the desired filter vector
w. Finally, Module 4 produces the filter output energy δC E M (r) = wT r for target
detection by applying an FIR filter to the current input pixel streams. Figure 16.14
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Figure 16.14 Block diagrams of Methods 1 (left) and 2 (right) to be used for FPGA
designs of CEM.

depicts block diagrams of Methods 1 and 2 to be used for FPGA designs of the CEM,
respectively.
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Hyperspectral imaging is a new technology in remote sensing. It acquires hundreds
of images in very narrow spectral bands (normally 10nm wide) for the same area
on the Earth. Because of higher spectral resolutions and the resultant contiguous
spectral signatures, hyperspectral image data are capable of providing more accurate
identification of surface materials than multispectral data, and are particularly useful in
national defense related applications. The major challenge of hyperspectral imaging
is how to take full advantage of the plenty spectral information while efficiently
handling the data with vast volume.

In some cases, such as national disaster assessment, law enforcement activities, and
military applications, real-time data processing is inevitable to quickly process data
and provide the information for immediate response. In this chapter, we present a real-
time online processing technique using hyperspectral imagery for the purpose of target

397
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detection and discrimination. This technique is developed for our proposed algorithm,
called the constrained linear discriminant analysis (CLDA) approach. However, it is
applicable to quite a few target detection algorithms employing matched filters. The
implementation scheme is also developed for different remote sensing data formats,
such as band interleaved by pixel (BIP), band interleaved by line (BIL), and band
sequential (BSQ).

17.1 Introduction

We have developed the constrained linear discriminant analysis (CLDA) algorithm
for hyperspectral image classification [1, 2]. In CLDA, the original high-dimensional
data are projected onto a low-dimensional space as done by Fisher’s LDA, but different
classes are forced to be along different directions in this low-dimensional space. Thus
all classes are expected to be better separated and the classification is achieved simul-
taneously with the CLDA transform. The transformation matrix in CLDA maximizes
the ratio of interclass distance to intraclass distance while satisfying the constraint
that the means of different classes are aligned with different directions, which can be
constructed by using an orthogonal subspace projection (OSP) method [3] coupled
with a data whitening process. The experimental results in [1],[2] demonstrated that
the CLDA algorithm could provide more accurate classification results than other
popular methods in hyperspectral image processing, such as the OSP classifier [3]
and the constrained energy minimization (CEM) operator [4]. It is particularly useful
to detect and discriminate small man-made targets with similar spectral signatures.

Assume that there are c classes and the k-th class contains Nk patterns. Let N =
N1 + N2 + · · · Nc be the number of pixels. The j-th pattern in the k-th class, denoted
by xk

j = [xk
1 j , xk

2 j , · · · , xk
L j ]

T , is an L-dimensional pixel vector (L is the number

of spectral bands, i.e., data dimensionality). Let μk = 1
Nk

∑Nk
j=1 xk

j be the mean of
the k-th class. Define J (F) to be the ratio of the interclass distance to the intraclass
distance after a linear transformation F , which is given by

J (F) =
2

c(c−1)

∑c−1
i=1

∑c
j=i+1 ‖F(μi ) − F(μ j )‖2

1
C N

∑c
k=1[

∑Nk
j=1 ‖F(xNk

j ) − F(μk)‖2]
(17.1)

and

F(x) = (WL×c)T ; x = [w1, w2, · · · , wc]T x (17.2)

The optimal linear transformation F∗is the one that maximizes J (F) subject to
tk = F(μk) for all k, where tk = (0 · · · 01 · · · 0)T is a c × 1 unit column vector with
one in the k-th component and zeros elsewhere. F∗ can be determined by

w∗
i = μ̂i

T P⊥
Ûi

(17.3)
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where

P⊥
Ûi

= I − Ûi (Û
T
i Ûi )

−1Û
T
i (17.4)

with Ûi = [μ̂1 · · · μ̂ j · · · μ̂c] j �=i and I the identity matrix. The ‘hat’ operator specifies
the whitened data, i.e., x̂ = PT

wx, where Pw is the data whitening operator.
Let S denote the entire class signature matrix, i.e., c class means. It was proved

in [2] that the CLDA-based classifier using Eqs. (17.4)–(17.5) can be equivalently
expressed as

PT
k = [0 · · · 010 · · · 0]

(
ST

∑−1
S
)−1

ST
∑−1

(17.5)

for classifying the k-th class in S, where
∑

is the sample covariance matrix.

17.2 Real-Time Implementation

In our research, we assume that an image is acquired from left to right and from
top to bottom. Three real-time processing fashions will be discussed to fit the three
remote sensing data formats: pixel-by-pixel processing for BIP formats, line-by-line
processing for BIL formats, and band-by-band processing for BSQ formants. In the
pixel-by-pixel fashion, a pixel vector is processed right after it is received and the
analysis result is generated within an acceptable delay; in the line-by-line fashion, a
line of pixel vectors is processed after the entire line is received; in the band-by-band
fashion, a band is processed after it is received.

In order to implement the CLDA algorithm in real time, Eq. (17.6) is used. The
major advantage of using Eq. (17.6) instead of Eqs. (17.4) and (17.5) is the simplicity
of real-time implementation since the data whitening process is avoided. So the key
becomes the adaptation of

∑−1, the inverse sample covariance matrix. In other words,∑−1 at time t can be quickly calculated by updating the previous
∑−1 at t − 1 using

the data received at time t , without recalculating the
∑

and
∑−1 completely. As

a result, the intermediate data analysis result (e.g., target detection) is available in
support of decision-making even when the entire data set is not received; and when
the entire data set is received, the final data analysis result is completed (within a
reasonable delay).

17.2.1 BIP Format

This format is easy to handle because a pixel vector of size L × 1 is received contin-
uously. It fits well a spectral-analysis based algorithm, such as CLDA.
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Let the sample correlation matrix R be defined as R = 1
N

∑N
i=1 xi · xT

i , which can
be related to

∑
and sample mean μ by∑

= R − μ · μT (17.6)

Using the data matrix X, Eq. (17.7) can be written as N · ∑ = X · XT − N · μ · μT .
If

∑̃
denotes N · ∑

, R̃ denotes N · R, and μ̃ denotes N · μ̃, then∑̃
= R̃ − 1

Nt
· μ̃ · μ̃T (17.7)

Suppose that at time t we receive the pixel vector xt . The data matrix Xt including
all the pixels received up to time t is Xt = [x1, x2, · · · , xt ] with Nt pixel vectors. The
sample mean, sample correlation, and covariance matrices at time t are denoted as
μt , Rt , and

∑
t , respectively. Then Eq. (17.8) becomes∑̃

t
= R̃t − 1

Nt
· μ̃t · μ̃T

t (17.8)

The following Woodbury’s formula can be used to update
∑̃−1

t :

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (17.9)

where A and C are two positive-definite matrices, and the sizes of matrices A, B, C,
and D allow the operation (A + BCD). It should be noted that Eq. (17.10) is for the
most general case. Actually, A, B, C, and D can be reduced to vector or scalar as long
as Eq. (17.10) is applicable. Comparing Eq. (17.9) with Eq. (17.10), A = R̃t , B = μ̃t ,

C = − 1
Nt

, D = μ̃T
t ,

∑̃−1
t can be calculated using the variables at time (t − 1) as

∑̃−1

t
= R̃

−1
t + R̃

−1
t ũt (Nt − ũT

t R̃
−1
t ũt )

−1ũT
t R̃

−1
t (17.10)

The μ̃t can be updated by

μ̃t = μ̃t−1 + xt (17.11)

Since R̃t and R̃t−1 can be related as

R̃t = R̃t−1 + xt · xT
t (17.12)

R̃
−1
t in Eq. (17.12) can be updated by using the Woodbury’s formula again:

R̃
−1
t = R̃

−1
t−1 − R̃

−1
t−1xt (1 + xT

t R̃
−1
t−1xt )

−1xT
t R̃

−1
t−1 (17.13)

Note that (1+xT
t R̃

−1
t−1xt ) in Eq. (17.14) and (Nt − ũT

t R̃
−1
t ũt ) in Eq. (17.11) are scalars.

This means no matrix inversion is involved in each adaptation.
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In summary, the real-time CLDA algorithm includes the following steps:

� Use Eq. (17.14) to update the inverse sample correlation matrix R̃
−1
t at time t .� Use Eq. (17.12) to update the sample mean μt+1 at time t + 1.� Use Eq. (17.11) to update the inverse sample covariance matrix

∑̃−1
t+1 at time

t + 1.� Use Eq. (17.6) to generate the CLDA result.

17.2.2 BIL Format

If the data are in BIL format, we can simply wait for all the pixels in a line to be
received. Let M be the total number of pixels in each line. M pixel vectors can be
constructed by sorting the received data. Assume the data processing is carried out
line-by-line from left to right and top to bottom in an image, the line received at time
t forms a data matrix Yt = [xt1xt2 · · · xt M ]. Assume that the number of lines received
up to time t is Kt , then Eq. (17.10) remains almost the same as

∑̃−1

t
= R̃

−1
t−1 − R̃

−1
t−1ũt (Kt M − ũT

t R̃
−1
t ũt )

−1ũT
t R̃

−1
t (17.14)

Eq. (17.11) becomes

μ̃t = μ̃t−1 +
M∑

i=1

xti (17.15)

and Eq. (17.12) becomes

R̃
−1
t = R̃

−1
t−1 − R̃

−1
t−1Yt (IM×M + YT

t R̃
−1
t−1Yt )

−1YT
t R̃

−1
t−1 (17.16)

where IM×M is an M × M identity matrix. Note that
(

IM×M + YT
t R̃

−1
t−1Yt

)
in

Eq. (17.16) is a matrix. This means the matrix inversion is involved in each adaptation.

17.2.3 BSQ Format

If the data format is BSQ, the sample covariance matrix
∑

and its inverse
∑−1 have

to be updated in a different way, because no single completed pixel vector is available
until all of the data are received.

Let
∑

1 denote the covariance matrix when Band 1 is received, which actually is
a scalar, calculated by the average of pixel squared values in Band 1. Then

∑
1 can

be related to
∑

2 as
∑

2 =
[ ∑

1

∑
12∑

21

∑
22

]
, where

∑
22 is the average of pixel squared

values in Band 2,
∑

12 = ∑
21 is the average of the products of corresponding pixel
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values in Band 1 and 2. Therefore,
∑

t can be related to
∑

t−1 as

∑
t

=
[ ∑

t−1

∑
t−1,t∑T

t−1,t

∑
t,t

]
(17.17)

where
∑

t,t is the average of pixel squared values in Band t and
∑

t−1,t = [
∑

1,t , · · · ,∑
j,t · · · ,

∑
t−1,t ]

T is a (t −1)×1 vector with
∑

j,t being the average of the products
of corresponding pixel values in Band j and t . Equation (17.17) shows that the
dimension of

∑
is increased as more bands are received.

When
∑−1

t−1 is available, it is more cost-effective to calculate
∑−1

t by modifying∑−1
t−1 with

∑
t,t and

∑
t−1,t . The following partitioned matrix inversion formula can

be used for
∑−1 adaptation.

Let a matrix A be partitioned as A = [
A11 A12

A21 A22
]. Then its inverse matrix A−1

can be calculated as[ (
A11 − A12A−1

22 A21
)−1 − (

A11 − A12A−1
22 A21

)−1
A12A−1

22

− (
A22 − A21A−1

11 A12
)−1

A21A−1
11

(
A22 − A21A−1

22 A12
)−1

]
(17.18)

Let A11 = ∑
t−1, A22 = ∑

t,t , A12 = ∑
t−1,t , and A21 = ∑T

t−1,t . All these
elements can be generated by simple matrix multiplication. Actually, in this case, no
operation of matrix inversion is used when reaching the final

∑−1.
The intermediate result still can be generated by applying the

∑−1
t to the first t

bands. This means the spectral features in these t bands are used for target detection
and discrimination. This may help to find targets at early processing stages.

17.3 Computer Simulation

The HYDICE image scene shown in Figure 17.1 was collected in Maryland in 1995
from a flight altitude of 10,000 feet with approximately 1.5m spatial resolution in
0.4–2.5 μm spectral region. The atmospheric water bands with low signal-to-noise
ratio were removed, reducing the data dimensionality from 210 to 169. The image
scene has 128 lines and the number of pixels in each line M is 64, so the total number
of pixel vectors is 128 × 64 = 4096. This scene includes 15 panels arranged in a
15 × 3 matrix. Each element in this matrix is denoted by pi j with rows indexed by
i = 1, · · · , 5 and columns indexed by i = a, b, c. The three panels in the same row
pia, pib, pic were made from the same material of size 3m × 3m, 2m × 2m, 1m × 1m,
respectively, which could be considered as one class, pi . As shown in Figure 17.1(c),
these ten classes have very similar spectral signatures. In the computer simulation,
we simulated the three cases when data were received pixel-by-pixel, line-by-line,
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Figure 17.1 (a) A HYDICE image scene that contains 30 panels. (b) Spatial loca-
tions of 30 panels provided by ground truth. (c) Spectra from P1 to P10.
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TABLE 17.1 Classification Accuracy ND Using the CLDA
Algorithm (in Al Cases, The Number of False Alarm Pixels
NF = 0).

Panel Pure Offline Online Online Online

# Pixels Proc. Proc. (BIP) Proc. (BIL) Proc. (BSQ)

P1 3 2 2 2 2
P2 3 2 2 2 2
P3 4 3 3 3 3
P4 3 2 2 2 2
P5 6 5 6 6 6
P6 3 2 2 2 2
P7 4 3 3 3 3
P8 4 3 3 3 3
P9 4 3 3 3 3
P10 4 3 3 3 3
Total 38 28 29 29 29

and band-by-band. Then the CLDA results were compared with the result from the
off-line processing.

In order to compare with the pixel-level ground truth, the generated gray-scale
classification maps were normalized into [0,1] dynamic range and converted into
binary images using a threshold 0.5. The numbers of correctly classified pure panel
pixels ND in the different cases were counted and listed in Table 17.1. Here the number
of false alarm pixels is NF = 0 in all the cases, which means the ten panel classes
were well separated. As shown in Table 17.1, all three cases of online processing can
correctly classify 29 out of 38 panel pixels, while the offline CLDA algorithm can
correctly classify 28 out of 38 panel pixels. We can see that these performances are
comparable.

17.4 Practical Considerations

17.4.1 Algorithm Simplification Using R−1

According to Section 17.2, R−1 update only includes one step, while
∑−1 update

has three steps. The number of multiplications saved by using R−1 is 5 × L2 for each
update. Obviously, using R−1 instead of

∑−1 can also reduce the number of modules
in the chip. Then Eq. (17.6) will be changed to

PT
k = [

0 · · · 010 · · · 0
] (

ST R−1S
)−1

ST R−1 (17.19)

for classifying the k-th class in S. From the image processing point of view, the
functions of R−1 and

∑−1 in the operator are both for suppressing the undesired
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background pixels before applying the match filter ST . Based on our experience on
different hyperspectral/multispectral image scenes, using R−1 generates very close
results to using

∑−1. Detailed performance comparisons can be found in [5].

17.4.2 Algorithm Implementation with Matrix Inversion

The major difficulty in hardware implementation is the expensiveness of a matrix
inversion module, in particular, when the dimension of R or

∑
(i.e., the number

of bands L) is large. A possible way to tackle this problem is to partition a large
matrix into four smaller matrices and derive the original inverse matrix by using the
partitioned matrix inversion formula in Eq. (17.19).

17.4.3 Unsupervised Processing

The CLDA is a supervised approach, i.e., the class spectral signatures need to be
known a priori. But in practice, this information may be difficult or even impossible
to obtain, in particular, when dealing with remote sensing images. This is due to
the facts that: 1) any atmospheric, background, and environmental factors may have
an impact on the spectral signature of the same material, which makes the in-field
spectral signature of a material or object not be well correlated to the one defined in a
spectral library; 2) a hyperspectral sensor may extract many unknown signal sources
because of its very high spectral resolution, whose spectral signatures are difficult to
be pre-determined; and 3) an airborne or spaceborne hyperspectral sensor can take
images from anywhere, whose prior background information may be unknown and
difficult to obtain.

The target and background signatures in S can be generated from the image scene
directly in an unsupervised fashion [6]. In this section, we present an unsupervised
class signature generation algorithm based on constrained least squares linear unmix-
ing error and quadratic programming. After the class signatures in S are determined,
Eq. (17.6) or Eq. (17.21) can be applied directly.

Because of the relatively rough spatial resolution, it is generally assumed that the
reflectance of a pixel in a remotely sensed image is the linear mixture of reflectances
of all the materials in the area covered by this pixel. According to the linear mixture
model, a pixel vector x can be represented as

x = Sα + n (17.20)

where S = [
s1, s2, · · · , sp

]
is an L × p signature matrix with p linearly independent

endmembers (including desired targets, undesired targets, and background objects)
and si is the i-th endmember signature; α = (α1α2 · · · αp)T is a p × 1 abundance
fraction vector, where the i-th element αi represents the abundance fraction of si

present in that pixel; n is an L × 1 vector that can be interpreted as a noise term or
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model error. Abundances of all the endmembers in a pixel are related as

p∑
i=1

αi = 1, 0 ≤ αi ≤ 1, for any i (17.21)

which are referred to as sum-to-one and non-negativity constraints.
Now our task is to estimate α with Eq. (17.22) being satisfied for a pixel. It should be

noted that S is the same for all the pixels in the image scene, while α varies from pixel
to pixel. Therefore, when S is known, there are p unknown variables to be estimated
with L equations and L >> p . This means the problem is overdetermined, and no
solution exists. However, we can formulate a least squares problem to estimate the
optimal α̂ such that the estimation error defined as below is minimized:

e = ‖x − Sα̂‖2 = xT x − 2α̂T MT x + α̂T MT Mα̂ (17.22)

When the constraints in Eq. (17.22) are to be relaxed simultaneously, there is
no closed form solution. Fortunately, if S is known, this constrained optimization
problem defined by Eqs. (17.22) and (17.23) can be formulated into a typical quadratic
programming problem:

Minimize f (α) = rT r − 2rT Mα + αT MT Mα (17.23)

subject to α1 +α2 +· · ·+αp = 1 and 0 ≤ αi ≤ 1, for 1 ≤ p. Quadratic programming
(QP) refers to an optimization problem with a quadratic objective function and linear
constraints (including equality and inequality constraints). It can be solved using
nonlinear optimization techniques. But we prefer to use linear optimization based
techniques in our research since they are simpler and faster [7].

When S is unknown, endmembers can be generated using the algorithm based
on linear unmixing error [8] and quadratic programming. Initially, a pixel vector
is selected as an initial signature denoted by s0. Then it is assumed that all other
pixel vectors in the image scene are made up of s0 with 100 percent abundance.
This assumption certainly creates estimation errors. The pixel vector that has the
largest least squares error (LSE) between itself and s0 is selected as a first endmember
signature denoted by s1. Because the LSE between s0 and s1 is the largest, it can
be expected that s1 is most distinct from s0. The signature matrix S = [

s0s1
]

is
then formed to estimate the abundance fractions for s0 and s1, denoted by α̂0(x) and
α̂1(x) for pixel x, respectively, by using the QP-based constrained linear unmixing
technique in Section 17.3.1. Now the optimal constrained linear mixture of s0 and s1,
α̂0(x)s0 + α̂1(x)s1, is used to approximate the x. The LSE between r and its estimated
linear mixture α̂0(x)s0 + α̂1(x)s1 is calculated for all pixel vectors. Once again, a pixel
vector that yields the largest LSE between itself and its estimated linear mixture will
be selected to be a second endmember signature s2. As expected, the pixel that yields
the largest LSE is the most dissimilar to s0 and s1, and most likely to be an endmember
pixel yet to be found. The same procedure with S = [

s0s1s2
]

is repeated until the
resulting LSE is below a prescribed error threshold η.
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17.5 Application to Other Techniques

The real-time implementation concept of the CLDA algorithm can be applied to
several other target detection techniques. They employ the matched filter and require
the computation of R−1 or

∑−1. The difference from the CLDA algorithm is that they
can only detect the targets, but the CLDA algorithm can detect targets and discriminate
different targets from each other.

� RX algorithm [9]: The well-known RX algorithm is an anomaly detector, which
does not require any target spectral information. The original formula is wR X =
xT

∑−1 x, which was simplified as w̃R X = xT R−1x [10].� Constrained energy minimization (CEM) [4]: The CEM detector can be written
as wC E M = R−1d

dT R−1d , where d is the desired target spectral signature. To detect

if d is contained in a pixel x, we can simply apply wT
C E M x , i.e., dT R−1x

dT R−1d .� Kelly’s generalized likelihood ratio test (KGLRT) [11]: This generalized like-

lihood ratio test is given by (dT ∑−1 x)2

(dT
∑−1 d)(1+xT

∑−1 x/N )
, where N is the number of

samples used in the estimation of
∑

.� Adaptive matched filter (AMF) [12]: When the number of samples N is a very

large value, the KGLRT is reduced to a simple format: (dT ∑−1 x)2

dT
∑−1 d

. We can see

that it is close to the CEM except that the numerator has a power of two.� Adaptive coherence estimator (ACE) [13]: The estimator can be written as
(dT ∑−1 x)2

(dT
∑−1 d)(xT

∑−1 x)
. It is similar to AMF except that a term similar to the RX

algorithm is included in the denominator.

Some quantitative performance comparisons between these algorithms can be found
in [14].

17.6 Summary

In this chapter, we discussed the constrained linear discriminant analysis (CLDA)
algorithm and its real-time implementation. This is to meet the need in practical ap-
plications of remote sensing image analysis when the immediate data analysis result
is desired for real-time or near-real-time decision-making. The strategy is developed
for each data format, i.e., BIP, BIL, and BSQ. The basic concept is to real-time update
the inverse covariance matrix

∑−1 or inverse correlation matrix R−1 in the CLDA
algorithm as the data; (i.e., a pixel vector, or a line of pixel vectors, or a spectral
band) coming in, then the intermediate target detection and discrimination result are
generated for quick response, and the final product is available right after (or with a
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reasonable delay) when the entire data set is received. Several practical implementa-
tion issues are discussed. The computer simulation shows the online results are similar
to the offline results. But its performance when onboard actual platforms needs further
investigation.

Although the real-time implementation scheme is originally developed for the
CLDA algorithm, it is applicable to any detection algorithm involving

∑−1 or R−1

computation, such as RX, CEM, KGLRT, AMF, and ACE algorithms.
As a final note, we believe the developed real-time implementation scheme is more

suitable to airborne platforms, where the atmospheric correction is not critical for
relatively small monitoring fields. Due to its complex nature, onboard atmospheric
correction is almost impossible. After the real-time data calibration is completed
onboard, the developed algorithm can be used to generate the intermediate and quick
final products onboard.
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This chapter focuses on mapping hyperspectral imaging algorithms to graphics pro-
cessing units (GPU). The performance and parallel processing capabilities of these
units, coupled with their compact size and relative low cost, make them appealing
for onboard data processing. We begin by giving a short review of GPU architec-
tures. We then outline a methodology for mapping image processing algorithms to
these architectures, and illustrate the key code transformation and algorithm trade-
offs involved in this process. To make this methodology precise, we conclude with
an example in which we map a hyperspectral endmember extraction algorithm to a
modern GPU.

18.1 Introduction

Domain-specific systems built on custom designed processors have been extensively
used during the last decade in order to meet the computational demands of image
and multimedia processing. However, the difficulties that arise in adapting specific
designs to the rapid evolution of applications have hastened their decline in favor of
other architectures. Programmability is now a key requirement for versatile platform
designs to follow new generations of applications and standards.

At the other extreme of the design spectrum we find general-purpose architectures.
The increasing importance of media applications in desktop computing has promoted
the extension of their cores with multimedia enhancements, such as SIMD instruction
sets (the Intel’s MMX/SSE of the Pentium family and IBM-Motorola’s AltiVec are
well-know examples). Unfortunately, the cost of delivering instructions to the ALUs
poses a serious bottleneck in these architectures and makes them still unsuited to meet
more stringent (real-time) multimedia demands.

Graphics processing units (GPUs) seem to have taken the best from both worlds.
Initially designed as expensive application-specific units with control and commu-
nication structures that enable the effective use of many ALUs and hide latencies in
the memory accesses, they have evolved into highly parallel multipipelined proces-
sors with enough flexibility to allow a (limited) programming model. Their numbers
are impressive. Today’s fastest GPU can deliver a peak performance in the order of
360 Gflops, more than seven times the performance of the fastest x86 dual-core pro-
cessor (around 50 Gflops) [11]. Moreover, they evolve faster than more-specialized
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platforms, such as field programmable gate arrays (FPGAs) [23], since the high-
volume game market fuels their development.

Obviously, GPUs are optimized for the demands of 3D scene rendering, which
makes software development of other applications a complicated task. In fact, their
astonishing performance has captured the attention of many researchers in differ-
ent areas, who are using GPUs to speed up their own applications [1]. Most of the
research activity in general-purpose computing on GPUs (GPGPU) works towards
finding efficient methodologies and techniques to map algorithms to these archi-
tectures. Generally speaking, it involves developing new implementation strategies
following a stream programming model, in which the available data parallelism is
explicitly uncovered, so that it can be exploited by the hardware. This adaptation
presents numerous implementation challenges, and GPGPU developers must be pro-
ficient not only in the target application domain but also in parallel computing and
3D graphics programming.

The new hyperspectral image analysis techniques, which naturally integrate both
the spatial and spectral information, are excellent candidates to benefit from these
kinds of platforms. These algorithms, which treat a hyperspectral image as an image
cube made up of spatially arranged pixel vectors [18, 22, 12] (see Figure 18.1),
exhibit regular data access patterns and inherent data parallelism across both pixel
vectors (coarse-grained pixel-level parallelism) and spectral information (fine-grained
spectral-level parallelism). As a result, they map nicely to massively parallel systems
made up of commodity CPUs (e.g., Beowulf clusters) [20]. Unfortunately, these
systems are generally expensive and difficult to adapt to onboard remote sensing data
processing scenarios, in which low-weight integrated components are essential to
reduce mission payload. Conversely, the compact size and relative low cost are what
make modern GPUs appealing to onboard data processing.

The rest of this chapter is organized as follows. Section 18.2 begins with an overview
of the traditional rendering pipeline and eventually goes over the structure of modern
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Figure 18.1 A hyperspectral image as a cube made up of spatially arranged pixel
vectors.
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GPUs in detail. Section 18.3, in turn, covers the GPU programming model. First,
it introduces an abstract stream programming model that simplifies the mapping of
image processing applications to the GPU. Then it focuses on describing the essential
code transformations and algorithm trade-offs involved in this mapping process. After
this comprehensive introduction, Section 18.4 describes the Automatic Morpholog-
ical Endmember Extraction (AMEE) algorithm and its mapping to a modern GPU.
Section 18.5 evaluates the proposed GPU-based implementation from the viewpoint
of both endmember extraction accuracy (compared to other standard approaches) and
parallel performance. Section 18.6 concludes with some remarks and provides hints
at plausible future research.

18.2 Architecture of Modern GPUs

This section provides background on the architecture of modern GPUs. For this
introduction, it is useful to begin with a description of the traditional rendering
pipeline [8, 16], in order to understand the basic graphics operations that have to
be performed. Subsection 18.2.1 starts on the top of this pipeline, where data are fed
from the CPU to the GPU, and work their way down through multiple processing
stages until a pixel is finally drawn on the screen. It then shows how this logical
pipeline translates into the actual hardware of a modern GPU and describes some
specific details of the different graphics cards manufactured by the two major GPU
makers, NVIDIA and ATI/AMD. Finally, Subsection 18.2.2 outlines recent trends in
GPU design.

18.2.1 The Graphics Pipeline

Figure 18.2 shows a rough description of the traditional 3D rendering pipeline. It
consists of several stages, but the bulk of the work is performed by four of them:
vertex-processing (vertex shading), geometry, rasterization, and fragment-processing
(fragment shading). The rendering process begins with the CPU sending a stream of
vertex from a 3D polygonal mesh and a virtual camera viewpoint to the GPU, using
some graphics API commands. The final output is a 2D array of pixels to be displayed
on the screen.

In the vertex stage the 3D coordinates of each vertex from the input mesh are trans-
formed (projected) onto a 2D screen position, also applying lighting to determine their
colors. Once transformed, vertices are grouped into rendering primitives, such as tri-
angles, and scan-converted by the rasterizer into a stream of pixel fragments. These
fragments are discrete portions of the triangle surface that correspond to the pixels of
the rendered image. The vertex attributes, such as texture coordinates, are then inter-
polated across the primitive surface storing the interpolated values at each fragment.
In the fragment stage, the color of each fragment is computed. This computation
usually depends on the interpolated attributes and the information retrieved from the
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Figure 18.3 Fourth generation of GPUs block diagram. These GPUs incorporate
fully programmable vertexes and fragment processors.

graphics card memory by texture lookups.1 The colored fragments are sent to the ROP
stage,2 where Z-buffer checking ensures only visible fragments are processed further.
Those partially transparent fragments are blended with the existing frame buffer pixel.
Finally, if enabled, fragments are antialiazed to produce the ultimate colors.

Figure 18.3 shows the actual pipeline of a modern GPU. A detailed description
of this hardware is out of the scope of this book. Basically, major pipeline stages
corresponds 1-to-1 with the logical pipeline. We focus instead on two key features of
this hardware: programmability and parallelism.

� Programmability. Until only a few years ago, commercial GPUs were
implemented using a hard-wired (fixed-function) rendering pipeline. However,
most GPUs today include fully programmable vertex and fragment stages.3

The programs they execute are usually called vertex and fragment programs

1This process is usually called texture mapping.
2ROP denotes raster operations (NVIDIA’s terminology).
3The vertex stage was the first one to be programmable. Since 2002, the fragment stage is also
programmable.



Real-Time Onboard Hyperspectral Image Processing 417

(or shaders), respectively, and can be written using C-like high-level languages
such as Cg [6]. This feature is what allows for the implementation of non-
graphics applications on the GPUs.� Parallelism. The actual hardware of a modern GPU integrates hundreds of
physical pipeline stages per major processing stage to increase the through-
put as well as the GPU’s clock frequency [2]. Furthermore, replicated stages
take advantage of the inherent data parallelism of the rendering process. For
instance, the vertex and fragment processing stages include several replicated
units known as vertex and fragment processors, respectively.4 Basically, the
GPU launches a thread per incoming vertex (or per group of fragments), which
is dispatched to an idle processor. The vertex and fragment processors, in turn,
exploit multithreading to hide memory accesses, i.e., they support multiple
in-flight threads, and can execute independent shader instructions in parallel as
well. For instance, fragment processors often include vector units that operate
on 4-element vectors (Red/Gree/Blue/Alpha channels) in an SIMD fashion.

Industry observers have identified different generations of GPUs. The descrip-
tion above corresponds to the fourth generation5 [7]. For the sake of completeness,
we conclude this subsection reproducing in Figure 18.4 the block diagram of two
representative examples of that generation: NVIDIA’s G70 and ATI’s Radeon R500
families. Obviously, there are some differences in their specific implementations, both
in the overall structure and in the internals of some particular stages. For instance, in
the G70 family the interpolation units are the first stage in the pipeline of each frag-
ment processor, while in the R500 family they are arranged in a completely separate
hardware block, outside the fragment processors. A similar thing happens with the
texture access units. In the G70 family they are located inside each fragment proces-
sor, coupled to one of their vector units [16, 2]. This reduces the fragment processors
performance in case of a texture access, because the associated vector unit remains
blocked until the texture data are fetched from memory. To avoid this problem, the
R500 family places all the texture access units together in a separate block.

18.2.2 State-of-the-art GPUs: An Overview

The recently released NVIDIA G80 families have introduced important new features,
which anticipate future GPU design trends. Figure 18.5 shows the structure of the
GeForce 8800 GTX, which is the most powerful G80 implementation introduced so
far. Two features stand out over previous generations:

� Unified Pipeline. The G80’s pipeline only includes one kind of programmable
unit, which is able to execute three different kinds of shaders: vertex, geometry,

4The number of fragment processors usually exceeds the number of vertex processors, which follows from
the general assumption that there are frequently more pixels to be shaded than vertexes to be projected
5The fourth generation of GPUs dates from 2002 and begins with NVIDIA’s GeForce FX series and ATI’s
Radeon 9700 [7].
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Figure 18.5 Block diagram of the NVIDIA’s Geforce 8800 GTX.

and fragment. This design reduces the number of pipeline stages and changes
the sequential flow to be more looping oriented. Inputs are fed to the top of
the unified shader core, and outputs are written to registers and then fed back
into the top of the shader core for the next operation. This unified architecture
promises to improve the performance for those programs dominated by only
one type of shader, which would otherwise be limited by the number of specific
processors available [2].� Scalar Processors. Another important change introduced in the NVIDIA’s G80
family over previous generations is the scalar nature of the programmable units.
In previous architectures both the vertex and fragment processors had SIMD
(vector) functional units, which were able to operate in parallel on the different
components of a vertex/fragment (e.g., the RGBA channels in a fragment).
However, modern shaders tend to use a mix of vector and scalar instructions.
Scalar computations are difficult to compile and schedule efficiently on a vector
pipeline. For this reason, NVIDIA’s G80 engineers decided to incorporate only
scalar units, called Stream Processors (SPs), in NVIDIA parlance [2]. The
GeForce 8800 GTX includes 128 of these SPs driven by a high-speed clock,6

which can be dynamically assigned to any specific shader operation. Overall,
thousands of independent threads can be in flight in any given instant.

SIMD instructions can be implemented across groupings of SPs in close proximity.
Figure 18.5 highlights one of these groups with the associated Texture Filtering (TF),
Texture Addressing (TA), and Cache units. Using dedicated units for texture access
(TA) avoids the blocking problem of previous NVIDIA generations mentioned above.

6The SPs are driven by a high-speed clock (1.35 GHz), separated from the core clock (575 MHz) that
drives the rest of the chip.
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In summary, GPU makers will continue the battle for dominance in the consumer
gaming industry, producing a competitive environment with rapid innovation cycles.
New features will constantly be added to next-generation GPUs, which will keep de-
livering outstanding performance-per-dollar and performance-per-square millimeter.
Hyperspectral imaging algorithms fit relatively well with the programming environ-
ment the GPU offers, and can benefit from this competition. The following section
focuses on this programming environment.

18.3 General Purpose Computing on GPUs

For non-graphics applications, the GPU can be better thought of as a stream co-
processor that performs computations through the use of streams and kernels. A
stream is just an ordered collection of elements requiring similar processing, whereas
kernels are data-parallel functions that process input streams and produce new output
streams. For relatively simple algorithms this programming model may be easy to use,
but for more complex algorithms, organizing an application into streams and kernels
could prove difficult and require significant coding efforts. A kernel is a data-parallel
function, i.e., its outcome must not depend on the order in which output elements
are produced, which forces programmers to explicitly expose data parallelism to the
hardware.

This section illustrates how to map an algorithm to the GPU using this model. As an
illustrative example we have chosen the 2D Discrete Wavelet Transform (2D-DWT),
which has been used in the context of hyperspectral image processing for principal
component analysis [9], image fusion [15, 24], and registration [17] (among others).
Despite its simplicity, the comparison between the GPU-based implementations of the
popular Lifting (LS) and Filter-Bank (FBS) schemes of the DWT allows us to illustrate
some of the algorithmic trade-offs that have to be considered. This section begins with
the basic transformations that convert loop nests into an abstract stream programming
model. Eventually it goes over the actual mapping to the GPU using standard 3D
graphics API and describes the structure of the main program that orchestrates kernel
execution. Finally, it introduces a compact C++ GPU framework that simplifies this
mapping process, hiding the complexity of 3D graphics APIs.

18.3.1 Stream Programming Model

Our stream programming model focuses on data-parallel kernels that operate on arrays
using gather operations, i.e., operations that read from random locations in an input
array. Storing the input and output arrays as textures, this kind of kernel can be easily
mapped to the GPU using fragment programs.7 The following subsections illustrates
how to identify this kind of kernel and map them efficiently to the GPU.

7Scatter operations write into random locations of a destination array. They are also common in certain
applications, but fragment programs only support gather operations.
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18.3.1.1 Kernel Recognition

The first step in the modeling process consists in identifying a set of potential kernels.
Specifically, we want to partition the target algorithm into a set of code blocks tagged
as kernel and non-kernel blocks. A kernel block is a parallel loop nest, i.e., a loop
nest that carries no data dependences, that can be modeled as Listing 1.

Listing 1 Kernel block. DOU T and DI N denote output and input arrays, respectively.
I DX denotes index matrices for indirect array accesses

for all (i,j) do
DOU T1 [i, j] = F(i, j, DI N1 (I DX11(i, j)), ...);
DOU T2 [i, j] = F ′(i, j, DI N1 (I DX ′

11(i, j)), ...);
...

end for

The computations performed inside these loop nests define the kernels of our
stream model. The output streams are defined by the set of elements of the output
arrays DOU T that are written in the loop nest. Stream elements are arranged according
to their respective induction variables i and j . The input streams are defined by the
set of array elements read in the loop. Index arrays (I DX ) allow for indirect access to
the input arrays DI N and eventually translate into texture coordinates. A non-kernel
block is whatever other construct that cannot be modeled as Listing 1, which accounts
for non-parallel loops and other sequential parts of the application such as control
flow statements, including the control flow of kernel blocks. These non-kernel blocks
will eventually be part of the main program that orchestrates and chains the kernel
blocks to satisfy data dependences.

Certain loop transformations could be useful for uncovering parallelism and en-
hancing kernel extraction. One of these is loop distribution (also know as loop fission),
which can be used for splitting a loop nest that does not match listing 1 into smaller
loop nests that do match that pattern.

The horizontal lifting algorithm helps us to illustrate this transformation. The
conventional implementation of LS shown in Listing 2 contains loop-carried flow
dependences and cannot be run in parallel. However, we can safely transform the
loop nest in Listing 2 into Listing 3 since it preserves all the data dependences of the
original code.8 Notice that the transformed nested loops are free of loop-carried data
dependences and match our definition of a kernel block.

In general, this transformation can also be useful to restructure existing loop nests
in order to separate potentially parallel code (kernel blocks) from code that must
be sequentialized (non-kernel blocks). Nevertheless, it must be applied judiciously
since loop distribution results into finer granularity, which may deteriorate tempo-
ral locality and increase the overhead caused by kernel setup9 and synchronization:

8Loop distribution is a safe transformation when all the data dependences point forward [14].
9Every kernel launch incurs a certain fixed CPU time to set up and issue the kernel on the GPU.
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Distribution converts loop-independent and forward-carried dependences into depen-
dences between kernels, which forces kernel synchronization and reduces kernel level
parallelism. In fact, loop fusion, which performs the opposite operation, i.e., it merges
multiple loops into a single loop, may be beneficial when it creates a larger kernel
that still fits Listing 1.

Returning to our example, we are able to identify six kernels in the transformed
code, one for each loop nest. All of them read input data from two arrays and produce
one or two output streams (the first and the sixth loops produce two output streams,
whereas the others produce only one). As mentioned above, the loop-independent and
forward-carried dependences of the original LS loopnest convert into dependences
between these kernels, which forces synchronization between them to avoid race
conditions.

Obviously, more complex loop nests might require additional transformations to
uncover parallelism, such as loop interchange, scalar expansion, array renaming,
etc. [14]. Nevertheless, uncovering data parallelism is not enough to get an efficient
GPU mapping. The following subsection illustrates another transformation that deals
with specific GPU limitations.

Listing 2 Original horizontal LS loopnest. Specific boundary processing is not shown.
for i = 0 to N − 1 do

for j = 0 to (N − 1)/2 do
App[i,j] = A[i,2*j];
Det[i,j] = A[i,2*j+1];

end for
end for
{left boundary processing...}
for i = 0 to N − 1 do

for j = 0 to (N − 6)/2 − 1 do
Det[i,j+2] = Det[i,j+2] + alpha*(App[i,j+2] + App[i,j+3]);
App[i,j+2] = App[i,j+2] + beta *(Det[i,j+1] + Det[i,j+2]);
Det[i,j+1] = Det[i,j+1] + gamma*(App[i,j+1] + App[i,j+2]);
App[i,j+1] = App[i,j+1] + delta*(Det[i,j] + Det[i,j+1]);
Det[i,j] = Det[i,j]/phi;
App[i,j] = App[i,j]*phi;

end for
end for
{left boundary processing...}

18.3.1.2 Platform-Dependent Transformations

Once we have uncovered enough data parallelism and extracted the initial kernels and
streams, we have to perform some additional transformations to efficiently map the
stream model to the target GPU.
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One of those transformations is branch removal. Although some GPUs tolerate
branches, they normally reduce performance, hence eliminating conditional sen-
tences from the kernel loops previously detected that would be useful. In some cases,
removing the branch from the kernel loop body transfers the flow control to the main
program, which will select between kernels based on a condition.

Listing 3 Transformed horizontal LS loopnests. The original loop has been distributed
to increase kernel extraction. Specific boundary processing is not shown.

for i = 0 to N − 1 do
for j = 0 to (N − 1)/2 do

App[i,j] = A[i,2*j];
Det[i,j] = A[i,2*j+1];

end for
end for
{left boundary processing...}
for i = 0 to N − 1 do

for j = 0 to (N − 6)/2 − 1 do
Det[i,j+2] = Det[i,j+2] + alpha*(App[i,j+2] + App[i,j+3]);

end for
end for
for i = 0 to N − 1 do

for j = 0 to (N − 6)/2 − 1 do
App[i,j+2] = App[i,j+2] + beta *(Det[i,j+1] + Det[i,j+2]);

end for
end for
for i = 0 to N − 1 do

for j = 0 to (N − 6)/2 − 1 do
Det[i,j+1] = Det[i,j+1] + gamma*(App[i,j+1] + App[i,j+2]);

end for
end for
for i = 0 to N − 1 do

for j = 0 to (N − 6)/2 − 1 do
App[i,j+1] = App[i,j+1] + delta*(Det[i,j] + Det[i,j+1]);

end for
end for
for i = 0 to N − 1 do

for j = 0 to (N − 6)/2 − 1 do
Det[i,j] = Det[i,j]/phi;
App[i,j] = App[i,j]*phi;

end for
end for
{right boundary processing...}
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Listing 4, which sketches the FBS scheme of the DWT, illustrates a common
example, where branch removal provides significant performance gains. The second
loop (the j loop) matches Listing 1, but its body includes two branches associated
with the non-parallel inner loops (the k loops). These inner loops perform a reduction
whose outcomes are finally written on the output arrays. In this example, the inner loop
bounds are known at compile time. Therefore, they can be fully unrolled (actually this
is what NVIDIA’s Cg compiler generally does). However, removing loop branches
through unrolling is not always possible since there is a limit on the number of
instructions per kernel.

Listing 4 Original horizontal FBS loopnest. Specific boundary processing is not
shown.
{left boundary processing...}
for i = 0 to N − 1 do

for j = 2 to (N − 6)/2 do
aux = 0;
for k = 0 to L E N GT H H do

aux = aux + h[k]*A[i ,2 ∗ j − L E N GT H H/2 + k];
end for
App[i , j] = aux;
aux = 0;
for k = 0 to L E N GT H G do

aux = aux + g[k]*A[i ,2 ∗ j − L E N GT H G/2 + k];
end for
Det[i , j] = aux;

end for
end for
{right boundary processing...}

Loop distribution can also be required to meet GPU render target (number of
shader outputs) constraints. Some GPUs do not permit several render targets, i.e.,
output streams, in a fragment shader, or have a limit on the number of targets. For
instance, if we run LS on a GPU that only allows one render target, the first and
sixth loops in Listing 3 have to be distributed into two kernels, each one writing to a
different array. Notice that in this case, unlike the previous distribution that converts
Listing 2 into Listing 3, the new kernels can run in parallel, since both loopnests are
free of dependences.

Finally, GPU memory constraints have to be considered. Obviously, we need to
restrict the size of the kernel loop nests so that the amount of elements accessed in
these loops fits into this memory. This is usually achieved by tiling or strip-mining
the kernel loop nests. For instance, if the input array in the FBS algorithm is too
large, we should tile the loops in Listing 4. Listing 5 shows a transformed FBS code
after applying loop tiling and distributing the loops in order to meet render target
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constraints. The external loops (ti, t j) have been fused to improve temporal locality,
i.e., the two filter loops have been tiled in a way that both kernels read from the same
data in every iteration of the external loops. This way, we reduce memory transfers
between the GPU and the main memory, since data have to be transferred to the GPU
only once.

Listing 5 Transformed horizontal FBS loopnest. The original loopnest has been tiled
and distributed to meet memory and render target constraints (assuming only one
render target is possible). Specific boundary processing is not shown.

{left boundary processing...}
for ti = 0 to (N − 1)/T I do

for t j = 2 to ((N − 6)/2)/T J do
for i = ti ∗ T I to (ti + 1) ∗ T I − 1 do

for j = t j ∗ T J to (t j + 1) ∗ T J − 1 do
aux = 0;
for k = 0 to L E N GT H H do

aux = aux + h[k]*A[i ,2 ∗ j − L E N GT H H/2 + k];
end for
App[i , j] = aux;

end for
end for
for i = ti ∗ T I to (ti + 1) ∗ T I − 1 do

for j = t j ∗ T J to (t j + 1) ∗ T J − 1 do
aux = 0;
for k = 0 to L E N GT H G do

aux = aux + g[k]*A[i ,2 ∗ j − L E N GT H G/2 + k];
end for
Det[i , j] = aux;

end for:kernel-block
end for

end for
end for
{right boundary processing...}

Loop tiling is also useful to optimize cache locality. GPU texture caches are heavily
optimized for graphics rendering. Therefore, given that the reference patterns of
GPGPU applications usually differ from those for rendering, GPGPU applications
can lack cache performance. We do know that these caches are organized to capture
2D locality [10], but we do not know their exact specifications today, as they are
not released by GPU makers. This lack of information complicates the practical
application of tiling since the structure of the target memory hierarchy is the principal
factor in determining the tile size. Therefore, some sort of memory model or empirical
tests will be needed to make this transformation useful.
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Figure 18.6 Stream graphs of the GPU-based (a) filter-bank (FBS) and (b) lifting
(LS) implementations.

18.3.1.3 The 2D-DWT in the Stream Programming Model

Figures 18.6(a) and 18.6(b) graphically illustrate the implementation of the two
DWT algorithms in the stream programming model. These stream graphs have been
extracted from the sequential code applying the previous transformations. For the
FBS we only need two kernels, one for each filter. Furthermore, these kernels can be
run in parallel (without synchronization) as both write on different parts of the output
arrays and do not depend on the results of each other. On the other hand, the depen-
dences between LS steps translate into a higher number of kernels, which results in
finer grain parallelism (each LS step is performed by a different kernel) and explicit
synchronization barriers between them to avoid race conditions.

These algorithms also allow us to highlight the parallelism versus complexity
trade-off that developers usually face. Theoretically, LS requires less arithmetic op-
erations than its FBS counterpart, down to one half depending on the type and length
of the wavelet filter [4]. In fact, LS is usually the most efficient strategy in general-
purpose microprocessors [13]. However, its FBS fits better the programming environ-
ment the GPU offers. In practice, performance models or empirical tests are needed
to evaluate these kinds of trade-offs.

18.3.2 Stream Management and Kernel Invocation

As mentioned above, kernel programs can be written in high-level C-like languages
such as Cg [7]. However, we must still use a 3D graphics API, such as OpenGL,
to organize data into streams, transfer those data streams to and from the GPU as
2D textures, upload kernels, and perform the sequence of kernel calls dictated by
the application flow. In order to illustrate these concepts, Figure 18.8 shows some of
the OpenGL commands and the respective Cg code that performs one lifting step (the
ALPHA step). The following subsections describe this example code in detail.
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18.3.2.1 Mapping Streams to 2D Textures

In our programming model, the stream management is performed by allocating a
single 2D texture, large enough to pack all the input and output data streams (not
shown in Figure 18.8). Given that textures are made up of 4-channel elements,
known as texels, different data-to-texel mappings are possible. The most profitable one
depends on the operations being performed in the the kernel loops, since this mapping
determines the following key performance factors:

� SIMD parallelism. As mentioned above, fragment processors usually have
vector units that process the four elements of a texel in a SIMD fashion.� Locality. Texel mapping influences the memory access behavior of the kernels
since fetching one texel only requires one memory access.� Automatic texture addressing. Texture mapping may also determine how
texture coordinates (addresses) are computed. If the number of texture
addresses needed by a kernel does not exceed the number of available hardware
interpolators, memory address calculations can be accelerated by hardware.

For the DWT, a 2D layout is an efficient mapping, i.e., packing two elements from
two consecutive rows of the original array into each texel. This layout permits all the
memory (texture) address calculations to be performed by the hardware interpolators.
Nevertheless, for the sake of simplicity we will consider a simpler texel mapping, in
which each texel contains only one array element, in the rest of this section.

Apart from the texel mapping, we should also define the size and aspect ratio of
the allocated 2D texture as well as the actual allocation of input and output arrays
within this texture. For example, Figure 18.7 illustrates these decisions for our DWT
implementations. We use a 2D texture twice as large as the original array. The initial
data (array A in Listing 3) are allocated on the top half of this texture, whereas
the bottom half will eventually contain the produced streams (the App and Det in
Listing 3) .
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18.3.2.2 Orchestrating Memory Transfers and Kernel Calls

With data streams mapped onto 2D textures, our programming model uses the GPU
fragment processors to execute kernels (fragment shaders) over the stream elements.
In an initialization phase, the main program uploads these fragment shaders into the
graphics hardware. Later on, they are invoked on demand according to the application
flow.10

To invoke a kernel, the size of the output stream must be defined. This definition
is done by drawing a rectangle that covers the region of pixels matching the output
stream. The glVertex2f OpenGL commands define the vertex coordinates of this rect-
angle, i.e., they delimit the output area, which is equivalent to specifying the kernel
loop bounds. The vertex processor and the rasterizer transform the rectangle to a
stream of fragments, which are then processed by the active fragment program.

Among the attributes of the generated fragment, we find hardware interpolated 2D
texture coordinates, which are used as indexes to fetch the input data associated to that
fragment.11 To delimit those input areas, the glMultiTexCoord2fvARB OpenGL com-
mands assign texture coordinates at each vertex of the quad. In our example, we have
three equal-sized input areas, which partially overlap with each other, since we must
fetch three different elements (Det[i][j], App[i][j] and App[i][j+1]) per output value.

In the example, both the input and output areas have the same size and aspect ratio,
but they can be different. For instance, the FBS version takes advantage of the linear
interpolation to perform downsampling by defining input areas twice as wide as the
output one.

As mention above, there is a limit on the number of texture coordinates (per frag-
ment) that can be hardware interpolated, which depends on the target GPU. As long
as the number of input elements that we must fetch per output value is lower than this
limit (as in the example), memory addresses are computed by hardware. Otherwise,
texture coordinates must be computed explicitly on the fragment program.

Finally, synchronization between consumers and producers is performed using the
OpenGL glFinish() command. This function does not return until the effects of all pre-
viously invoked GL commands are completed and it can be seen as a synchronization
barrier. In the example, we need barriers between every lifting step.

18.3.3 GPGPU Framework

As shown in the previous section, in order to exploit the GPU following a stream
programming model, we have to deal with the many abstraction layers that the sys-
tem introduces to ease the access to graphics hardware in graphics applications. As
we can observe in Figure 18.8, these layers do nothing but cloud the resources we
want to use. Therefore, it is useful for us to build some abstraction layers that bring
together our programming model and the graphics hardware, so we can move away

10In our example, Active fp(Alpha fp) enables the Alpha fp fragment program. Kernels always operate on
the active texture, which is selected byActive texture.
11This operation is also known as texture lookup in graphics terminology.
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Figure 18.8 Mapping one lifting step onto the GPU.

the graphics API, worthless – even harmful – in our case. In this section, we present
the API of the framework we have been using in our research to clarify how we can
easily utilize a graphics card to implement the stream flow models developed for our
target algorithms.

18.3.3.1 The Operating System and the Graphics Hardware

In an operating system, we find that access to the graphics hardware implies going
through a series of graphics libraries and extensions to the windowing system. First
of all, we have to install a driver for the graphics card, which exports an API to the
windowing system. Then, the windowing system exports an extension for initializing
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Figure 18.9 Implementation of the GPGPU Framework.

our graphics card, so it can be used through the common graphics libraries – like
OpenGL or DirectX – that provide higher level primitives for 3D graphics applications.

In GNU/Linux (see Figure 18.9(a)), the driver is supplied by the graphics card’s
manufacturer, the windowing system, is the X Window System, and the graphics
library is OpenGL, which can be initialized through the GLX extension. Our GPGPU
framework hides the graphics-related complexity, i.e., the X Window System, the
GLX, and the OpenGL library.

Figure 18.9(b) illustrates the software architecture of the GPGPU framework we
implement. It consists of three classes: GPUStreams, GPUKernels, and a GPGPU
static class for GPU and video memory managing.

The execution resources are handled through the GPUKernel class, which repre-
sents our execution kernels. We can control the GPGPU mode through the GPGPU
class and transfer data to and from the video memory using the GPUStream class. This
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TABLE 18.1 GPGPU Class Methods

GPGPU

method input params output params

initialize width, height, chunks (void)
getGPUStream width, height GPUStream*
freeGPUStream GPUStream* (void)
waitForCompletion (void) (void)

way, we provide a stream model friendly API that allows us to directly implement the
stream flow models of our target applications, avoiding most of the graphics issues.

18.3.3.2 The GPGPU Framework

The static class GPGPU allows us to initialize and finalize the GPGPU mode and
wait for the GPU to complete any kernel execution or data transference in progress.
In addition, it incorporates a memory manager to allocate and free video memory.
Two possible implementations of the memory manager are possible: a multi-texture
or a single-texture model. In the former, the memory manager allocates the different
streams as different textures that provide a noticeable amount of streams (up to sixteen)
that can be managed at a time in our kernels. In addition, all these textures can be
independently accessed using the results from the eight hardware interpolators, i.e.,
a single coordinate references one element on each stream as the texture coordinates
are shared among them.

On the other hand, the single-texture model allocates all the streams as different
regions of a single 2D texture. This model limits the amount of memory that can be
managed.12 Furthermore, each hardware-interpolated texture coordinate can only be
used to access one element in one stream, i.e., one element in the texture. However,
it is always possible to compute extra coordinates in the fragment shader. Despite
of all these limitations, a single-texture model has a definitive advantage: a unified
address space. This allows us to identify a stream by its location in the unified address
space and store this location as data in other streams, i.e., we can use pointers to
streams. On the contrary, this is not possible in a multi-texture model since we cannot
store a texture identifier as data. This limitation in the multi-texture model makes it
difficult to dereferencing streams based on the output of previous kernels (it may be
very inefficient or even impossible).

Because of the benefits of the single address space, we decided to implement
the memory manager following the single-texture model, using a first-fit policy to
allocate the streams on the texture. The interface of the GPGPU class is shown in
Table 18.1.

12The maximum size for a texture that OpenGL allows us to allocate is 4096 × 4096 texels, so we are
limited to 256MB of video memory (4096 × 4096 × 4(RGBA)×4(floating point elements)).
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TABLE 18.2 GPUStream Class Methods

GPUStream

method input params output params

writeAll float* (void)
write x0, y0, width, height, float* (void)
readAll (void) float*
read x0, y0, width, height float*
setValue float (void)
getSubStream xof f , yof f , width, height GPUStream*
getX/getY (void) int
getWidth/getHeight (void) int

Once the GPGPU mode has been set up, we have access to the video memory
through GPUStream objects, whose methods are shown in Table 18.2. We can trans-
fer data between the main memory and the GPUStreams by using the read[All]
and write[All] methods. getSubStream allow, us to obtain a displaced reference to a
stream: We can specify an off-set from the original position of the stream in memory
(xof f , yof f ), and the width and height of the new stream. This way, we can use differ-
ent regions of the same stream as different streams, as the example in Figure 18.10
illustrates.

Our kernels, written in Cg [7], are managed in the application through the GPUK-
ernel objects, whose methods are shown in Table 18.3. We can use these objects to
run kernels on different streams, which are passed as parameters. Apart from streams,
we can also pass constant arguments through the set[Local}Named]Param method.
The launch method is a non-blocking version of run.

These three classes (GPGPU, GPUKernel, and GPUStream) abstract all the basic
functionality required to map applications in the stream programming model to the
GPU. For instance, Listing 6 shows the C++ code for the implementation of the
algorithm in Figure 18.10, while Listings 7 and 8 show the Cg codes of the kernels
used in this example.

DC DC

B = A + D;
C = A – D;A = S.getSubStream(0, 0, 4, 2);

C = S.getSubStream(0, 2, 4, 2);

D = S.getSubStream(4, 2, 4, 2);

B = S.getSubStream(4, 0, 4, 2);
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Figure 18.10 We allocate a stream S of dimension 8 × 4 and initialize its content
to a sequence of numbers (from 0 to 31). Then, we ask four substreams dividing the
original stream into four quadrants (A, B, C , and D). Finally, we add quadrants A
and D and store the result in B, and we substract D from A and store the result in C .



Real-Time Onboard Hyperspectral Image Processing 433

TABLE 18.3 GPUKernel Class Methods

GPUKernel

method input params output params

setNamedParam char* name, StreamElement (void)
setLocalParam int pos, StreamElement (void)
launch GPUStream*, ... GPUStream*
run GPUStream*, ... GPUStream*

Listing 6 C++ Main program for the example in Figure 18.10.

#include "GPGPU.h"

int main( )
{

// Allocate enough video memory
GPGPU::Initialize( 128, 128, 1 );

// Allocate the main stream
GPUStream∗ S = GPGPU::getGPUStream( 8, 4 );

float data[32];
for( int i = 0; i < 32; i++ ) data[i] = i;

// Write the initial data to the stream
S >writeAll( data );

// Create 4 streams as references to four quadrants of S
GPUStream∗ A = S >getSubStream( 0, 0, 4, 2 );
GPUStream∗ B = S >getSubStream( 4, 0, 4, 2 );
GPUStream∗ C = S >getSubStream( 0, 2, 4, 2 );
GPUStream∗ D = S >getSubStream( 4, 2, 4, 2 );

// Load kernels for addition and substraction
GPUKernel∗ add( "add.cg" );
GPUKernel∗ sub( "sub.cg" );

// Run them in parallel
add >launch( A, D, B ); // Asynchronous
sub >run( A, D, C ); // Synchronous

GPGPU::Finalize( );
}
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Listing 7 Cg code for an addition kernel, which takes two streams and adds them.

void add( in float2 s1 coord : TEXCOORD0,
in float2 s2 coord : TEXCOORD1,
out float s1 plus s2 : COLOR,
const uniform samplerRECT mem )

{
// We dereference the corresponding stream elements
float s1 = texRECT( mem, s1 coord );
float s2 = texRECT( mem, s2 coord );
// We add them and return the result
s1 plus s2 = s1 + s2;

}

Listing 8 Cg code for a substraction kernel, which takes two streams and substract
them.
void sub( in float2 s1 coord : TEXCOORD0,

in float2 s2 coord : TEXCOORD1,
out float s1 minus s2 : COLOR,
const uniform samplerRECT mem )

{
// We dereference the corresponding stream elements
float s1 = texRECT( mem, s1 coord );
float s2 = texRECT( mem, s2 coord );
// We substract s2 from s1 and return the result
s1 minus s2 = s1 s2;

}

18.4 Automatic Morphological Endmember Extraction on GPUs

This section develops a GPU-based implementation of the Automatic Morphological
Endmember Extraction (AMEE) algorithm following the design guidelines outlined
above. First, we provide a high-level overview of the algorithm, and then we discuss
the specific aspects about its implementation on a GPU.

18.4.1 AMEE

Let us denote by f a hyperspectral data set defined on an N -dimensional (N -D) space,
where N is the number of channels or spectral bands. The main idea of the AMEE
algorithm is to impose an ordering relation in terms of spectral purity in the set of
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pixel vectors lying within a spatial search window or structuring element around each
image pixel vector [21]. To do so, we first define a cumulative distance between one
particular pixel f(x, y), i.e., an N -D vector at discrete spatial coordinates (x, y), and
all the pixel vectors in the spatial neighborhood given by B (B-neighborhood) as
follows [18]:

DB(f(x, y)) =
∑

(i, j)∈Z2(B)

Dist(f(x, y), f(i, j)) (18.1)

where (i, j) are the spatial coordinates in the B-neighborhood discrete domain, repre-
sented by Z2(B), and Dist is a pointwise distance measure between two N -D vectors.
The choice of Dist is a key topic in the resulting ordering relation. The AMEE algo-
rithm makes use of the spectral angle mapper (SAM), a standard measure in hyperspec-
tral analysis [3]. For illustrative purposes, let us assume that si = (si1, si2, . . . , si N )T

and s j = (s j1, s j2, . . . , s j N )T are two N -D signatures. Here, the term ‘spectral sig-
nature’ does not necessarily imply ‘pixel vector’ and hence spatial coordinates are
omitted from the two signatures above, although the following argumentation would
be the same if pixel vectors were considered. The SAM between si and s j is given by

SAM(si , s j ) = cos−1(si · s j/‖si‖ · ‖s j‖) (18.2)

It should be noted that SAM is invariant in the multiplication of input vectors by
constants and, consequently, is invariant to unknown multiplicative scalings that may
arise due to differences in illumination and sensor observation angles.

In contrast, SID is based on the concept of divergence and measures the discrepancy
of probabilistic behaviors between two spectral signatures. If we assume that si and s j

are nonnegative entries, then two probabilistic measures can be respectively defined
as follows:

M[sik] = pk = sik/

N∑
l=1

sil M[s jk] = qk = s jk/

N∑
l=1

s jl (18.3)

Using the above definitions, the self-information provided by s j for band l is given
by Il(s j ) = −log ql . We can further define the entropy of s j with respect to si by

D(si‖s j ) =
N∑

l=1

pl Dl(si‖s j )

=
N∑

l=1

pl(Il(s j ) − Il(si )) =
N∑

l=1

pl log(pl/ql)

(18.4)

By means of equation (18.4), SID is defined as follows:

SID(si , s j ) = D(si‖s j ) + D(s j‖si ) (18.5)

With the above definitions in mind, we provide below a step-by-step description
of the AMEE algorithm that corresponds to the implementation used in [19]. The
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inputs to the algorithm are a hyperspectral data cube f, a structuring element B with
size of t × t pixels, a maximum number of algorithm iterations Imax , and a maximum
number of endmembers to be extracted p. The output is a set of endmembers {ei }q

i=1,
with q ≤ p.

1. Set i = 1 and initialize a morphological eccentricity index score MEI(x, y) = 0
for each pixel.

2. Move B through all the pixels of f, defining a local spatial search area around
each pixel f(x, y), and calculate the maximum and minimum pixel vectors at
each B-neighborhood using morphological erosion and dilation [21], respec-
tively, as follows:

(f � B)(x, y) = argmin(i, j)∈Z2(B){DB[f(x + i, y + j)]} (18.6)

(f ⊕ B)(x, y) = argmax(i, j)∈Z2(B){DB[f(x + i, y + j)]} (18.7)

3. Update the MEI at each spatial location (x, y) using MEI (x, y) = Dist[(f �
B)(x, y), (f ⊕ B)(x, y)].

4. Set i = i + 1. If i = Imax , then go to step 5. Otherwise, set f = f ⊕ B and go
to step 2.

5. Select the set of p pixel vectors with higher associated MEI scores (called
endmember candidates) and form a unique spectral set of {ei }q

i=1 pixels, with
q ≤ p, by calculating the Dist for all pixel vector pairs.

18.4.2 GPU-Based AMEE Implementation

This subsection describes how to implement in parallel the first four steps of the
AMEE algorithm (finding the MEI score map) using a GPU architecture. It should
be noted that these steps account for most of the execution time involved in the
endmember extraction process.

The first issue that needs to be addressed is how to map a hyperspectral image
onto the memory of the GPU. Since the size of hyperspectral images usually exceeds
the capacity of such memory, we split them into multiple spatial partitions made up
of entire pixel vectors (called spatial regions or SRs), i.e., each SR incorporates all
the spectral information on a localized spatial region and is composed of spatially
adjacent pixel vectors. As shown in Figure 18.11, SRs are further divided into 4-band
tiles (called SR tiles), which are stored in different GPUStreams (Subsection 18.3.3).
Using stream elements with four floating-point components each allows us to map
four consecutive spectral bands onto the same GPUStream so we can make full use of
the vector operations available in the GPU. Apart from the SR tiles, we also allocate
additional GPUStreams to hold intermediate information such as inner products,
norms, pointwise distances, and cumulative distances.
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Figure 18.11 Mapping of a hyperspectral image onto the GPU memory.

Figure 18.12 shows a flowchart describing our GPU-based implementation of the
AMEE algorithm using SAM as pointwise distance. The stream uploading stage
performs the data partitioning and mapping operations described above, i.e., dividing
the image into SRs and writing them as a set of SR tiles (GPUStreams). The remaining
stages perform the actual computation and comprise the following stages:

1. Inner products and norms. The SR tiles stored in our GPUStreams are con-
sidered as input streams to this stage, which obtain all the inner products and
norms necessary to compute the required point-wise distances. Keeping in
mind that the size of the structuring element is t × t pixels, it will be nec-
essary to compute t2(t2+1)

2 distances per pixel. However, taking advantage of
the redundancy between adjacent structuring elements, it is possible to reduce
this amount to 	 (2t−1)2

2 
. As shown in Figure 18.13, for t = 3 we only need
to compute 12 + 1 inner products per pixel: one product of the vector with
itself (to find the norm) and twelve with the pixel vectors within its region of
influence (RI).13 Since GPUStreams are actually SR tiles, the implementation

13The region of influence (RI) of a pixel includes 4-connected neighbors to the pixel – the southwest (SW),
south (S), southeast (SE), and east (E) neighbors – as well as their respective W, SW, S, SE, and E neighbors
within the structuring element. It is worth noting that other alternative definitions for the RI are possible
by adopting different connectivity criteria in the selection of neighbors, as far as the chosen RI contains a
minimum set of neighbors that cover all the instances.
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Figure 18.12 Flowchart of the proposed stream-based GPU implementation of the
AMEE algorithm using SAM as pointwise distance.

of this stage is based on two GPUKernels, denoted as multiply and add (MAD)
and 4-to-1 in Figure 18.13. The former is a multi-pass GPUKernel that imple-
ments an element-wise multiply and add operation iterating over each SR tile,
thus producing four partial inner products stored in the four components of our
GPUStreams (we can see an example of this GPUKernel in Figure 18.14). The
latter is a single-pass GPUKernel that computes the final inner products, per-
forming the sum reduction of these four-element vectors. A third single-pass
GPUKernel produces the norm of every pixel vector.

2. Pointwise distance. For each pixel vector, this stage computes the SAM with
all the neighbor pixels within its RI. It is based on a single-pass GPUKernel
that computes the SAM between two pixel vectors using the inner products and
norms produced by the previous stage.
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Figure 18.13 Kernels involved in the computation of the inner products/norms and
definition of a region of influence (RI) for a given pixel defined by an SE with t = 3.

3. Cumulative distance. For each pixel vector, this stage produces t2 cumulative
distance streams for each of the t2 neighbors defined by the structuring element.
It is based on a single-pass GPUKernel that accumulates up to eight pointwise
distances.14

4. Maximum/minimum finding. Erosion and dilation are finalized at this stage
through a GPUKernel that applies minimum and maximum reductions. This
GPUKernel uses as inputs the cumulative distances generated in the previous
stage, and produces a GPUStream containing, for each pixel vector, the relative
coordinates of the neighboring pixels with maximum and minimum cumulative
distances.

5. Dilation. If i < Imax , this stage propagates the purest pixels in the current iter-
ation to produce the SR tiles for the next iteration. It is based on a GPUKernel
that takes as input the GPUStream containing the maximum and the GPU-
Streams containing the SR tiles, and produces a new set of GPUStreams that
contain the SR tiles for the next iteration.

6. MEI score update. Finally, this stage updates the MEI scores using the maxi-
mum/minimum and point-wise distance GPUStreams. We can take advantage
of the unified addressing space provided by our GPGPU framework, and use

14The number of texture interpolations that can be performed in a fragment program by hardware is limited
to eight in our target GPUs
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SRtile1 (GPUStream)

SRtileband/4 (GPUStream)

GPUStream*  SR1 = SRtile1 ->getSubStream (0, 0, w-1, h-1);

GPUStream*  SR1 = SRtile1 ->getSubStream (1, 1, w-1, h-1);

GPUStream*  SRbands/4 = SRtilebands/4 ->getSubStream

(0, 0, w-1, h-1);
GPUStream*  SSRbands/4 = SRtilebands/4 ->getSubStream

(1, 1, w-1, h-1);

SR1 ‘*’  SSR1 (GPUkernelMAD ->run (SR1, SSR1, MADres);)
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Figure 18.14 Computation of the partial inner products for distance 5: each pixel-
vector with its south-east nearest neighbor. Notice that the elements in the GPU-
Streams are four-element vectors, i.e., A, B, C . . . contains four floating-point values
each, and vector operations are element-wise.

the maximum and minimum values to index a reference table containing the
corresponding distances, so we don’t need to compute again the distance be-
tween the most similar and the most distinct pixel vector; we just have to
reference the adecuate point-wise distance previously computed.
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Figure 18.15 Flowchart of the proposed stream-based GPU implementation of the
AMEE algorithm using SID as pointwise distance.

As shown in Figure 18.15, the stream-based implementation of the AMEE algo-
rithm using SID as pointwise distance is similar. Basically, there is a pre-normalization
stage, but the computation of the pointwise distance does not require intermediate
inner products.

18.5 Experimental Results

18.5.1 GPU Architectures

The proposed endmember extraction algorithm has been implemented on a state-
of-the-art GPU, as well as on an older (3-year-old) system in order to account for
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TABLE 18.4 Experimental GPU Features

F × 5950 Ultra 7800 GTX

Year 2003 2005
Architecture NV38 G70
Bus AGP × 8 PCI Express
Video Memory 256 MB 256 MB
Core Clock 475 MHz 430 MHz
Memory Clock 950 MHz 1.2 GHz GDDR3
Memory Interface 256-bit 256-bit
Memory bandwidth 30.4 GB/s 38.4 GB/s
#Pixel shader processors 4 24
Texture fill rate 3800 MTexels/s 10320 MTexels/s

TABLE 18.5 Experimental CPU Features

Pentium 4 (Northwood C) Prescott (6 × 2)

Year 2003 2005
FSB 800 MHz, 6.4 GB/s 800 MHz, 6.4 GB/s
ICache L1 12 KB 12 KB
DCache L1 8 KB 16 KB
L2 Cache 512 KB 2 M
Memory 1 GB 2 GB
Clock 2.8 GHz 3.4 GHz

potential improvements that might be achievable on future generations of GPUs. The
generations considered correspond to the NV30 and G70 families (see Table 18.4),
and the programs were coded using Cg [7]. For perspective, we have also reported
performance results on contemporary Intel CPUs (see Table 18.5). The CPU imple-
mentations were developed using the Intel C/C++ compiler and optimized via com-
pilation flags to exploit data locality and avoid redundant computations of common
point-wise distances between adjacent structuring elements.

18.5.2 Hyperspectral Data

The hyperspectral data set used in the experiments is the well-known AVIRIS Cuprite
scene, available online15 (in reflectance units). It was collected by an AVIRIS flight
over the Cuprite mining district in Nevada. Figure 18.16 shows a subscene of the
full flightline, which is centered at a region with high mineral diversity. The full
scene comprises a relatively large area, with 677 × 1939 pixels, spatial resolution of
20 meters, 204 narrow spectral bands between 0.4 and 2.5 μm, and nominal spec-
tral resolution of 10 nm (for a total size of 512 MB). It should be noted that a total
of 19 bands were removed prior to the analysis due to water absorption and low
SNR in those bands. The site is well understood mineralogically and has several

15http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
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Figure 18.16 Subscene of the full AVIRIS hyperspectral data cube collected over
the Cuprite mining district in Nevada.

exposed minerals of interest. The reflectance spectra of ten U.S. Geological Survey
(USGS) ground mineral spectra: alunite, buddingtonite, calcite, chlorite, kaolinite,
jarosite, montmorillonite, muscovite, nontronite, and pyrophilite (all available from
http://speclab.cr.usgs.gov) were used as ground-truth spectra to illustrate endmember
extraction accuracy. Figure 18.17 plots the spectra of the ten above-mentioned min-
erals of interest. Finally, in order to study the scalability of our CPU- and GPU-based
implementations, we tested them on different image sizes, where the largest one cor-
responds to a 512 MB subscene while the others correspond to cropped portions of
the same subscene.

18.5.3 Performance Evaluation

Before empirically investigating the performance of the proposed GPU-based imple-
mentation, we first briefly discuss endmember extraction accuracy of the proposed
morphological method in comparison with other available approaches. Table 18.6
tabulates the SAM spectral similarity scores obtained after comparing USGS library
spectra with the corresponding endmembers extracted by standard endmember ex-
traction algorithms, including the PPI, N-FINDR, VCA and IEA (the smaller the
scores across the ten minerals considered in Table 18.6, the better the results). On
the other hand, Table 18.7 displays the spectral similarity scores achieved by the
endmembers extracted by the proposed AMEE algorithm, using different numbers
of iterations, ranging from Imax = 1 to Imax = 5, and a constant SE with t = 3.
The number of endmembers to be extracted in all cases was set to 16 after calculat-
ing the intrinsic dimensionality of the data [3]. The value obtained relates very well
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Figure 18.17 Ground USGS spectra for ten minerals of interest in the AVIRIS
Cuprite scene.

to the ground-truth information available for the scene. The two above-mentioned
tables reveal that the spatial/spectral AMEE algorithm was able to improve the re-
sults obtained by other methods which rely on using the spectral information alone,
in particular, as the number of algorithm iterations was increased to account for richer
spatial/spectral information.
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TABLE 18.6 SAM-Based Spectral Similarity Scores
Among USGS Mineral Spectra and Endmembers Produced by
Different Algorithms

PPI N-FINDR VCA IEA

Alunite 0.084 0.081 0.084 0.084
Buddingtonite 0.106 0.084 0.112 0.094
Calcite 0.105 0.105 0.093 0.110
Chlorite 0.125 0.136 0.096 0.096
Kaolinite 0.136 0.152 0.134 0.134
Jarosite 0.112 0.102 0.112 0.108
Montmorillonite 0.106 0.089 0.120 0.096
Muscovite 0.108 0.094 0.105 0.106
Nontronite 0.102 0.099 0.099 0.099
Pyrophilite 0.094 0.090 0.112 0.090

TABLE 18.7 SAM-Based Spectral Similarity Scores Among USGS Mineral
Spectra and Endmembers Produced by the AMEE Algorithm (Implemented Using
Both SAM And SID, and Considering Different Numbers of Algorithm Iterations)

AMEE (using SAM) AMEE (using SID)

Imax = 1 Imax = 3 Imax = 5 Imax = 1 Imax = 3 Imax = 5
Alunite 0.084 0.081 0.079 0.081 0.081 0.079
Buddingtonite 0.112 0.086 0.081 0.103 0.084 0.082
Calcite 0.106 0.102 0.093 0.101 0.095 0.090
Chlorite 0.122 0.110 0.096 0.112 0.106 0.084
Kaolinite 0.136 0.136 0.106 0.136 0.136 0.102
Jarosite 0.115 0.103 0.094 0.108 0.103 0.094
Montmorillonite 0.108 0.105 0.101 0.102 0.099 0.092
Muscovite 0.109 0.099 0.092 0.109 0.095 0.078
Nontronite 0.101 0.095 0.090 0.101 0.092 0.085
Pyrophilite 0.098 0.092 0.079 0.095 0.086 0.071

TABLE 18.8 Execution Time (In Milliseconds) for the CPU
Implementations

AMEE-1 (SAM) AMEE-2 (SID)

Size (MB) Pentium 4 Prescott Pentium 4 Prescott

16 6588.76 4133.57 22369.8 16667.2
32 13200.3 8259.66 45928 33826.7
64 26405.6 16526.7 92566.6 68185

128 52991.8 33274.9 187760 137412
256 106287 66733.7 377530 277331
512 212738 133436 756982 557923
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TABLE 18.9 Execution Time (In Milliseconds) for the GPU
Implementations

AMEE-1 (SAM) AMEE-2 (SID)

Size (MB) FX5950 U 7800 GLX FX5950 U 7800 GLX

16 1923.63 457.37 898.36 513
32 3909.91 905.93 1817.52 1034.42
64 7873.9 1781.58 3714.86 2035.01

128 15963.1 3573.3 7364.12 4144.82
256 31854.5 7311.05 14877.2 8299.07
512 63983.9 14616 29794.8 16692.2

Although the use of SAM or SID does not seem to play a very relevant role,
the endmember spectra produced using SID show slightly better similarity to USGS
reference spectra.

Table 18.9 shows the execution times of our CPU- and GPU-based AMEE imple-
mentations for different image sizes. First, it is worth noting that the GPU version
is able to process the full 677 × 1939-pixel data cube extremely fast: For Imax = 5,
the SAM (SID) version requires 14 (16) seconds, in spite of the overheads involved
in data transfer between the main memory and the GPU. This confirms our intuition
that GPUs are indeed suitable for spatial/spectral processing of hyperspectral data
sets. Figures 18.18 and 18.19 further demonstrate that the complexity of the imple-
mentation scales linearly with the problem size, i.e., doubling the image size simply
doubles the execution time.
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Figure 18.18 Performance of the CPU- and GPU-based AMEE (SAM) implemen-
tations for different image sizes (Imax = 5).
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Figure 18.19 Performance of the CPU- and GPU-based AMEE (SID) implemen-
tations for different image sizes (Imax = 5).

As shown in Figure 18.20, the speedups achieved by the GPU implementation over
their CPU counterparts are outstanding. As expected, these speedups grow with the
number of iterations since the respective trans f er overhead to G PU computation
ratios improve. For the SAM version, they are up to 10. For the SID version, which
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has a higher arithmetic intensity, it grows to an impressive 17 − 35× factor. As a
consequence of this behavior, the execution times of both versions become quite
similar on the latest GPU (see Figure 18.21), despite SAM being around four times
faster on the CPU. Although these figures are already remarkable, we should also
highlight that multi-GPU systems or even clusters of GPUs [5] may significantly
increase the reported performance gains.

Finally, we must also note the remarkable relative evolution of GPUs when com-
pared to that of CPUs (see Figure 18.22). The performance gain caused by the evolu-
tion of Intel CPUs is significant by below 60% in both versions. However, the speedup
factor observed as a result of the evolution of GPUs is around 2× for SAM and up to 4×
for SID. This comes as no surprise, since the latest generation has multiplied by six the
number of fragment processors as well as increased the onboard memory bandwidth.

18.6 Conclusions

In this chapter, we have explored the viability of using GPUs for efficiently imple-
menting spatial/spectral endmember extraction algorithms. This approach represents
a cost-effective alternative to other high-performance systems, such as Beowulf-type
clusters, which are expensive and difficult to adapt to onboard processing scenarios.
The outstanding speedups reported in experiments, together with the low cost and im-
pressive evolution of GPUs, anticipate a significant impact of these hardware devices
in the remote sensing community. In future developments, we will explore addi-
tional partitioning strategies to balance the workload between the CPU and the GPU.
Further research will also include experiments with multi-GPU systems and clusters
of GPUs, with the ultimate goal of adapting these commodity components to onboard
hyperspectral data processing.
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